
Multi-agent Dynamic Interaction in Simulation of Complex Adaptive Systems

Hantao Hua†, Feng Zhu‡∗, Yiping Yao‡ and Wenjie Tang‡
† College of Computer, ‡ College of Systems Engineering

National University of Defense Technology
Changsha, China

e-mail: {ht_hua|zhufeng|ypyao|tangwenjie}@nudt.edu.cn

Abstract—Agent-based modeling and simulation is an effective
approach to study complex adaptive systems. With the increasing
scale of the simulated system, the interactions between autonomous
agents become more and more complex. It is difficult to
describe the dynamic interaction between agents by model code
intuitively. In addition, the static interaction structure in a multi-
agent model leads to long running time and more memory
resource consumption. Therefore, this paper proposes a method
to graphically describe the dynamic interactions between different
agents, named Multi-Agent interaction Graph (MAG). MAG takes
agent model class as the basic element of graphical composition.
The data communication between agent models is established by
using subscribe/publish mechanism, and the interaction between
agent model instances is accurately determined based on the
dynamic attribute filtering algorithm, which is generated by
the large models include Large Language Model (LLM) and
Large Vision Model (LVM) automatically from the MAG. The
transmission of irrelevant communication data between agent
model instances is reduced, and the simulation execution time
and memory consumption are reduced. Taking two scenarios as
case studies, this paper proves that MAG can model the dynamic
interaction between agents, and the execution time of different
numbers of agents situation is reduced by 20% - 60%, which can
effectively support the scalability of the number of agent model
instances. Additional scenario experiments were also conducted to
demonstrate the stability and generality of the dynamic attribute
filtering algorithm for large model generation.

Keywords-complex adaptive systems; graphical modeling and sim-
ulation; multi-agent interaction; automatic generation of dynamic
data filter.

I. INTRODUCTION

Agent based modeling and simulation [1] is an effective
approach to study Complex Adaptive Systems (CAS), which
is a system composed of autonomous, interacting agents and
the interactions between agents will change frequently [2].
With the increasing scale of agents in a CAS, the interactions
between agents become more and more complex, showing the
characteristics of complex interacting structure and diverse
interacting behavior [3]. How to describe the complex dynamic
inter-actions between these agents intuitively and how to reduce
the interaction overhead in CAS simulation execution bring
challenges to traditional multi-agent modeling and simulation
approach and environment.

On one hand, it is difficult to describe the dynamic intera-
cions between agents by model code intuitively, because of
their complicated interacting structure. The graphical composite
modeling method is introduced into multi-agent modeling and
simulation, which can simplify the CAS modeling and greatly
shorten the development time. Graphical composite modeling

method has a higher level of abstraction than code and is
closer to the problem domain [4]. Beginners or experienced
users can intuitively and efficiently compose simpler models
through mouse dragging in a visual user interface to create more
complex models and shield the details of code programming
such as parallel computing, simulation synchronization, and
event scheduling in this process, so as to effectively reduce
the difficulty of modeling CAS.

On the other hand, with the increasing of the complexity
of the simulated system, the number of the agents will grow,
and the communication between the agent models will also
increase [5]. The execution time of the complex composite
model is usually very long, which limits the scalability of the
multi-agent system scale [6]. Even in some special cases, the
multi-agent CAS model cannot be executed at all, due to the
growth of communication. At present, the complex interactive
communication between multi-agent models is mostly limited
to a few specific simulation scenarios or reduces the accuracy
of the model of CAS. In addition, the existing multi-agent
interactive filtering methods are often carried out for specific
problems, and there is a lack of a general filtering method,
takes time and effort to generate an algorithm for each filtering
method.

This paper proposes a multi-agent graphical composite
modeling method, named MAG, which takes the agent model as
the basic graphical element of the CAS multi-agent model, and
establishes the data communication between the agent models
by means of public/subscribe. In the actual running process of
simulation, the dynamic attribute filtering algorithm is used to
filter the non-interactive data between agent models, to build a
dynamic agent interaction network. It reduces the transmission
of irrelevant communication between agent models, and thus
reduce the simulation execution time and memory consumption.
The main contribution of this paper is to support multi-agent
dynamic interaction in CAS from two aspects. One is graphical
modeling and the other is communication data filtering.

(1) The MAG, a graphical composite modeling method, is
proposed to solve the complexity of modeling multi-agent
dynamic interaction, which is more intuitive than code written
by general programming language.

(2) With the MAG modeling method, a dynamic attribute
filtering algorithm is introduced to reduce the problem of long
simulation time and resource consumption caused by irrelevant
communication data transmission between agent model in-
stances. Considering the generality of dynamic attribute filtering
algorithm, we use Large Language Models (LLM) to implement

34Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

the transformation of filtering methods in MAG to C++ code.
The structure of this paper is as follows. Section II in-

troduces the related work. Section III introduces multi-agent
interacion graph. Section IV introduces the general data filtering
mechanism generated by the large model. In the Section V,
we take the multi-aircraft collision avoidance scenario and
swarm robots cooperation scenario as examples, proved that
MAG modeling method can effectively support the dynamic
interaction modeling between agents of CAS, also proved the
stability and scalability of our method. Finally, our conclusion
will be made with an indication of the future work.

II. BACKGROUND AND RELATED WORK

In terms of graphical modeling approach, Petri net [7]
constructs a network structure through Place, Transition, Token
and other basic elements to analyze the structure of the system.
At present, Petri net is constantly developing forward. For
example, Aalst et al. [8] proposed a strategy of modeling
complex processes based on hierarchical colored Petri net.
Staines et al. [9] proposed the method of transforming UML
sequence diagram into Petri net, to make use of its rigorous
model verification method. Drakaki et al. [10] proposed a
dynamic resource allocation method by combin-ing the colored
Petri net and agent-based control system. Tang et al. [11]
proposed a hierarchical Petri net modeling paradigm to build an
aerial collision avoidance model under multi-aircraft scenario.
Jamal et al. [12] extended the agent-based mobile Petri net to
simulate the mobility, concurrency, and distribution of agents.
Hsieh [13] combined multi-agent architecture and Petri net to
solve the problem of distributed dynamic scheduling of hospital
patients. However, the current Petri net does not support to
describe the dynamic interactions between autonomous multi-
agent.

Event Graph is a graphical modeling paradigm of discrete
events. In order to improve the composability of event graph,
Buss et al. [14] introduced the object-oriented modeling ideas
on the basis of the event graph modeling paradigm, and
proposed the concept of the Listener Event Graph Ob-jects
(LEGO). PEG extended the basic event graph to support
graphical composite modeling of discrete event simulation
models [15]. Barclay et al. [16] proposed the dynamic chain
event graph, which can be combined with Semi-Markov chains.
However, the extension and optimization of the above event
graph modeling paradigms mostly adopt static interaction
structure, which leads to more running time and more resource
consumption in a multi-agent model.

Zeigler proposed the Discrete Event System Specification
(DEVS) [17]. The DEVS specification contains two types
of paradigms, the atomic model paradigm for describing
the actual models with specific logical functions, and the
coupled model paradigm for building existing atomic models
into more complex models. In addition, Hamri et al. [18]
introduced minimum/maximum delay into the transition func-
tion to extend DEVS for the hardware simulation modeling.
Camus et al. [19] combined DEVS specification and multi-
agent modeling method to solve the problem of multi-model

modeling and simulation of complex systems. Kulakowski et
al. [20]adopted the DEVS theory to build a multi-agent system,
which was used to simulate the crowd evacuation process
when a fire occurred. Jarrah et al. [21]studied the interaction
behavior modeling among multiple agents based on the DEVS
framework. However, the above extension of DEVS theory
does not consider the requirements of reducing multi-agent
communication consumption.

Similarly, Markovian agents model is a modeling technique
for analyzing large-scale distributed interactive systems. In this
model, each agent is treated as a continuous time Markov chain
(CTMC) whose behavior is influenced by interactions with
other agents [22]. Therefore, the focus of the model is naturally
placed on the state itself and the transition probability between
states, rather than the dynamic interaction process behind the
state transition. Multiformalism modeling approach combines
multiple modeling languages and tools to deal with different
aspects of complex systems [23]. It pays more attention to the
coordination of paradigm, so it is suitable for those complex
systems that are difficult to be fully described by a single
modeling language, rather than focusing on the dynamic change
process of the interaction process between states.

Hybrid hierarchical modeling theory combines models with
different description specifications to realize hierarchical hybrid
modeling of complex systems. The Ptolemy system developed
by Berkeley University [24]was designed under this theory.
The Ptolemy model was described by using a Finite State
Machine (FSM) with ports. Each state in Ptolemy can also be
described by a FSM with ports, to support the construction of
application system in a hierarchical way [25]. Flexible Analysis,
Modeling and Exercise System (FLAMES) [26] is a commercial
hierarchical simulation integration environment, which supports
systems and engineering analysis, test and evaluation, training,
mission planning and deduction, etc. MathWorks [27]proposed
a hybrid dynamic modeling method based on the combination
of Simulink and state flow. However, Ptolemy, FLAMES and
Simulink were difficult to solve the problem of long running
time and more resource consumption caused by irrelevant
communication data transmission between multi-agent models.

In the aspect of dynamic interaction modeling, dynamic
structure [28] is listed as one of the key challenges of co-
simulation, which can be used to study self-organizing cluster
system. Uhrmacher [29] constructed a formal theory based on
that DEVS is independent to the specific implementation to
support the model to adapt to its own interaction structure and
behavior and implemented this theory on the James platform.
Barros [30] proposed a formal theory, HFSS, which aims to rep-
resent hierarchical and modular hybrid systems with dynamic
structures. HFSS is a framework for merging components built
in different patterns so that a more efficient and easier to
understand model can be constructed by changing the structure
of the network. Dormido [31] considered the modeling problem
of variable-structure hybrid power system. By proposing a new
algorithm and using the existing object-oriented hybrid system
modeling language, the model was transformed into a model
suitable for description and simulation. Hu [32] specifically

35Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

discussed the capabilities of the variable structure, structure
change, and interface change in the modeling and simulation
environment based on DEVS. They discussed the operation of
structure change and interface change, and defined the operating
boundaries respectively. Most of the above variable-structure
modeling methods are based on DEVS or DEVS-like theory,
which can describe the dynamic interaction process of multi-
agents, but they lack consideration for the optimization of data
communication among multi-agents. Fishwick [33] defines
hyper-modeling as a general theory for linking system models
and their components, but hyper-model is more concerned with
interactions within the model, between different models, and
between people and models. As the complexity of the model is
increased with the increasing complexity of the actual system,
which often results in a long simulation time. Mehlhase [34]
proposed a framework for modeling and simulating the variable
structure models by using hybrid decomposition method in
general simulation environment. This method integrates three
tools including Dymola, OpenModelica and Matlab/Simulink,
and solved the problem of long simulation time by changing the
set of equations during simulation running, which reduces the
accuracy of CAS models. In addition, the existing multi-agent
interactive filtering methods are often carried out for specific
problems, and there is a lack of a general filtering method,
takes time and effort to generate an algorithm for each filtering
method.

Large language models has advanced remarkably in recent
years with the advent of pretrained Transformers [35] such as
BERT [36] and GPT [37]. With its scaled to hundreds of billions
of parameters and started to display early signs of artificial
general intelligence, their applications have also transcended
text processing, also attempts to bridge the gap between natural
langauge processing (NLP) domain and simulation domain
on the topic of LLMs applications. LLMs and in-context
learning have been applied to code-generation tasks. Chain-
of-Thought (CoT) prompting [38], where a language model is
prompted with in-context examples of inputs, chain-of-thought
rationales (a series of intermediate reasoning steps), and outputs,
has shown impressive abilities for solving structured output
problems like code-generation tasks. While CoT relies on
the ability of LLMs to both generate a reasoning path and
execute it, it is not yet possible to translate the agent interaction
diagram directly into the executable code. However, although
the traditional method can directly convert the agent interaction
diagram into code, it needs to be re-modeled for each task and
cannot be generalized to general tasks.

The limitation of LLM is that it can only deal with plain text
type data and cannot deal with more complex multimodal data
types. The task requirements in the field of computer vision
are similar to those in the field of natural language processing,
and the algorithm of instruction adjustment can be introduced
into the field of computer vision or multimodal tasks. LLaVA
[39] is an end-to-end trained large-scale multimodal model that
connects a visual encoder and a language model for multimodal
tasks such as general vision and language understanding.

In a word, in addition to the above current related work, a

new method is needed. On one hand, it solves the problem of
modeling complexity of dynamic interaction between agents
intuitively. On the other hand, it solves the problem of
long running time and more memory consumption caused
by irrelevant communication data transmission of dayamic
interacion. In addition, the generality and efficiency of the new
method should be guaranteed.

III. MULTI-AGENT INTERACTION GRAPH

The MAG is designed to support the modeling of the dynamic
interaction between agents. It uses the agent model class
instead of agent model instance as the basic graphical modeling
element. An attribute filter should be configured between each
pair of agent model class. After the graphical multi-agent
model is built, it will be automatically translated into the
executable model of LP (Logical Process) paradigm. During
the simulation execution time, the agent model instances are
generated dynamically according to the simulation scenario,
and the interaction between the agent instances is determined
dynamically based on the calculation results of the attribute
filter.

A. Graphical Representation of Agent Model

To describe the agent model graphically, a port diagram is
used to represent the agent model class, as shown in Figure 1.
The ports in the diagram are mainly responsible for establishing
the communication channel between agent models. The port
p1 represents the input port of the agent model, and the port
p2 represents the output port of the agent model. The behavior
logic of the agent model can be graphically represented as
an extended Petri Net [40]. The data components are used
to store the state data of the agent model. The state data
can be used as the input data to a function component. The
function components are employed to indicate the computing
functions, which changes the state data of the agent model..
The link component is used to represent the control flow
and the data flow. A directed arc from data component to
function component means the data component is an input
of the function component. A directed arc from function
component to data component means the data component is
an output of the function component.

To facilitate users to understand the structure provided by the
agent model, it is necessary to provide the metadata information
of the agent model class, as shown in the right side of Figure
1. ClassName represents the class name of the agent model,
and each agent model will be automatically transformed into
a C++ class. AttributeList denotes the set of state variables of
the agent model. EventList represents the set of events in the
agent model. The processing of each event will cause the agent
state to change instantaneously. PortList denotes the port set of
the agent model for external interaction. The agent model can
communicate with other agent models through input/output
port. MapList represents the set of the pair < event, port >.
The processing of an event in an agent will not only change
its own state, but also trigger an interaction between the
agent model and another agent models. The interaction here is

36Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

A Class

(agent icon)p1 p2

Attribute-filter PortAttribute-filter Port

Attribute-filter PortAttribute-filter Port

d1

d2

d4

fm

fn

fp

d3

d1

d2

d4

fm

fn

fp

d3

data:

function:

link

B Class

(agent icon)p3 p4F

ClassName:
AtrributeList:

EventList:
ScheduleList:

PortList:
MapList:

Description:

[string]
[attribute, …]
[event, …]
[<event, event>, …]
[port, …]
[<event, port>, …]
[string]

Agent_A_1

Agent_A_2

Agent_B_1

Agent_B_2

Agent_B_3

Agent_B_4

filter

ec
na

ts
ni instance

Multi-agent
Interaction Graph

distance<10

distance[1]=23
distance[2]=36
distance[3]=48
distance[4]=8

distance[1]=6
distance[2]=14
distance[3]=25
distance[4]=45

Figure 1. Graphical representation of an agent model and its interacion.

realized through port communication. Description represents
the behavior rules.

B. Structure of Multi-agent Interaction Graph

MAG describes the dynamic interaction between agent model
instances shown in Figure 1. The connection with attribute
filter F between the ports of two agent models Agent_A and
Agent_B indicates that there may be interactions between them.
The attribute filter can also not be configured, which means
that there is always interaction between the two agent models.
Before the simulation execution, the attribute filtered expression
set should be configured on the attribute filter F . Several filtered
expressions can be established for the same attribute of the
agent model. The filtered expression establishes the criterion of
pass/reject on the attribute. To pass a filter, at least one filtered
expression in that filter should be satisfied. Only by passing
a certain attribute filtered expression configured by the agent
model, it is considered that the interaction conditions between
the agent model instance and the corresponding agent model
instance can be satisfied, so as to realize the communication
between the agent instances. In the process of simulation
execution, several instances of the agent model class will be
generated, and the interaction between specific agent model
instances is determined by the attribute filter F .

As shown in Figure 1, the agent model class Agent_A
connects with the agent model class Agent_B, which indicates

that the instance of agent model class Agent_A perhaps interact
with the instances of agent model Agent_B. It is supposed that
there are two instances of class Agent_A and four instances of
class Agent_B will be generated according to the simulation
scenario. The communication from the agent model instances
of the class Agent_A to the agent model instances of the
class Agent_B is determined by the attribute filtered expression
distance < 10 which is configured on the filter. Supposing
that the positions of all the agent model instances of class
Agent_B remains unchanged, when the position of the agent
model instances of class Agent_A is updated, the variable
distance will be calculated. Therefore, by checking whether
the expression distance < 10 is true, which two agent moddel
instance can communicate with each other is dtermined. For
example, the model instance Agent_A_1 is able to interact
the model instance Agent_B_4. Similarly, the model instance
Agent_A_2 is able to interact to the model instance Agent_B_1.

IV. AUTOMATIC FILTER GENERATION

An agent model can be described as an extended Petri net
[40], each place is used to store the state variables of the agent
model, and each transition is always labeled by an event. The
dynamic interaction between the agents can be modelled by
MAG. In order to enable the execution of a CAS model on
existing Discrete Event Simulation (DES) platforms, we map

37Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

Step 1：MAG to natural language descriptions

In-Context Pairs

MAG NL descriptions
Descriptions: This diagram shows the

interaction and attribute relationships

between different Agents. The

interaction between these A g e n t s is

defined by one parameter distance.

There is a "filter" section in the

diagram, which indicates that the

interaction communication between

instances of intelligences is filtered

based on certain attribute values. In the

figure then it indicates that the distance

of agents must be less than 10 before

they interact with each other.

Agent_A_1

Agent_A_2

Agent_B_1

Agent_B_2

Agent_B_3

Agent_B_4

filter

in
s
ta

n
c
e

in
s
ta

n
c
e

Agent_A

(class icon)

Agent_B

(class icon)p1 p2 p3 p4F

distance[1]=23

distance[2]=36

distance[3]=48

distance[4]=8

distance[1]=6

distance[2]=14

distance[3]=25

distance[4]=45

distance<10

Input MAG and Question

Agent_A_1

Agent_A_2

Agent_B_1

Agent_B_2

Agent_B_3

Agent_B_4

filter

in
s
ta

n
c
e

in
s
ta

n
c
e

Agent_A

(class icon)

Agent_B

(class icon)p1 p2 p3 p4F

Attributes:

load=10

battery=100

position=(1,1)

Attributes:

load=5

battery=70

position=(5,10)

Σ load>10

battery>60

distance<10

Q u e s t i o n : Generate a piece of

descriptive code for the filter of this

multi-agent interaction graph.

Large

Version

Models

Output Answers

Output: This figure shows the interaction and attribute

relationships between different agents. The interactions

between these instances are defined by three parameters

load,battery and position attributes.

There is a "filter" section in the diagram, which

represents the filtering of the interactions between the

instances of the intelligences based on the values of

certain attributes. In the figure then it is indicated that

the sum of load of two agents should be greater than 10,

battery both greater than 60 and distance less than 10 for

interaction to occur between them.

Step 2：Filter code generation

In-Context Pairs

NL descriptions

Large

Language

Models

Descriptions: In the

figure then it indicates

that the distance o f

agents must be less

than 10 before they

interact with each

other.

Code generated
Code:

 bool meetsFilterCriteria(

Agent_A& Agent1,

Agent_B& Agent2) {

return

distance(Agent1,Agent2)

<= max_distance};

Generated Code

bool meetsFilterCriteria(Agent_A& Agent1, Agent_B& Agent2) {

return Agent1.battery_level >= min_battery_level &&

Agent2.battery_level >= min_battery_level

&& Agent1.load+Agent2.load>=min_load_standard &&

distance(Agent1.position,Agent2.position) <= max_distance

};

(MAGn) (desn)

(MAGinput) (I)

(desinput)

(desn) (coden)

(codeoutput)

Figure 2. Dynamic data filtering automated generation process.

an agent to a LP and mapping the interactions between agents
to update attributes between LPs [41].

Previous work has implemented the transformation of Agent
elements from MAG diagrams to code, in the process of
translating MAG to DES code, we search all the graphical
elements and convert the graphical element into discrete event
simulation code. For each agent model element, we build a
LP class in C++ object-oriented language. An agent model
is translated into a LP class which is composed of an initial
method, several event procedures, and a series of variables.
Each initial method sets the initial value for the variables of
the LP and then schedule some necessary events for simulation
execution. A LP changes the values of the variables that
describe the agent state through processing events. For each
filter element, it is needed to search for all agents associated
with a filter and make a connection with them. After that, in
the simulation execution, the code for scheduling interactive
events will be executed according to the calculation of the
filtered expression in the filter.

It is not easy to implement the attribute filtering method
in MAG and the parameter in agent into code expressions,
especially considering that there may be many different
expressions of MAG in practical applications. It is difficult
to find a general filter code expression generation method.
The generation of filters is often closely related to the content
presented in MAG. LVM can describe the information presented
in MAG as natural language, but LVM does not perform well
on natural language code generation tasks. Similarly, some
common LLMS work well for the task of generating code
in natural language, but do not take pictures as their input.
For the text of these given output styles of code, because
of the hallucination of LLM, the direct use of LLM to
generate will bring a certain chance of misformatted output. In-
Context Learning (ICL) is brought to reduce the probability of
hallucination, that is, several input-output generation examples
are placed on the input side, and then the problem description
and input are used as prompt for LLM/LVM. This has proven
to be an efficient means of structural text generation based on
LLM/LVM [42].

We use large models (including LLMs and LVMs) and CoT
Prompting to convert MAG into filter code expressions. Given
the picture form of MAG, we break the problem down into a
step-by-step form based on CoT prompt, as follows: LVM based
on ICL is used to convert MAG into text description close to
natural language, including input parameters and discriminant
logic of filter expression, and LLM is used to convert generated
natural language into corresponding filter code. The context
and CoT prompt process is shown in Figure 2. In Figure 2,
for the MAG shown in Figure 1, first complete the generation
of in-context examples of MAG-description on the manually
configured MAG sample set as prompt input to the LVM. The
description for filter generating the code of MAG is obtained,
includes the input parameters and the discriminant logic of the
code. The same ICL method is used in the LLM generation code
phase, merging LVM generated descriptions with in-context
examples as prompt input to the LLM. These examples are
manually written and can typically be constructed without an
accompanying graph. Then, it will generate a program (right
of Figure 2) that can be executed which is based on the input
MAG(s) to perform the described filter task.

LVM(I, pairs < MAG1, des1 >, pairs < MAG2, des2 >,

· · · , pairs < MAGn, desn >,MAGinput) → desinput
(1)

LLM(I, pairs < des1, code1 >, pairs < des2, code2 >,

· · · , pairs < desn, coden >, desinput) → codeoutput
(2)

We showed in (1) and (2) for the process of generating
code from MAG using LLM in combination with LVM.
Here, pairs⟨x, y⟩ is the ICL to identifie the example MAG-
description pair or description-code pair, as shown in the in-
context pairs above step 1 in Figure 2. Where I represents the
definition of the task, MAGinput represents the input we want
to get the result, as shown input MAG and question below
step 1 in Figure 2. desinput represents the intermediate module

38Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

(a) Aircraft Collision Avoidance Scenario (b) Swarm robots Cooperation Scenario

Figure 3. The total amount of communication data.

(a) Aircraft Collision Avoidance Scenario (b) Swarm robots Cooperation Scenario

Figure 4. Execution time of MAG-based model.

(a) Aircraft Collision Avoidance Scenario (b) Swarm robots Cooperation Scenario

Figure 5. Memory consumption of the MAG-based model.

39Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

for filter code generation, the same way to generate the filter
code we end up with like step 1, we can get the result code
codeoutput.

V. EXPERIMENTS AND ANALYSIS

Our work provides a general, efficient and scalable multi-
agent simulation framework. We test some typical application
scenarios of multi-agent simulation, including aircraft colli-
sion avoidance scenario with less inter-agent communication
interaction and robot collaboration scenario with more fre-
quent inter-agent communication interaction. We now describe
these scenarios, their evaluation settings, and their results for
analyzing.

A. Test Scenarios Introduction

Aircraft Collision Avoidance Scenarios. In the airspace
near the civil airport, with the increasing of airspace density,
collision avoidance between aircraft is considered to be a key
problem affecting flight safety. Because the time of aircraft
collision is very short, it is necessary to predict the flight path
of the aircraft as soon as possible to detect the possible collision
risk, so as to guarantee the multi-aircraft flight. Agent-based
modeling and simulation is very suitable for analyzing multi-
aircraft collision avoidance scenarios. In this paper, we assume
that (1) before any two aircraft enter the adjacent airspace,
there is no need to exchange position data between aircraft;
(2) the height of the collision cylinder which are twice as long
as the vertical size of the aircraft; and (3) two aircraft may
collide when they are encountering each other at a certain angle,
and they will not collide again after the collision is released.
Under this assumption, the modeling for multi-aircraft collision
avoidance in this scenario involves the following interactions:
(1)when any two aircraft enter the adjacent airspace, there
may be collision between them. In order to avoid collision,
these aircraft often need to exchange position data and adjust
the corresponding flight direction and angle in time; and (2)
when any two aircraft are free of collision risk, the position
data sharing between aircraft can be cancelled to reduce the
communication between aircraft models.

This paper takes Tang-Piera multi-aircraft collision problem
[43] as a segggd on GMAS, to verify the running time, memory
cost and scalability of the model based on the MAG modeling
method and the dynamic attribute filtering algorithm based on
LLMs.

We use three agent model classes to build a four-aircraft
collision avoidance model. Since there is no risk of collision
avoidance between aircraft0 and aircraft3, they can be in-
stantiated by the same agent model class AircraftA. The only
difference between them is their initial position and speed.
aircraft1 is generated by the agent model class AircraftB and
aircraft2 is generated by the agent model class AircraftC. Since
the collision avoidance logic in each aircraft is the same, the
same filter can be used for communication between aircraft.
Its filter expression can be set to horizontal distance < 88 m,
which also means that when the horizontal distance between
two aircraft is within this range, the position information of

the other aircraft will be sent or received. Therefore, a multi-
aircraft dynamic interaction model is constructed graphically
through GMAS.

Swarm robots cooperation Scenarios. In search and rescue
environments, swarm robots are often used to locate people or
transport materials. These robots often have different functions,
such as sonar detection, infrared thermal imaging and robotic
arm operation, they collaborate with each other to complete
more complex tasks. Since the scene is often more complex
and difficult to predict, multi-agent modeling and simulation of
robot behavior has become a feasible and efficient way. In this
paper, we assume that (1) there are three kinds of robots in the
scenario, which have the functions of sonar detection, infrared
thermal imaging and robotic arm operation respectively; (2)
all sonar detection and infrared thermal imaging robots will
search after receiving the search task, and if they find trapped
people, they will cooperate with the robotic arm operator to
complete the rescue task; and (3)each probe robot works with
a maximum of one arm-operated robot. Under this assumption,
the modeling for swarm cooperative robots in this scenario
involves the following interactions: (1)when the probe robot
finds the trapped person, it will look for and cooperate with the
nearest robotic arm robot that is free and meets the demand of
power and load, which requires the information interaction and
communication between the probe robot and all robotic arm
robots; and (2)when the probe robot finds the robot arm that
works with it, the data sharing between the robots is no longer
required for reducing the communication between robot models.
Similarly, we use GMAS [40] environment and implement
the dynamic attribute filtering algorithm at the swarm robots
cooperation scenarios to verify the running time, memory cost
and scalability of the model based on the MAG modeling
method and the dynamic attribute filtering algorithm based on
LLMs.

We use three agent model classes to build a swarm robots
cooperation rescue model, since there is no needs for commu-
nication between each kinds of robots, each kinds of robots
can be instantiated by one agent model class like RobotA. The
only difference between them is their pamameters like location,
remain power, etc. The probability of a "life-form found" event
is poisson distributed as the robot keeps searching when no
result is found. The probability of "finding a life form" event is
Poisson distributed. After finding a life form, the probe robot
will search for the nearest eligible robot arm to cooperate in
the rescue mission. Since the same interaction parameters are
required for each type of probe robot and robotic arm robot in
the process of seeking cooperation, the same communication
filter can be applied. Information, such as the current status,
remaining power and load capacity of the robot is filtered.
When the above conditions of the two robots meet the standard,
the location data exchange between the two robots is started
to achieve collaborative rescue. Figure 2 illustrates the large
model-based MAG-to-filter code generation process for the
swarm robot collaboration scenario. The generated code will
be directly used in the discriminative expression of the filter.

40Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

Input: In-Context Pairs Example

Code Generation in a Given Format

Question Code Generated

int cALCULATEaREAoFrECTANGLE

(int wIDTH, int hEIGHT)

{ int aREA = wIDTH * hEIGHT;

 return aREA; }

Story Writing Under Given Words

Descriptions: Here are five words:

ambiguous, conundrum, inevitable,

manifestation, paradox, please use

these five words to write a paragraph

based on a given topic.

Large

Language

Models

Input: Task Target Description

Descriptions: The task will implement

a function to implement different task

requirements, function names and

variable names are named in the

specified way, in contrast to camel

naming, variable names have no other

symbols between words, the first letter

of each word is lowercase, and other

letters are capitalized.

Descr ipt ions : Generate a

code that calculates the area

of a rectangle.

Question Story Generated
 In the village of Willowbrook, Lily's

ambiguous encounter with a wounded bird,

Skye, led to an inevitable transformation;

her manifestation of kindness became a

paradox of power, as she unknowingly

healed the bird with a touch of stardust,

granting her the ability to heal others and

turning her into the village's cherished

healer, a chronicle of compassion that

echoed through time.

D e s c r i p t i o n s :

Generate a story about

courage.

Correctly Generated Times in 100 Outputs

100

100

14

35

With ICL Input Direct Prompt Input

With ICL Input Direct Prompt Input

Figure 6. Dynamic data filtering automated generation process.

B. Scenarios Realization Analysis

Aircraft Collision Avoidance Scenarios. We simulated
the collision scenario of Tang-Piera four-aircraft in a very
short period of time. Four aircraft were both into the adjacent
airspace, and successively entered the scene of collision 1,
collision 2 and collision 3. When the simulation time T ∈ [0, 2],
each two of the four aircraft are in the adjacent airspace, they
need to share position data with each other to determine whether
they are in collision with an aircraft. When the simulation
time T ∈ [3, 10], aircraft 0 and aircraft 1 will encounter the
collision 1, they will continue to share position data.When
the simulation T > 10, the collision 1 is released, and the
interaction between them can be cancelled dynamically. When
the simulation time T ∈ [15, 22], aircraft 0 and aircraft 2 will
encounter the collision 2, and they need to continue to maintain
interaction.When the simulation T > 22, the collision 2 is
released, and the interaction between them can be dynamically
disconnected. When the simulation time T ∈ [32, 39], aircraft
2 and aircraft 3 will encounter the collision 3, and they need
to continue to maintain interaction. When the simulation time
T ∈ [40, 50], the collision 3 threat is removed, and the four
aircraft return to the predetermined trajectory to continue to
fly, and the interaction between aircraft 2 and aircraft 3 can be
cancelled dynamically. We can see that the altitude difference
between the two aircraft will collide within [0,10].

Figure 3(a) compares the amount of communication data
sent and received between aircraft in two different situations of
static interaction (SI, data interaction is always maintained
during simulation execution) and dynamic interaction (DI,
when the collision is released, the interaction between them
can be disconnected dynamically). We can find that when
the simulation execution is finished, the total amount of
communication between the four aircraft is reduced by 17%.
Swarm robots cooperation Scenarios. We also simulated
the swarm robots cooperation scenario in a period of time.
Ten robots of each type are initialized to move randomly

on a given map, their power gradually decreases with its
working time. When the simulation time starts, each robot
performs its own detection task separately and does not need
to communicate with each other. While a probe robot detects
a life form, information such as position and load is shared
with idle robotic arm robots in the area with power above
a threshold instead of sharing it as a broadcast to reduce
data communication. The detecting robot selects the nearest
robot that meets the load requirements to cooperate and no
longer shares data information with other robots. The above
two scenarios are repeated until the task is completed. Figure
3(b) shows the total amount of data communicated under the
static and dynamic interaction algorithms. It can be clearly
seen that the amount of communication data generated by
the dynamic interaction using the filtering-based algorithm
produces a significant decrease, and more so as the simulation
time progresses, reaching 34% of the optimized amount of
communication data at the end of the simulation.

C. Scalability, Stability and generality of our system

Figure 4 compares the execution time of MAG-based model
under two different situations, one is static interaction and
the other is dynamic interaction. With the increasing of the
number of agent, the simulation running time increases when
the interaction is not disconnected. When the interaction is
disconnected dynamically, the execution time of multi-agent
model in 2-16 aircraft situation is reduced by 20%-60%
compared with the former, and the execution time of multi-
agent model in swarm robot cooperation scenario reduced by
approximately 30%. Figure 5 compares the memory resource
consumption of the MAG-based model under two different
situations: static interaction and dynamic interaction. With
the increasing of the number of agent, the consumption of
model memory resources of multi-agent model in 2-16 aircraft
situation is reduced by 1.8%-4%, and is reduced by 0.8%-
5.5% in swarm robot cooperation scenario. That’s because the
sharing data is only position data(x,y) in this multi-aircraft

41Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

collistion avoidance model and more attribute data needs to
share in the swarm robot model. In summary, it is can be
concluded that MAG-based model has good scalability.

The results obtained from large model-based methods often
bring problems of interpretability and consistency, and the use
of ICL will enhance the stability and consistency of the results.
For several simple fixed-style text generation tasks, we use
description-text pairs of corresponding styles as ICL pairs, and
test whether the results meet the requirements, while using a
non-ICL approach (direct input of prompt) as a comparison.
Figure 6 shows a description of the different text generation
tasks, the ICL pairs used, and the number of times the target
text was correctly generated over 100 tests with different inputs.
The test environment is Qwen2-7B. The results show that ICL
can greatly improve the stability of the output results under
the text generation task, so it can be better used in the code
generation task under the given format required in this paper.

We also evaluated the accuracy of the filter code generation,
constructing different forms of MAG with filter execution logic
for validation. To verify the stability and generality of our algo-
rithm, we tested the filter code generation results using different
combinations of large models (LLaVa [39]+LLaMa3 [44] and
Qwen-VL [45]+Qwen2 [46]), while ablation experiments were
performed to verify the necessity of implementing the model
architecture in this way. We tested the filter code generation
effect with LLaVa+LLaMa3, Qwen-VL+Qwen2 and LVM-only
on 100 randomly generated MAGs (manually filtered to ensure
the diversity of scenarios and filtering mechanisms), and the
test results are shown in Table I.

TABLE I. NUMBER OF SUCCESSFUL FILTER CODE GENERATION FOR
DIFFERENT MODELS COMBINATION

Large models (portfolios) used Successful generation number

LLaVa+LLaMa3 78
Qwen-VL+Qwen2 74

LLaVa-only 17

Here, "successful generation" means that the generated code
can be directly used in the filter and realizes the correct
filtering function, which shows the stability and generality
of the combined filter code generation algorithm using LLM
and LVM.

VI. CONCLUSION AND FUTURE WORK

Multi-agent modeling and simulation is an effective means
to study complex adaptive system. The traditional static
interaction structure leads to the long running time and resource
consumption, then this paper proposes a MAG modeling
method to graphically describe the dynamic interaction between
agent models. In MAG, the communication between agent
models is established by using publish/subscribe, and the
interaction between agent instances is accurately determined
based on the dynamic attribute filtering algorithm. The aircraft
collision avoidance experiments in multi-aircraft scenario and
the swarm robots cooperation scenario show that MAG can
model the dynamic interaction between agents of CAS, reduce

the transmission of irrelevant communication data between
multi-agent instances, and reduce the simulation execution
time and resource consumption. In addition, it shows good
scalability. Different combinations of large models and ablation
tests have proven the stability and versatility of the system.

In future work, we will build more complex simulation
models based on GMAS to verify the effectiveness and
efficiency of the MAG-based modeling and simulation method.

REFERENCES

[1] L. F. M. Bristow and K. W. Hipel, “Agent-based modeling of
competitive and cooperative behavior under conflict”, IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 44, no. 7, pp. 834–850, 2014.

[2] C. M. Macal and M. J. North, “Tutorial on agent-based
modelling and simulation”, Journal of Simulation, vol. 4, no. 3,
pp. 151–162, 2010.

[3] R. Dekkers, “Complex adaptive systems”, Applied Systems
Theory, pp. 211–233, 2017.

[4] T. T. M. Haeusler and J. Kessler, “Chronosphere: A graph
based emf model repository for it landscape models”, Software
and System Modeling, vol. 18, no. 4, pp. 1–40, 2019.

[5] R. M. Fujimoto, “Research challenges in parallel and distributed
simulation”, ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 26, no. 1, pp. 1–29, 2016.

[6] A. Rousset, B. Herrmann, C. Lang, and L. Philippe, “A
survey on parallel and distributed multi-agent systems for
high performance computing simulations”, Computer Science
Review, vol. 22, pp. 27–46, 2016.

[7] J. Haas, “Stochastic petri nets for modeling and simulation”, in
Proceedings of the 2004 Winter Simulation Conference, 2004,
pp. 101–112.

[8] W. Aalst, C. Stahl, and M. Westergaard, “Strategies for
modeling complex processes using colored petri nets”, in
Transactions on Petri Nets and Other Models of Concurrency
VII (Lecture Notes in Computer Science), Lecture Notes in
Computer Science. Springer, 2013, vol. 7480, pp. 6–55.

[9] S. Staines, “Transforming uml sequence diagrams into petri
net”, Journal of Communication and Computer, vol. 10, no. 1,
pp. 72–81, 2013.

[10] M. Drakaki and P. Tzionas, “Modeling and performance evalu-
ation of an agent-based warehouse dynamic resource allocation
using colored petri nets”, International Journal of Computer
Integrated Manufacturing, vol. 29, no. 7, pp. 736–753, 2015.

[11] J. Tang and F. Zhu, “Graphical modelling and analysis software
for state space-based optimization of discrete event systems”,
IEEE Access, vol. 6, pp. 1–15, 2018.

[12] M. Jamal and N. Zafar, “Extending agent-based mobile
petri nets with access control”, in 2017 IEEE International
Conference on Communication, Computing and Digital Systems
(C-CODE), IEEE, 2017, pp. 133–138.

[13] F. Hsieh, “A hybrid and scalable multi-agent approach for
patient scheduling based on petri net models”, Applied Intelli-
gence, vol. 47, no. 4, pp. 1–19, 2017.

[14] A. Buss and C. Blais, “Composability and component-based
discrete event simulation”, in Proceedings of the 2007 Winter
Simulation Conference, 2007, pp. 694–702.

[15] B. Wang, B. Deng, and F. Xing, “Partitioned event graph:
Formalizing lp-based modelling of parallel discrete-event sim-
ulation”, Mathematical and Computer Modelling of Dynamical
Systems, vol. 21, no. 2, pp. 153–179, 2014.

[16] L. Barclay, R. Collazo, J. Smith, et al., “The dynamic chain
event graph”, Electronic Journal of Statistics, vol. 9, no. 2,
pp. 2130–2169, 2015.

42Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

[17] B. P. Zeigler, G. Kim, and H. Praehofer, Theory of modeling and
simulation: integrating discrete event and continuous complex
dynamic systems. Academic Press, 2003.

[18] A. Hamri, N. Giambiasi, and C. Frydman, “Min-max-devs
modeling and simulation”, Simulation Modelling Practice and
Theory, vol. 14, pp. 909–929, 2017.

[19] B. Camus, C. Bourjot, and V. Chevrier, “Combining devs with
multi-agent concepts to design and simulate multi-models of
complex systems”, in 2015 Symposium on Theory of Modeling
& Simulation: DEVS Integrative M&S Symposium (DEVS),
IEEE, 2015, pp. 85–90.

[20] A. Kulakowski and B. Rogala, “Agent devs simulation of the
evacuation process from a commercial building during a fire”,
in 2017 Conference on Computer Science and Information
Technologies (CSIT), IEEE, 2017, pp. 270–279.

[21] M. Jarrah, B. Zeigler, C. Xu, et al., “A multi-agent simula-
tion framework to support agent interactions under different
domains”, in 2015 18th Asia Pacific Symposium on Intelligent
and Evolutionary Systems (IES), IEEE, 2015, pp. 211–223.

[22] A. Bobbio, D. Cerotti, M. Gribaudo, M. Iacono, and D.
Manini, “Markovian agent models: A dynamic population of
interdependent markovian agents”, in Seminal Contributions to
Modelling and Simulation: 30 Years of the European Council of
Modelling and Simulation, K. Al-Begain and A. Bargiela, Eds.
Cham: Springer International Publishing, 2016, pp. 185–203,
ISBN: 978-3-319-33786-9. DOI: 10.1007/978-3-319-33786-
9_13.

[23] J. Yang, H. Peng, W. Zhou, J. Zhang, and Z. Wu, “A modular
approach for dynamic modeling of multisegment continuum
robots”, Mechanism and Machine Theory, vol. 165, p. 104 429,
2021, ISSN: 0094-114X. DOI: https : / / doi . org / 10 . 1016 / j .
mechmachtheory.2021.104429.

[24] C. Ptolemaeus, System Design, Modeling, and Simulation:
Using Ptolemy II. Berkeley: Ptolemy.org, 2014, ISBN 978-
1-304-42106-6.

[25] M. Kielar, O. Handel, and H. Biedermann, “Concurrent hierar-
chical finite state machines for modeling pedestrian behavioral
tendencies”, Transportation Research Part B: Methodological,
vol. 70, pp. 576–584, 2014.

[26] T. Corperation, “Flames makes complex systems analysis
simple”, 2015, [Online]. Available: http://www.ternion.com/
print/FLAMES.pdf.

[27] A. Rajhans, S. Avadhanula, A. Chutinan, et al., “Graphical
modeling of hybrid dynamics with simulink and stateflow”,
in 2018 21st International Conference on Hybrid Systems:
Computation and Control (HSCC), IEEE, Porto, Portugal, 2018,
pp. 247–252.

[28] C. Gomes, C. Thule, D. Broman, P. G. Larsen, and H.
Vangheluwe, “Co-simulation: A survey”, ACM Computing
Surveys (CSUR), vol. 51, no. 3, 2018.

[29] A. M. Uhrmacher, “Dynamic structure in modeling and
simulation: A reflective approach”, ACM Transactions on
Modeling and Computer Simulation (TOMACS), vol. 11, no. 2,
pp. 206–232, 2001.

[30] F. J. Barros, “Dynamic structure multiparadigm modeling and
simulation”, ACM Transactions on Modeling and Computer
Simulation (TOMACS), vol. 13, no. 3, pp. 259–275, 2003.

[31] A. Urquia and S. Dormido, “Object-oriented description of
hybrid dynamic systems of variable structure”, Simulation:
Transactions of the Society for Modeling and Simulation
International, vol. 79, no. 9, pp. 485–493, 2003.

[32] X. Hu, B. P. Zeigler, and S. Mittal, “Variable structure in
devs component-based modeling and simulation”, Simulation:
Transactions of the Society for Modeling and Simulation
International, vol. 80, no. 2, pp. 91–102, 2005.

[33] P. Fishwick, “Hypermodelling: An integrated approach to
dynamic system modelling”, Journal of Simulation, vol. 6,
no. 1, pp. 2–8, 2012.

[34] A. Mehlhase, “A python framework to create and simulate
models with variable structure in common simulation environ-
ments”, Mathematical and Computer Modelling of Dynamical
Systems, vol. 20, no. 6, pp. 566–583, 2014.

[35] A. Vaswani et al., Attention is all you need, 2017. arXiv:
1706.03762.

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert:
Pre-training of deep bidirectional transformers for language
understanding, 2019. arXiv: 1810.04805.

[37] T. B. Brown et al., Language models are few-shot learners,
2020. arXiv: 2005.14165.

[38] J. Wei et al., Chain-of-thought prompting elicits reasoning in
large language models, 2023. arXiv: 2201.11903.

[39] H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning”,
in Advances in Neural Information Processing Systems, A. Oh
et al., Eds., vol. 36, Curran Associates, Inc., 2023, pp. 34 892–
34 916.

[40] F. Zhu and J. Tang, “Graphical composite modeling and
simulation for multi-aircraft collision avoidance”, Software
and Systems Modeling, 2020.

[41] F. Zhu, Y. Yao, W. Tang, and J. Tang, “A hierarchical composite
framework of parallel discrete event simulation for modelling
complex adaptive systems”, Simulation Modelling Practice and
Theory, vol. 77, pp. 141–156, 2017.

[42] Q. Dong et al., A survey on in-context learning, 2024. arXiv:
2301.00234 [cs.CL].

[43] J. Tang, M. A. Piera, and T. Guasch, “Colored petri net-
based traffic collision avoidance system encounter model for
the analysis of potential induced collisions”, Transportation
Research Part C: Emerging Technologies, vol. 67, pp. 357–377,
2016.

[44] H. Touvron et al., Llama: Open and efficient foundation
language models, 2023. arXiv: 2302.13971 [cs.CL].

[45] J. Bai et al., Qwen-vl: A versatile vision-language model for
understanding, localization, text reading, and beyond, 2023.
arXiv: 2308.12966 [cs.CV].

[46] J. Bai et al., Qwen technical report, 2023. arXiv: 2309.16609
[cs.CL].

43Copyright (c) IARIA, 2024. ISBN: 978-1-68558-197-8

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SIMUL 2024 : The Sixteenth International Conference on Advances in System Modeling and Simulation

https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/10.1007/978-3-319-33786-9_13
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104429
https://doi.org/https://doi.org/10.1016/j.mechmachtheory.2021.104429
http://www.ternion.com/print/FLAMES.pdf
http://www.ternion.com/print/FLAMES.pdf
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2308.12966
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2309.16609

	Introduction
	Background and Related work
	Multi-agent Interaction Graph
	Graphical Representation of Agent Model
	Structure of Multi-agent Interaction Graph

	Automatic Filter generation
	Experiments and Analysis
	Test Scenarios Introduction
	Scenarios Realization Analysis
	Scalability, Stability and generality of our system

	Conclusion and Future Work

