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Abstract—Universities are complex organizations that are
comprised of semi-autonomous interacting units that adapt
to evolving demands and regulations. Administrative decision-
making requires viewing a university as an adaptive system
with a complex causal network of interactions. This paper
presents a qualitative causal simulation model based on the Fuzzy
Cognitive Map (FCM) formalism to demonstrate exploratory
cause-effect analysis of resource tensions and quality in public
higher education institutes. The model is focused on a selected
subset of factors with the primary aim of demonstrating the use of
FCM to support model-centric thinking. The FCM formalism is
simulated under a factorial experiment design that examines the
interaction among state funding, teaching capacity, and research
capacity.

Index Terms—qualitative simulation; fuzzy cognitive map;
higher education; complexity

I. INTRODUCTION

According to the Education Data Initiative [1], as of July
2022, 73.0% of college students at all levels attend public
institutions. Policies aimed at these institutions have a signifi-
cant influence on higher education. In recent years, increasing
fiscal challenges in the public higher education environment
resulted in the development of new administrative models
that emphasize the ability to generate income to provide
additional revenue. Among such capabilities are sponsored
research activities based on contracts and patents. Such ac-
tivities promoted an environment that can sustain fundable
research with implications on hiring policies and incentives for
promotion and balance teaching load with increasing research
commitments.

Increasing fiscal tensions in state funding of public higher
education impact the quality of education, graduation rates,
and overall organizational performance of universities [2].
Factors that influence organizational performance can be clas-
sified into separate activity and policy categories, such as
state funding, affordability, target population characteristics,
faculty teaching and research load, compensation, and admis-
sion. These separate activity zones interact through complex
mechanisms, making it challenging to predict the outcomes of
decisions and emergent behavior due to positive and negative
feedback loops among factors.

Improving graduation rates, research funding, and overall
system quality can involve exploring various options, including
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staff compensation, faculty incentives for productive partic-
ipation, teaching and research loads, hybrid instruction, and
improving access and affordability to the target population. In
this paper, the systems approach with an exploratory modeling
and analysis strategy is advocated to provide a foundation to
demonstrate policy analysis in the context of higher education.
The proposed model is focused on a selected subset of factors
with the primary objective of demonstrating the use of the
computational Fuzzy Cognitive Map (FCM) [3] formalism to
support model-centric thinking.

The rest of the paper is structured as follows. In section 2,
background on simulation methodologies used in the simula-
tion of university dynamics is reviewed. FCM formalism is
introduced in section 3 to specify the fundamental principles
of FCMs and the dynamics of the FCM model. Section 4
presents the implementation and preliminary experiments with
the model, as well as a sensitivity analysis of the dynamics
to discern cause-effect relations under hypothetical scenarios.
Section 5 concludes with a summary of the findings and
limitations of the model.

II. BACKGROUND

Computational models are effective tools in evaluating or-
ganizational dynamics to assess the effectiveness of policies in
the presence of a multitude of interacting factors. Simulation
modeling can help explore the effectiveness of university op-
erations in achieving organizational outcomes while providing
a predictive and prescriptive tool for policy evaluation. The
use of computational models in education has a rich history.
Although the use of qualitative simulations of higher education
with FCM models remains to be explored, both Agent-based
Modeling (ABM) [4] and system dynamics models [5] [6]
are widely used. Next, we provide a brief review of selected
ABM and System Dynamics (SD) approaches, followed by a
discussion on how the FCM formalism, which is the focus of
this paper, can complement the ABM and the SD perspectives.

A. Agent-Based Modeling

Agent-based modeling is a methodology for developing
computational models of systems in terms of autonomous
agents to simulate the decisions, actions, and interactions of
discrete entities. Such entities can represent a broad range of
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system elements, from individual humans to collectives, such
as organizations and communities. Agent-based simulation
models examine a broad range of aspects of the higher
education system and its interactions with the broader context.

In [7], an agent-based model of a public university is devel-
oped to study the impact of various organizational decisions on
institutional performance with a specific focus on the financial
perspective. During the Covid pandemic, universities faced
significant challenges in avoiding the spread of outbreaks
on campus [8]. Computational studies of randomized testing,
contact tracing, and quarantining reveal the effectiveness of al-
ternative strategies in protecting students, faculty, and staff [9].
Simulation models of innovation dynamics explore industry-
university links to examine the impact of collaboration struc-
tures on innovation effectiveness [10].

Simulation models grounded in theory facilitate understand-
ing system behavior if the real-world behavior unfolds consis-
tently with the premises of the respective theory. For example,
in [11], social impact theory tests social communication and
resource allocation on STEM yield. Besides education sys-
tems, agent-based models are used to study scientific activity
and clustering of research activity into scientific domains and
disciplines [12]. Similarly, [13] uses a simulation model to
represent scientific activity as a sociopolitical system.

B. System Dynamics

System Dynamics (SD) modeling [5] is a mathematical
modeling approach to represent systems and their continuous
non-linear behavior over time. SD models are used to explain
and predict the dynamics of complex issues and problems
ranging from artificial to social and natural systems.

System dynamics modeling in higher education has a long
history with a broad range of applications overviewed by
an early taxonomy of SD models in higher education [14].
Relatively recent research in this area involves capacity plan-
ning and policy evaluation. In [15], the implementation of
sustainable development education programs is examined with
a focus on the sustainability competencies of students. As a
decision support tool, system dynamics models contribute to
exploring efficient resource management and capacity plan-
ning for academic programs [16] [17].

Alternative  simulation formalisms, including semi-
quantitative and highly interpretable causal simulation
formalisms, such as FCM, can also offer avenues to

perform thought experiments before developing detailed
high-resolution models.

C. Fuzzy Cognitive Maps

FCMs model feedback causal relations in webs of causality
and system design/policy/strategy variables [3]. FCM formal-
ism combines neural network theory and fuzzy logic [18]
synergistically. FCMs are fuzzy signed directed graphs that
allow degrees of causal influence and event occurrence. Such
causal models can simulate a wide range of system designs,
scenarios, and decision processes. Their nonlinear dynamics
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permit forward-chaining inference from input causes and de-
sign options to output effects. Users can directly add detailed
dynamics and feedback links to the causal model or infer them
with statistical learning laws [19]. Users can fuse or combine
FCMs from multiple experts by weighting and adding the
underlying fuzzy edge matrices recursively if needed.

ITII. FOUNDATIONS OF THE Fuzzy COGNITIVE MAP
FORMALISM

An FCM concept node is fuzzy because it can take values
in the unit interval [0,1]. Therefore, its values over time define
a fuzzy set. This implies that a concept node that describes
a property or system state both occurs and does not occur
to some degree at the same time. A simple FCM consists of
n concept nodes C; and n? directed fuzzy causal edges e;;.
The concept nodes C', Cs, ..., C), are nonlinear and represent
variable concepts or factors in a causal system. The activation
value of a concept node C;(t)) measures the degree to which
the concept C; occurs in the causal dynamics at time tj.
The FCM state vector C(¢;) provides a snapshot of the FCM
system at time t;. In addition to the non-linear dynamics of
the concept nodes, an FCM model must also specify the n?
directed and signed causal edge values e;;.

The activation value of the concept j is determined at time
t, on the scalar input x;(¢;) that reaches and aggregates all
the causal activation inflowing to C;. A non-linear function
®; converts x;(t;) into the concept’s new state Cj(tg41).

n
Ci(trsr) = @O Ciltr) esj(te) + Ii(tx))
i=1
where I;(t) is an external input at time t;. The simplest
threshold function is a hard threshold that produces bivalent,
on-off concept node values:

_JO af T Cilte) es(te) + Ii(tk) <0
Cillir) = {1 S o) en () + L (t) > 0

The external input can be set to high (or low) values to
ensure that a concept is always on (or off). By fixing the
activation value of a node, specific strategy configurations can
be tested. A monotonic increasing ®; nonlinear function can
be used for a continuous dynamic system. Logistic causal acti-
vation functions have a sigmoidal structure that approximates
the hard threshold function if the shape parameter ¢ > 0 is
large enough:

1

1+ exp(—c 27,y Ciltr) eij(tn) — clj(te))

Alternative approaches to modeling causal worlds are Sys-
tem Dynamics (SD) models [20] and Bayesian Belief networks
(BBNs) [21]. System-dynamics models facilitate representing
and simulating causal interactions. Domain experts or random
experiments often choose static parameters of the subsystems
and their interconnections. On the other hand, FCMs allow
data-driven adaptation of the model structure and parameters.

Ci(trt1) =
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Fig. 1: Face Validity of the FCM Implementation

Statistical learning algorithms estimate causal edges from
training data. Experts can also state edge values directly. While
SD models include stochastic behavior through sensitivity
analyses at the end of modeling, FCMs build uncertainty into
the causal structure.

BBNs model uncertain causal worlds with conditional prob-
abilities that require using a known joint probability distribu-
tion over all the nodes of the directed graph. This may not be
practical for a large number of nodes. Forward inference on a
BBN also tends to be computationally intensive. Furthermore,
the directed graph is usually acyclic and thus has no closed
loops. The acyclic structure simplifies the probability structure
but ignores the feedback of the causal units.

IV. A QUALITATIVE SIMULATION MODEL OF UNIVERSITY
ACTIVITY DYNAMICS

To illustrate the utility of qualitative simulation of university
activities via a Fuzzy Cognitive Map, we start our analysis
with a baseline model with minimal features. The baseline
model is intended to assess the accuracy and face validity of
implementing FCM in the NetLogo environment [22]. Figure
la presents five concepts and their relations.

The State Funding is the input concept that is varied to
assess the impact of fiscal tensions on the affordability and
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enrollment levels. According to [23], the decrease in state
funding levels increases pressure for a tuition increase, which
then results in an increased likelihood of tuition increase.
These relations are specified as qualitative positive and nega-
tive dependencies. The extent of the impact of tuition increases
on the affordability of higher education is well documented.
Using the empirical findings reported in [24], the FCM model
shown in Figure la introduces a negative relation between
tuition raise and affordability. Furthermore, according to [25],
decreasing affordability reduces enrollment levels. In relation
to the dependency between enrollment levels and pressure for
tuition increase, we consider the empirical results that suggest
diseconomies of scale for large universities [26]. Finally, the
causal link between enrollment and tuition closes the feedback
loop.

The conceptual model is implemented within the NetLogo
environment shown in Figure 1b. The Netlogo model is avail-
able at github.com/yilmale/University. In the implementation,
the values of the weights of causal dependencies between
variables are set to 1.0 for positive causal relations and —1.0
for negative relations. The StateFunding variable is updated
episodically every 10 time steps and kept constant during
each interval to validate the expected trends in the activation
levels of enrollment and affordability. As shown in Figure Ic,
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the increase (decrease) in affordability and enrollment follows
with a slight lag the increase (decrease) in the state funding
level. Similarly, the change in the activation of pressure for
tuition raise and the tuition rate follows the change in the state
funding activation in the expected direction. Feature scoring
analysis of simulation data, shown in Figure 1d, reveals the
significance of the state funding variable on affordability
and enrollment levels. The minimal baseline model facilitates
instilling confidence in implementing the interactive activation
dynamics process underlying the FCM formalism.

The model is extended with additional concepts representing
the student-faculty ratio, student retention, graduation rate, and
quality of experience. In the absence of new faculty hiring and
everything else being equal, an increase in enrollment levels
results in an increase in student-faculty ratio, negatively influ-
encing student retention. Lower levels of student retention are
expected to reduce graduation rates. Furthermore, higher levels
of student-faculty ratio adversely affect experience quality,
which is an important criterion for increasing graduation rates.
The minimal FCM, shown in Figure 1la, is extended in Figure
2 to explore the impact of State Funding on Graduation Rate
under the hypothetical frame characterized by the selected
concepts and conjectured dependencies.
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o
raduation
Rate

Fig. 2: Extended FCM Model.

Simulation of the FCM with the extended model reveals
in Figure 3 that graduation rates decline regardless of state
funding activity in the absence of teaching faculty hiring
activity.

The factorial experiment examining the interaction between
state funding and hiring teaching faculty shows that hiring
teaching faculty is critical to increasing graduation rate ac-
tivity. State funding does not produce sufficient graduation
activity at lower teaching support levels, assuming that state
funding does not contribute to reducing the student-faculty
ratio through other mechanisms. The heatmap shown in Figure
4, in the absence of other factors, illustrates the significance
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To examine the role of the research component of a uni-
versity, we extend the model to include additional concepts
and dependencies involving sponsored research. However,
exploring research activities and their impact on the quality
of experience and graduation rates are limited to the current
framework shown in Figure 5. In the extended model, for
illustration purposes, Hiring-Research-Faculty is considered
as an input concept that can be controlled by the university
administration. By hiring research faculty, the university can
be expected to increase the level of Sponsored Research,
which generates new Revenue. Additional resources generated
by sponsored research offices through indirect cost recovery
mechanisms, as well as patents and innovations, stemming
from the increased research activity, lower the pressure for
tuition increase.

Sponsored research is expected to increase the research ac-
tivity by faculty specified by the Faculty-Research node in the

10
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FCM. However, more faculty research results in lower levels of
teaching activity due to administrative policies such as course
buyouts or assigning teaching responsibilities to graduate stu-
dents or lecturers. Delegation of teaching to lecturers reduces
the quality of experience for students, resulting in an adverse
impact on graduation and student retention. On the other hand,
with increased faculty research activity, students have more
opportunities to be involved in research, and such research
experience contributes to an increased quality of experience.
These conjectured causal dependencies are conceptualized in
the FCM model shown in Figure 5.

Hire-Research-Faculty - 0.8

Hire-Teaching-Faculty -  0.97

StateFunding

g [
graduationRate afford enroll qualityOfExp sfRatio

Fig. 6: Feature Analysis of the Extended Analysis

The simulation of the extended FCM explores the tension
among state funding, research faculty hiring, and teaching
faculty hiring. The model does not make resource allocation
decisions among research and teaching activities. Instead, at
a given level of state funding, and given the causal relations
shown in Figure 5, the teaching faculty factor significantly
impacts all outputs except affordability. On the other hand, as
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shown in Figure 6, state funding affects affordability, and the
research component does not have significance on output met-
rics under the causal constraints of the model. Regarding the
availability of teaching resources, the graduation rate declines
with small levels of teaching faculty capacity. As shown in
Figure 7a, increasing the teaching resource capacity beyond
the inflection point consistently improves the graduation rate
performance.

On the other hand, an increase in the research capacity im-
proves the graduation rate through moderate levels of increase
in student research experience that positively affects overall
student experience. However, increasing the research load over
the inflection point decreases the overall student experience
and graduation rate due to its impact on suppressing teaching
capacity. Figure 7b shows the observed behavioral trend.

The detailed ANOVA analysis, shown in Figure 8, of the
quality of experience outcome supports the Feature Scoring
analysis by highlighting the significance of state funding and
teaching capacity. Two-way interactions between the factors
reveal that the impact of individual factors is not dependent
on other factors.

V. CONCLUSIONS

Analyzing policies in the higher education system requires
understanding nonlinear dependencies between factors, includ-
ing positive and negative feedback loops that can lead to
nontrivial outcomes. For such complex systems, the tools and
models of complexity can offer reliable frameworks to gain in-
sight into the causal dynamics of constituent elements. In this
paper, we demonstrated a semi-qualitative model based on the
Fuzzy Cognitive Map formalism and conducted experiments
to examine the tension among state funding, research capacity,
and teaching capacity in relation to the quality of student
experience and graduation rates. The causal dependencies

11
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q: Quality of Experience, S: State Funding, T: Teaching Faculty, R: Research Faculty

Dep. Variable: q R-squared: 0.815
Model: OLS Adj. R-squared: 0.814
Method: Least Squares F-statistic: 970.7
Prob (F-statistic): 0.00
Log-Likelihood: 2956.4
No. Observations: 1331  AIC: -5899.
Df Residuals: 1324  BIC: -5862.
Df Model: 6
Covariance Type: nonrobust
coef| std err t P>|t| [0.025 0.9751
Intercept 0.2839 0.004 75.393 0.000 0.277 0.291
S 0.0055 0.006 0.987 0.324 -0.005 0.016
T 0.1728 0.006 30.922 0.000 0.162 0.184
R -0.0001 0.006 -0.027 0.979 -0.011 0.011
T:R -6.101e-05 0.007 -0.008 0.993 -0.014 0.014
S:R 1.571e-05 0.007 0.002 0.998 -0.014 0.014
S:T 0.0024 0.007 0.335 0.737 -0.012 0.017
Omnibus: 304.477 Durbin-Watson: 0.093
Prob(Omnibus): 0.000 Jarque-Bera (JB): 543.789
Skew: 1.463 Prob(JB): 8.27e-119
Kurtosis: 4.116  Cond. No. 21.5

Fig. 8: ANOVA Analysis

presented in the model are based on theoretical and empirical
findings reported in the extant literature. The results indicate
the significance of teaching capacity on graduation rates, while
state funding affects the affordability of higher education.
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