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Abstract— Hybrid systems consisting of discrete state events
in otherwise continuous systems pose a significant challenge in
co-simulation, as these events can lead to large errors depending
on when they occur during a coupling time step. The coupling
step size thus needed to correctly simulate state events can be
significantly smaller than for the continuous part, resulting in
an overall reduced coupling step size and longer and more
expensive simulations. By dynamically adapting the coupling step
size whenever an event is imminent, hybrid co-simulation can be
improved significantly when compared to fixed-step co-simulation
algorithms. This can be accomplished by predicting upcoming
state events in advance. In an example simulation, this improves
precision by a factor of 30 and decreases the number of coupling
steps by a factor of 7.

Key words—co-simulation, non-iterative co-simulation, hybrid
simulation, event handling

I. INTRODUCTION

In simulation, an event is defined as a system change that
occurs instantly at a discrete point in time. The manner of
change is not specified, and can include changes in state,
models, or in the simulation behavior itself. A simulation that
incorporates dynamic, continuous changes as well as discrete
events is called a hybrid simulation [1] [2].

A physical system described by differential equations that is
controlled by an electronic device, for example an autonomous
vehicle or a smart power grid, is called a Cyber-Physical
System (CPS), and is a prime example for hybrid simulations.
The increasing importance of such systems makes it necessary
to develop simulation tools that are able to handle them in a
reliable and efficient manner [3].

An important tool in industrial development is co-
simulation, where individual parts of a larger, complex system

are being simulated simultaneously [4]. There, a master algo-
rithm coordinates the simulation of the underlying subsystems
by periodically exchanging information between them [5].

These subsystems are model components that contain their
own solvers. They can thus have different solver step sizes,
but are synchronized at regular intervals, the coupling time
step, which is a property of the co-simulation and has a
strong influence on the performance and accuracy of the co-
simulation.

Events are especially challenging in co-simulation [6], as
their time of occurrence is usually not known in advance, and
if they occur in a subsystem between coupling time steps, they
can introduce a large error in other subsystems as their correct
state is only communicated at the next synchronization time.

By the condition of their occurrence, events can be classified
as time events and state events. A time event occurs at specific
points in time, and its occurrence is thus known in advance.
A state event occurs when the model is in a certain state, like
a variable reaching some threshold value. The time when a
state event occurs is unknown in advance.

In co-simulation, events can also be distinguished by
whether they belong to one or more than one subsystem. A
private event is an event that happens in a single subsystem
and influences the others only indirectly by the changes it
introduced in its own subsystem. A shared event is one which
belongs to two or more subsystems and affects both directly,
like a binary collision. It thus has to occur in all participating
subsystems at the same time [7].

The Functional Mock-up Interface (FMI) is an industry
standard for co-simulation. The newest version, fmi3.0, added
hybrid simulation capabilities for co-simulation FMUs (Func-
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tional Mock-up Units) in the form of clock variables whose
”ticks” signal events [8]. The terminology and handling of
events in this paper is based on the fmi3.0 specification [9].

The proposed algorithm attempts to improve hybrid co-
simulation in a specific but common case: a system that is
mostly defined by differential equations, but also contains dis-
crete state events that happen rarely but have a large impact on
model behaviour. This can be a frictional force changing sign,
an autonomous vehicle performing an emergency braking, or
as in the example here, collisions in a spring-damper-mass
system.

To hit these events correctly, such systems often have to
be co-simulated with a coupling step size that is far smaller
than necessary with regards to the continuous behaviour. A
lot of calculation time can be saved with an adaptive step
size that is large by default, and smaller when a state event
is imminent. By evaluating the current state of the system via
event indicators, state events are predicted (even though their
exact time is still unknown) sufficiently in advance, and the
coupling time step is then reduced.

The next section describes how events are defined in the
LookAhead algorithm. Section III then describes the algo-
rithm, and Section IV showcases it with an example co-
simulation. Section V then summarizes the work and discusses
future developments.

II. DEFINITION OF EVENT INDICATORS

Define an event indicator as the complete set of functions
which indicate an event:

Z = { zi(u⃗, y⃗, p⃗) |E ⇔ zi ≤ 0 ∀ i} (1)

The elements of this set are functions whose arguments
are the inputs u⃗, the outputs y⃗, and the parameters p⃗ of the
corresponding subsystem. Each function represents a condition
for the event E that is met if the function evaluates to a value
less than or equal to zero. Let these functions be called event
conditions. Then, E occurring is equivalent to all zi being less
than or equal to zero. We can reformulate this condition as

E ⇔ max
i

zi ≤ 0 (2)

To ensure that an event happens only at a single time instant,
the functions in Z have to be set up in a way such that at
least one function returns a positive value after the event so
that its conditions are no longer fulfilled afterwards. As the
subsystem cannot control its inputs u⃗, this generally has to be
accomplished by changing its outputs u⃗. The event can also
change the parameters p⃗ or even the event indicator Z in case
of models that support such functionalities.

The zi are not directly dependent on time but its arguments
are; we therefore denote zi(u⃗(t), y⃗(t), p⃗(t)) = zi(t). As an
event can lead to discontinuities in its arguments, zi(t) are not
guaranteed to be continuous functions; but they are continuous
on all intervals where no events occur.

Then, assuming that zi(t) are continuous right before an
upcoming event, maxi zi is also continuous, and we can
replace (2) with a stricter condition:

E ⇔ max
i

zi = 0 (3)

This means that the event happens as the last of its zi crosses
the x-axis. As the execution of an event changes at least one
zi to be positive afterwards, the event E only happens at these
discrete points in time tE . maxi zi is thus always non-negative,
and zero exactly at the event times tE .

III. DESCRIPTION OF LOOKAHEAD ALGORITHM

A co-simulation scenario with parallel scheduling is consid-
ered, where all subsystems calculate their coupling time steps
in parallel and exchange their inputs and outputs afterwards.

This is done by the master algorithm, which orchestrates the
co-simulation by signalling the subsystems to calculate time
steps, and enables communication between them by requesting
outputs and setting inputs. Each subsystem contains a model
and, if necessary, handles translating these signals to the
standard the contained model uses. The basic co-simulation
loop then looks like this:

1: while t < tstop − tstep do
2: for all subsystem in system do
3: subsystem.DoStep(t, tstep)
4: end for
5: for all connection in connections do
6: connection.target.Set() ← connection.source.Get()
7: end for
8: t← t+ tstep
9: end while

Fig. 1. Basic co-simulation loop

In line 3, all subsystems in the co-simulation calculate one
coupling time step. Later in line 6, the subsystems exchange
data with each other according to their connections. Finally in
line 8, the simulation time advances by the coupling step size
before commencing to the next.

The LookAhead algorithm consists of two parts. One part is
contained in a subsystem (Local LookAhead), while the other
one is part of the master algorithm (Main LookAhead).

A. Local LookAhead

A subsystem containing state events can be equipped with
a Local LookAhead routine (Algorithm 2) to predict its events
and communicate them to the master algorithm. For each
event, an event indicator set Z is included in the subsystem.
The event conditions z in this set have to be provided manually
(for now; see Section V for upcoming work on automatic event
indicator construction). These z can only depend on locally
accessible variables.

The local LookAhead algorithm then gets called at the end
of each coupling time step to predict if an event will occur
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soon, and does so in a manner independent of the number of
event indicators or the sizes of the event indicator sets.

1: for Z in list of event indicators do
2: t0 ← −1
3: for z in Z do
4: zprev ← znow
5: znow ← z(t)
6: znext ← znow + d ∗ (znow − zprev)
7: if znext < 0 then
8: if znow > 0 then
9: t0,new ← c ∗∆t ∗ znow/(zprev − znow)

10: if t0,new < tmin then
11: t0,new ← tmin

12: end if
13: else
14: t0,new ← −1
15: end if
16: t0 ← max (t0, t0,new)
17: else
18: t0 ← −1
19: break
20: end if
21: end for
22: if t0 ≥ tmin then
23: append t0 to tE
24: end if
25: end for
26: if tE not empty then
27: return min tE
28: else
29: return −1
30: end if

Fig. 2. Local LookAhead algorithm

For each event indicator, the local LookAhead algorithm
takes the current and previous values of the event indicators z
(znow and zprev , respectively) to extrapolate the value znext
that it will have d (the forecasting factor, d > 1) time steps
in the future in line 6. For this, the algorithm requires the
current coupling step size ∆t (which can be smaller than the
default value if the previous time step was already shortened
by LookAhead) as an input from the master algorithm.

If all znext are below zero, the event is predicted to happen.
On the other hand, if one znext > 0 (line 17) the event is
not predicted to happen, and the algorithm continues on to
the next event indicator. If an event indicator is predicted to
be negative in the future but is positive at the current time,
the time until zero-crossing t0 gets interpolated in line 9. To
prevent overestimation, a safety factor c ∈ (0, 1] is introduced
that reduces t0.

In case that t0 is less than the minimal solver step size tmin,
t0 ← tmin (line 11). If znow is already negative, t0 is set to
−1 (line 18) as it is not relevant to event time estimation. If
all znext are negative, the corresponding event is predicted to
happen at the time when the last zero-crossing happens. The

event time for the predicted event is then the maximum value
of all t0, as this is the time where (3) is fulfilled, which is
then appended to the list of predicted events tE in line 23.

After iterating through all events of the subsystem, the
minimum of all tE will be returned (line 27). If no event
is predicted to happen, LookAhead will return −1 in line 29
to signal that its return value has to be ignored.

B. Main LookAhead

As shown in Algorithm 1, the master algorithm advances its
own time by the same constant time step after each iteration
of calculating and exchanging outputs. The main LookAhead
extends Algorithm 1 to make it possible to adapt this time
step.

1: while t < tstop − tstep,max do
2: for all subsystem in system do
3: subsystem.DoStep(t, tstep)
4: end for
5: for all connection in connections do
6: connection.target.Set() ← connection.source.Get()
7: end for
8: t← t+ tstep

list tnext ← {tstep,max}
9: for all subsystem in system do

10: if subsystem.supportsLookAhead then
11: tE ← subsystem.lookAhead(tstep)
12: if tE > 0 then
13: append tE to tnext
14: end if
15: end if
16: tstep ← min tnext
17: end for
18: end while

Fig. 3. Co-simulation loop containing main LookAhead

After completing the conventional co-simulation loop, the
master algorithm calls the LookAhead function in every sub-
system that supports it. Each returns either −1 if no event is
predicted to happen, or returns the predicted time until the
next event tE , in which case this time gets appended to a
list of event times tnext. The master algorithm then chooses
the smallest element of that list as its next time step. If no
subsystem returns an event time or if event times are larger
than the default time step, this default time step tstep,max gets
selected.

IV. EXAMPLE ON A SPRING-DAMPER-MASS SYSTEM

The example is taken from [7] with minimal adaptations.
Two masses are vertically connected in a spring-damper

system; the upper mass m1 is connected to the ceiling with
a spring of stiffness k1 and dampening d1, and m1 and the
lower mass m2 are connected together via a second spring of
stiffness k2 and d2. Each mass has a position xi and a velocity
vi. The masses are realized as blocks with vertical size 2∆x.
Figure 4 illustrates this system.
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Fig. 4. Setup of the spring-damper-mass system. The figure and example
have been taken from [7], with the slight adaptation of changing ∆x to 2∆x.

The upper mass can collide with the ceiling and the two
masses can collide with each other. These collisions can be
realised as state events; they are an instantaneously occurring
change triggered by the system being in a certain state.

This system is a good example to demonstrate LookAhead
as it is a continuous system that encounters multiple events
when the initial conditions are set up correctly, and whose
trajectory can diverge greatly between the monolithic simula-
tion and the co-simulation when these events are not handled
well enough in the co-simulation.

A. Co-simulation Setup

For co-simulation, the system is split up into upper and
lower mass. Each one of the masses takes the other one’s
position and speed as inputs u⃗, and provides its own position
and speed as outputs y⃗.

ẏ1 = y2

ẏ2 = −k1 + k2
m1

y1 −
d1 + d2
m1

y2 +
k2
m1

u1 +
d2
m1

u2 − g
(4)

Let event 1 be the collision of the upper mass with the
ceiling. Mass 1 then gets reflected downwards (6) when it
touches the ceiling and has positive speed (5). Let event 2
be the collision of the two masses. Their reflected velocities
depend on the masses (8). Similar to event 1, event 2 occurs
when the masses touch and move towards each other (7).

Z1 = {z1 = −(y1 +∆x), z2 = −y2} (5)
E1 : y′2 = −y2 ⇔ max

z∈Z1

z = 0 (6)

Z2 = {z1 = y1 − u1 − 2∆x, z2 = y2 − u2} (7)

E2 : y′2 =
m1 −m2

m1 +m2
y2 +

2m2

m1 +m2
u2 ⇔ max

z∈Z2

z = 0 (8)

Subsystem 1 simulates the trajectory of the upper mass, and
contains its equations of motions (4) as well as both events.

ẏ1 = y2

ẏ2 = −k1 + k2
m2

y1 −
d1 + d2
m2

y2 +
k2
m2

u1 +
d2
m2

u2 − g,
(9)

Z = {z1 = u1 − y1 − 2∆x, z2 = u2 − y2}

E2 : y′2 =
m2 −m1

m1 +m2
y2 +

2m1

m1 +m2
u2 ⇔ max

z∈Z
z = 0

(10)

Subsystem 2 simulates the lower mass, and contains its
equations of motions (9) and event 2 (10).

Event 1 is a private state event. As it occurs in two sub-
systems at the same time, event 2 is a shared state event. The
relative velocity between objects changes sign after a collision,
thus both events no longer fulfill their second conditions after
the event.

For the monolithic solution, the equations of motions are
solved as a single system of four equations, and the events
are implemented by checking the event conditions after each
solver step.

Regarding the setup of the LookAhead routine, the safety
and forecasting factors have to be chosen. The value of the
safety factor c = 0.9 has been chosen based on the behaviour
of the variables relevant for event prediction. On the co-
simulation step time scale, the positions and velocities of the
two masses behave quite linear, meaning that the extrapolation
of z inside the LookAhead algorithm only has a small error
compared to the real values. Thus, c can be chosen with a high
value near 1. If the event conditions z were less predictable,
the safety factor would need to be smaller in order to prevent
the algorithm from missing events.

The forecasting factor of d ≤ 2 is chosen similarly.

B. Simulation Results
In the upper part of Figure 5, the trajectories of three simu-

lations are compared. The solid blue lines are the trajectories
of the co-simulation where both subsystems contain a local
LookAhead instance. The green dashed lines are the trajectory
of a co-simulation without LookAhead capability, and the
red dotted lines are the monolithic solution as a reference.
The upper mass collides with the ceiling when its position is
x1 = −∆x, indicated by the horizontal line. The lower part
of Figure 5 shows the absolute error

epos := |x1 − x̂1|+ |x2 − x̂2|

for both co-simulations, where x̂i are the positions of the
reference solution. It is easy to see how LookAhead improves
the performance of the co-simulation. The root mean square
of this error,

epos,rms :=

√√√√ 1

n

n∑
i=0

(|x1,n − x̂1,n|+ |x1,n − x̂1,n|)2,

is erms = 0.12 and erms = 3.65, with and without
LookAhead respectively. The default time step of the co-
simulation was tstep = 0.08s, calculating to tstop = 20s in
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Fig. 5. Comparison of trajectories of the two masses. Top: total positions of the two masses in each simulation case. Bottom: Position error with respect to
the monolithic simulation result.

250 steps. LookAhead introduced only 32 additional steps.
This means that, with the same base coupling step size, the
error improves by 96.7% or a factor of 30.3 while only taking
12.8%. more steps.

To achieve an error equal or less than that without LookA-
head, tstep = 0.01 is required, taking 2000 steps instead with
an error of erms = 0.07, meaning that, for a desired error
limit, LookAhead reduces the number of steps by 85.9% or
a factor of 7.1.

Figure 6 shows two detail views of the monolithic and
LookAhead simulations. Approaching the event in the top
image, coupling step size gets increasingly smaller until the
event occurs, after which the step size returns to default. In
the bottom half no event occurs, but as their extrapolated tra-
jectories intermittently cross each other, LookAhead decreases
step size for a few steps before returning to default once it is
clear no event will happen.

V. SUMMARY, CONCLUSION AND FUTURE WORK

A. Summary

By defining functions that indicate the occurrence of state
events, it is possible to estimate imminent state events a few
time steps prior to their occurrence by interpolating these
event condition functions. Then, the coupling time step can
be adapted to hit these event times more precise.

Compared to a constant time step simulation, where events
can happen at random points between time steps, this can
significantly improve the error, especially in chaotic systems
like the one shown in the example.

B. Conclusion

The proposed LookAhead algorithm vastly improves the
performance of hybrid systems where only a small number of
events occur during co-simulation, while keeping calculation
time low. The coupling step size is only reduced when neces-
sary, and the additional overhead for event prediction is kept
as small as possible. In this manner, the error was reduced by a
factor of 30 with the same step size. To achieve the same error
without implementing LookAhead in the master algorithm, the
co-simulation takes 7 times more steps.

This is much more efficient than choosing a smaller cou-
pling step size in general or taking an iterative approach
[10], as many models do not support this. If they do, saving
and (re)setting states is computationally expensive as well,
especially with growing complexity of the models or the co-
simulation, while LookAhead’s complexity only depends on
the number of events.

C. Future Work

Future work is mostly focused on usability. In the example,
the event indicators have to be set up manually and are
independent of their actual implementation in the subsystems,
as these are treated as black-boxes. It would be favourable if
this step could be automated in cases where many events are
present or it is not known how they depend on the inputs.

Also, there exist other scheduling paradigms besides par-
allel execution. Thus, for general coupling schemes the main
LookAhead algorithm has to be adapted, depending on how
and when signal exchange takes place.
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Fig. 6. Detailed views of LookAhead predicting events. The vertical lines
mark the synchronization time points in the co-simulation. The lines get denser
as they approach an event, and return to the default communication step size
afterwards. Top: A shared event. Bottom: Prediction of an event that does not
happen.

This could be combined with an example of an industrial ap-
plication, where the performance of the LookAhead algorithm
can be compared with different coupling methods, iterative
co-simulation, and other methods for improving co-simulation
results.

Finally, LookAhead is planned to be implemented in the
ICOS co-simulation tool developed at Virtual Vehicle Research
GmbH, that is contained in the Model.CONNECT™ co-
simulation platform developed by AVL List GmbH [11].
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