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Abstract—Reinforcement Learning (RL) is widely used for
training Unmanned Aerial Vehicles (UAVs) involving complex
perception information (e.g., camera, lidar). RL achievable per-
formance is affected by the time needed to learn from the
direct interaction of the agent with the environment. AirSim is
a widely used simulator for autonomous UAV research, and its
photorealism is suitable for algorithms using cameras for making
or assisting flying control decisions. This work aims to reduce
the RL time by reducing the simulation time step. This impairs
simulation accuracy, so the impact on RL training must be
quantitatively assessed. We characterise the AirSim acceleration
impact on RL training time and accuracy while performing an
obstacle avoidance task in a UAV application. We observed that
using 5x as the Airsim acceleration factor, the RL task perfor-
mance degrades by 95%. The observed performance increase is
due to the latencies present in the AirSim command chain. We
overcome this limitation by proposing a new command approach
which allows accelerating without performance degradation until
10x. When pushing the acceleration factor to the extreme (100x),
the RL task performance degrades by 38% with a measured
speed-up of 15x.

Index Terms—Simulation Engine, Reinforcement Learning,
Airsim, Profiling.

I. INTRODUCTION

Reinforcement Learning (RL) is a branch of Artificial
Intelligence (AI) that aims to extract knowledge from the
interaction of an agent with the environment. In robotics,
specifically Unmanned Aerial Vehicles (UAVs), RL algorithms
are used to train and implement control tasks such as naviga-
tion, landing, and obstacle avoidance [1]. These tasks require
accounting for complex relationships between different sensors
and complex dynamics that are difficult to catch with a dataset
of use case samples. To bypass this problem, RL enables an
agent’s training in a task thanks to a reinforcement signal.

RL training requires the agent to directly interact with the
environment experiencing the task to be learned and learn the
task through a reinforcement signal. Practically, this requires
performing the task (called game) repeatedly until the RL al-
gorithm has learned the task. This can easily require thousands
or millions of games [2]. According to which RL algorithm
is used, stochastic gradient descent and back-propagation step
are repeated continuously after profiling a series of actions and
collecting the rewards within each game. In practical terms,
several weeks to train the drone are required; most of the
training time is spent in the simulation steps.

Software simulators facilitate the setting up of the training
environment. Simulators are designed to replicate the agent ca-

pabilities (e.g., the UAV flight) and real environments through
complex mathematical models that simulate agents’ real-world
physics rules and perception capabilities. Simulators imple-
ment all the forces that act in the simulated scenario, such as
gravity, rotors actuation, and collisions.

If the task to be performed by the agent leverages camera
sensors, accurate and photorealistic rendering of the scene
becomes mandatory to obtain a simulation close to the real sce-
narios. RL combined with a photorealistic simulator reduces
time-to-market, increasing the chances that trained models in
the simulation can be deployed in the field as it is. According
to a recent review [3], the most suitable simulators for UAV
applications are: AirSim [4], Flightmare [5], Gazebo [6] and
Webots [7]. These are all open-source simulators.

Gazebo and Webots are used by the robotic community
but are not photorealistic. Airsim and Flightmare leverage
graphical engines for the video game industry to provide
photorealism. While Flightmare focuses on multi-drone sim-
ulations, Airsim natively supports hardware and software in
co-simulation for rapid flight control and RL-trained solution
rapid prototyping.

Simulators allow controlling an agent in the simulation by
issuing commands in real-time. For this reason, the simu-
lation time is synchronous to the ”wall clock” time spent.
Moreover, simulators can simulate physics faster than in real-
time, provided that they run on adequate computing resources.
However, photorealistic simulators rely on game engines for
the rendering part, designed to maximize the number of
rendered frames under the real-time bound.

A recent survey [8] identifies simulation environments that
are photorealistic, accelerable and support the employment of
RL algorithms. RaiSim [9] is based on the Unity game engine
and allows for regulating the simulation speed. Isaac Gym
[10] is a physics-accurate and photorealistic simulation tool
developed by NVIDIA that supports automatic acceleration.
However, at the time of the writing, Isaac Gym was a preview
release, and NVIDIA plans to integrate it into the NVIDIA
Omniverse Platform. Unity ML [11] is a plugin of the Unity
game engine that provides the tools to set up virtual environ-
ments for RL. Unity ML allows to speed up the simulation by
changing a time scale parameter. However, Unity simulates
reality by showing a series of discrete simulation frames at
variable time intervals that depend on rendering time. This
implies that by increasing the time scale in a simulation,
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the rendering time does not change. The analysis reported in
the survey [8] focuses on RL simulators for generic robotic
applications and does not consider AirSim among the possible
valid alternatives. Not all general-purpose robotics simulators
currently provide hardware support and software stack for
Flight Control systems. Although they provide some UAV
models, co-simulation may be decisive for adapting to real
employment. Finally, AirSim from 2016 to 2020 is confirmed
among these candidates as the most cited simulation envi-
ronment [3]. The scenario at the moment makes us think of
AirSim as one of the most suitable UAV simulators for RL.
In this regard, in the following sections, we will answer
two research questions: RQ1: Is it possible to accelerate
RL training for UAVs in AirSim? RQ2: Which one is the
implication in terms of accuracy of the simulated drone flight,
interaction with the environment, and trained RL algorithm
accuracy?
Referring to the above-mentioned research questions, in this
paper, we achieved the following contributions:
1) We discovered that the accuracy of trajectories degrades
fast with the simulation time step reduction due to the latency
incurring in the communication between the UAV agent and
the RL algorithm.
2) We proposed a new method of controlling the agent in the
simulator through asynchronous commands and time barriers
(code available at [12]) In this way, on a pre-defined deter-
ministic path, we obtained an effective speed-up of 62x with
an error on the trajectories of 9% w.r.t. real-time simulation.
3) Compared to the results we obtained on a pre-defined
deterministic path, the attainable acceleration speed-ups are
significantly lower w.r.t. the real-time simulation. We investi-
gated the issue, discovering that the rendering pipeline of the
game engine introduces approximations and errors when the
simulation is accelerated. To mitigate this problem, we added
a valid check on the image provided by the camera API and
re-issued the rendering if needed.

We performed the same experiment of an obstacle avoidance
RL task in a lane of 150 m presented in [13]. In this,
we evaluated the impact of the simulation acceleration with
and without the proposed solution. With the default AirSim
asynchronous commands, our results show that it is impossible
to train an RL algorithm with accelerated simulation as the
accelerated training fails over any acceleration factors. On the
contrary, we obtain the same real-time training performance
from a week of training to less than two days with the proposed
synchronous command.

In Section 2, we describe the basic concepts of RL and
the key characteristics of AirSim. A motivational example
regarding acceleration issues, a possible solution to them and
a validation strategy are explained in Section 3. In Section 4
the results of the tests carried out are shown. We conclude our
work in Section 5.

II. BACKGROUND

A. Reinforcement Learning

Deep RL aims at solving complex robotic tasks by mimick-
ing the human training behaviour with the use of the neural

networks [1].
Thanks to the policy π, described by a non-linear uni-

versal function approximator called a neural network, the
agent chooses an action at, modifying the environment. The
environment sends to the agent the new visible information
(called observation) st and the reward rt that measures the
goodness of the action [1].

In particular, a well-known algorithm is the Deep Q-
Learning (DQN) [14]. The goal of this algorithm is to maxi-
mize the action-value function:

Qπ(s, a) ≈ r + γmax
a′

Qπ(s′, a′) = Qπ
tar(s, a) (1)

where Qπ
tar(s, a) is the target action-value function and

Qπ(s′, a′) is produced by the neural network that is used for
choosing the actions a in a state s. Since the duration of the
task can be unlimited, the rewards are multiplied by a discount
factor γ.

An RL algorithm is composed of two phases called training
and inference. In the training phase, a policy is learned by
the policy network using a loss defined as mean square error
between Qπ

tar(s, a) and Qπ(s, a). In the inference, a trained
network described by the parameters θ is used for acting
according to the policy π. In the following, we refer to this
network as a “neural network (πθ)”.

B. AirSim
AirSim is an open-source simulator, developed by Mi-

crosoft, oriented to vehicle simulation and specifically for
UAV [4]. It is built on Unreal Engine 4 and its target is
the experimentation of RL for autonomous vehicles. Unreal
Engine is in charge of updating the state of the UAV agent. The
physical state of a UAV agent in AirSim comprises six mea-
sures: position, orientation, linear velocity, linear acceleration,
angular velocity, and angular acceleration. In addition, AirSim
implements sensors models such as Cameras and Lidars.

In the rest of the paper, we will refer to the “state of
the UAV” in a broad sense, including both the physical state
of AirSim and sensor outputs. Simulation settings of AirSim
can be configured statically throughout a JSON file. Among
the many parameters, this file allows to (i) enable/disable the
scene rendering while keeping the rendering for the sensor’s
camera always active, and (ii) changes the ratio between
simulation and the wall clock time (ClockSpeed setting). As an
example ClockSpeed = 1 implies real-time simulation, while
ClockSpeed = 10 implies an 10x acceleration factor. We will
refer to it also as the AirSim accelerator factor and leverage
it to speed-up RL training tasks.

Although external Flight Control Systems are supported, by
default, AirSim provides its own, called Simple Flight. The
peculiarity of the Simple Flight is using a stoppable clock to
pause the simulation at any point. AirSim provides a set of
APIs (Client APIs) to interact with this built-in autopilot. The
Mission Computer algorithm uses these Client APIs to issue
commands and observe the UAV state. We will refer to this
in the next section as Mission Computer Application (MCA).
According to the complexity of the MCA, following multiple
UAV states could be needed to compute a single command.
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Fig. 1. The full pipeline of the RL setup. The blue box is the
simulation environment. The yellow box represents the MSA in which
the policy neural network (πθ) is who chooses the agent’s actions.
The API provided by AirSim ables the communication between both
components.

The Client API offers an asynchronous command allowing
the MCA to set the desired UAV speed. The asynchronous
command requires a set of input parameters: the velocity
vector and the command duration. After this command is
issued, the Simple Flight starts to execute it, and the MCA
is free to continue with its program flow. Before launching
another command, the MCA must wait for the previous com-
mand completion (using the join() method of the Client API);
otherwise, the previous one will be overwritten - practically
enforcing a synchronous control.

To know the UAV state, AirSim offers two data gathering
methods: i) On-demand query via Client API; ii) Built-in peri-
odic recording in a log file. The MCA can gather multiple UAV
states during the command execution by issuing a concurrent
thread that pauses the simulation at specific time intervals and
gathers the UAV states. For this reason, additional input is
required to specify the UAV state sampling time (Tsample). We
refer to this control sequence as AirSim Default Synchronous
Command (ADSC). In the following sections, we will study
how the ADSC impairs the accuracy of the simulation when
accelerated with the ClockSpeed > 1.

III. METHODOLOGY

A. Motivational Example
In the RL paradigm, no dataset is provided since the agent

has to learn directly from his experience. Figure 1 depicts the
communication flow between the MCA and the simulation
environment. The policy neural network (πθ) provides the
chosen action to the environment. When the simulator executes
the action, the environment evolves following its transition
function; then, it sends the new state and a reward score to
the agent. The reward score represents the goodness of the
chosen action.

The simulated environment must replicate as faithfully as
possible the real-world physics. Client API allows the RL
algorithm to query the simulation environment to collect the
current agent state and to send commands to the agent. The
Simple Flight pilots the UAV agent according to the directives
received by the neural network, which acts as a MCA.

To explain how ClockSpeed affects the simulation, we
illustrate the callback timing of the synchronous commands
and the velocity trend on different acceleration values. We use
a path composed of three consecutive movements with ADSC
along the same axis (two steps forward and one step back) in

Fig. 2. Latency comparison between a real-time game (in the top)
and a 100x accelerated game (in the bottom). The x-axis represents
the simulation time in s, and the y-axis the agent velocity in m/s.
Vertical lines indicate the time expired command.

the standard environment provided by AirSim, disabling the
rendering. The data relating to the agent’s speed is collected
every 0.05 s of simulation time using the record mode, while
the timing of the callbacks is gathered by client API. In this
example, the imposed movements act in the same axis at a
velocity of 1 m/s for 1 s.

Figure 2 shows on the x-axis the simulation time and on
the y-axis the speed of the UAV agent. With dashed lines,
the plot reports the time command expiration of the UAV
agent action in a real-time simulation (the top plot) and a 100x
accelerated simulation (the bottom plot). The figure shows that
the accelerated simulation is subject to command delays as the
dashed lines do not happen precisely on the instants in which
the command was issued. We have identified the cause of the
delays in: i) Latency between the simulator and the application
during the data gathering; ii) Latency of the Simple Flight in
communicating the move command to the UAV agent. These
latencies are involved in ADSC as the MCA waits for the
synchronous command completion.

The delay in the move command increases with the ac-
celerator factor. Latencies also exist in real-time simulations
(ClockSpeed=1) but become noticeable only when the accel-
eration increases. During the command delay, the simulator
continues to evaluate the UAV.

Figure 3 shows the coordinates of the drone flights in real-
time (blue line) and in 100x acceleration (green line). In the
plot axes, the 3D Cartesian coordinates are reported. We can
see the impact of the latencies on the agent’s trajectory by
accelerating the simulation in a single game.

Another issue related to the acceleration of the simulation
is the quality of the images collected by the agent camera.
Enabling the rendering in an accelerated game and visually
inspecting the camera images, we noticed that some images
are affected by salt-and-pepper noise and disturbances in
brightness in very dark scenes. We also noted issues with the
rendered colours of the objects in the scene. Unreal Engine
renders the scene by following a pipeline in which processing
is computed in multiple phases. Accelerated simulation re-
duces the rendering time and the time available for each stage,
making some of them hard to be completed and perturbing the
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Fig. 3. Comparison of trajectories between a real-time game (in blue)
and a 100x accelerated games. The axes x-y-z represents the 3D
coordinates of the simulation environment.

returned images. This issue must be mitigated since the quality
of camera images is essential for considered RL tasks.

B. Speed-Up Effects Mitigation

We demonstrated how communication latencies affect the
accelerated simulation modifying the UAV agent trajectories.
While the MCA waits for the end of the ADSC, the simulation
continues at the selected ClockSpeed. The error in the accuracy
of the trajectories exacerbates as the Airsim acceleration factor
increases.

To overcome this issue, we propose a new command called
Time-Controlled Simulation Command (TCSC) in this paper.
The TCSC uses the stoppable clock of the Simple Flight to
control the simulation until the command expires. This control
is implemented by periodic stimulation interrupts interleaved
with command expired-time checks.

Figure 4 details the trellis diagram of TCSC. The MCA
issues the TCSC with the associated inputs: the velocity vector,
the expected command duration (Tmove), and the UAV state
sampling time (Tsample), then:
1) TCSC measures the start time (Tstart) and issues the
asynchronous command in the Clint API with a command
duration equal to Tmove. 2) Internally the TCSC leverages
the Client API of AirSim to continue the simulation until a
predefined time (Twakeup = minTmove, Tsample) is expired.
3) When this happens, the simulator is paused, and the TCSC
uses the Client API to collect the current simulation time
(Tsim). If Tsim is lower than the Tstart+Twakeup, the TCSC
continues the simulation for the differences between the two
times (Twakeup = Tstart+Twakeup−Tsim). If this difference
is below a minimum threshold (Tth), set as the Client API
latency, than Tsim is considered larger than Tstart+Twakeup.
4) If Tsim is larger than the Tstart+Twakeup the TCSC gathers
the UAV state. At this point if Tsim ≥ Tstart + Tmove the
TCSC ends, otherwise it sets Tmove = Tmove − Tsample, and
returs to (2.).

To avoid interference between the AirSim acceleration fac-
tor and the camera images in the simulation, we disabled the

T
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Fig. 4. This trellis diagram represents the TCSC. Inputs are the time
duration command Tmove, agent state sampling time Tsample and a
velocity vector (not used in the graph).

camera auto exposure. Moreover, we implemented a simple
method based on the average image brightness to solve the
camera image perturbation. The assumption is that this pa-
rameter slowly changes across consecutive camera images.
Suppose the average image brightness changed more than the
10% w.r.t previous camera image. In that case, the image is
considered perturbed, and a new camera image is requested
to the rendering engine through the Client API. In addition,
the average image brightness is compared with a minimum
threshold to ensure that the camera image is not too dark.
During these checks, the simulation is paused; thus, the
simulation accuracy is not impaired.

C. Characterization Methodology

Evaluating the impact of the simulation acceleration on
RL tasks requires assessing different effects: (i) the trajectory
accuracy; (ii) the visual perception accuracy; (iii) their impact
on the agent performance trained in RL.

For this purpose, we defined the following methodology:

• Replicating a State-of-the-Art (SoA) UAV RL task [13],
consisting of learning an obstacle avoidance policy based
on images with AirSim.

• Defining two pre-defined deterministic control sequences
(path) on which to assess the (i) accuracy of a trajectory
and (ii) the visual perception accuracy.
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Fig. 5. The plot reports the STLC distance (y-axis) of the trajectories recorded, computed in averaging pair-wise, for each game replica
combination performed in DP1. The references are the ADSC real-time games. In the sub-plots x-axis, the DP1 command length (DP1-1r
to DP1-24r) is marked. Sub-plot rows identify the command used to perform the games (ADSC and TCSC). Sub-plots columns identify the
AirSim accelerated factor. STLC distance has a score of 0 and 2, where 2 means trajectories completely overlapped.

• Comparing the accuracy of an agent trained in RL with
different simulation acceleration.

1) Environment Setup: To improve how TCSC affects the
simulation and the RL performance, we replicate the exper-
iments performed in [13]. The task involves the avoidance
of obstacles along a lane of 150 meters. We will refer to
this simulated environment as the RL AirSim environment
(AirSim-RLE). We mimic a Dynamic Vision Sensor (DVS) in
which every pixel detects the variation of the log brightness.
For this purpose we used the v2e [15] DVS model. If the
variation exceeds a certain threshold, an event is created. An
event is defined as a tuple of four elements: the coordinates
of the pixel (x,y), the timestamp, and the polarity (which can
be + or −). We simulated a UAV flying by steps of 1 s at a
speed of 1 m/s and collecting three frames per command. For
this reason we set Tmove = 1s and Tsample = 0.33s. Then a
completed game requires more than two minutes.

In addition to the AirSim-RLE, we leverage an additional
AirSim environment, the default AirSim one, Blocks, on which
we perform the trajectory accuracy tests. We will refer to this
environment as the AirSim default environment (AirSim-DE).

2) Performance Metrics:
a) Trajectory accuracy: To quantify the effect of the

latency on the trajectories, we sampled the position of an
agent in the AirSim-DE with rendering disabled. The test is
performed for both commands, ADSC and TCSC. The paths
are composed of a repetition of four movements designed to
move on a square perimeter (Deterministic Path #1 - DP1).
The UAV will move on the path for an increasing number of
times per game: we considered the following number of rounds
(1,2,4,8,16,24). We will later refer to these combinations as
(DP1-1r, DP1-2r, ..., DP1-24r). The agent speed is 1 m/s while
the command duration varies from 0.1 s to 1 s. We perform
twenty games per path for each AirSim acceleration factor
and command duration. The data collected are composed of a
set of 3D coordinates with the corresponding simulator time
with a sampling time of 0.05 s. We use the Spatiotemporal
Linear Combine distance (STLC) [16] to compare the different
trajectories. We use as a reference the real-time trajectory.

For each AirSim acceleration factor, we compute an average
STLC distance by averaging the pair-wise STLC distance
computed for each game replica combination (resulting in a
20x20 matrix). This metric has a score of 0 and 2, where 2 is
the maximum value indicating that the trajectories are entirely
overlapped. As a reference, the trajectories reported in Figure
3 have an STLC distance with the trajectory A of 1.3 for the
trajectory B and 1.86 for the trajectory C. We conclude that
STLC distances above 1.8 means visually similar trajectories.

b) Visual perception accuracy: Assessing the visual per-
ception accuracy of a UAV flight simulation is of primary
interest if a camera input guides the drone control task. We
thus need to assess if the AirSim acceleration factor introduces
visual perception accuracy distortion on top of the UAV trajec-
tory errors. We set the UAV to follow a pre-defined determin-
istic path which reaches the end of the AirSim-RLE (without
obstacle collision). We will refer to this as the Deterministic
Path #2 (DP2). We repeated this simulation one time for each
AirSim acceleration factor considered. The UAV commands
used is TCSC with Tmove = 1s and Tsample = 0.33s. For
each UAV state gathered, we collected the camera image and
the UAV coordinates. We then compute for each sample: (i)
The Euclidean distance between the coordinates at which the
camera image is taken in the accelerated simulation and real-
time simulation; (ii) The difference in the total number of
DVS pixels in each polarity between the camera image taken
in the accelerated and real-time simulation. This difference
is reported as a percentage of the total number of pixels in
the camera images with a resolution of 256x144 pixels. We
will refer to this metric as DVS Event Dissimilarity (DVS-
ED). The introduced metrics allow us to understand how the
quality of the images changes in relation to the difference in
the UAV coordinates when the image is taken. For nearby
acquisition points, we expect a slight difference in the images
obtained concerning an accelerated simulation. Otherwise, we
can conclude that the AirSim acceleration factor induces an
additional perturbation in the gathered camera images.

3) RL agent performance: The strategy of validating RL
algorithms on accelerated simulations involves training the
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UAV agent in RL for the designated task (obstacle avoidance)
at different AirSim acceleration factors. The RL training
procedure performs 5 000 games on the previously described
AirSim-RLE. This test is replicated using both the ADSC
and the TCSC. During the training, we record the simulation,
image processing (DVS computation), and the policy neural
network (πθ) inference times.

After the RL training ends, as described in Section II-A,
a policy neural network (πθ) is obtained. We evaluate the
accuracy of the UAV’s flight with the trained policy neural
network, and we measure the number of times the UAV
reaches the end of the environment without collisions over
100 games - later, we will refer to this metric as the UAV
success ratio.

First, we compared the two commands, ADSC and TCSC, in
real-time. Using a real-time simulation, we trained the policy
neural network in RL using the proposed TCSC. Then we
evaluated the UAV success ratio using both TCSC and ADSC
in inference over 100 games. This test provides evidence of the
interchangeability of commands when the simulation happens
in real-time, where the effects of latencies are negligible.

Second, we compare the UAV success ratio computed in
real-time for the policy neural network (πθ) trained with differ-
ent AirSim acceleration factors. UAV success ratios equivalent
to those obtained in the real-time training (reference case)
are considered valid AirSim acceleration factors. To check the
wall-time gained with the simulation acceleration, we calculate
the effective speed-up of training procedures with different
AirSim acceleration factors compared to the ADSC real-time
one.

IV. RESULTS

A. Experimental Setup

In this section, we describe the results obtained from the
characterization methodology described in Section III-C. The
tests have been performed in a server equipped with a 24-GB
RAM NVIDIA Quadro RTX 6000 GPU, Intel(R) Xeon(R)
Gold 5220 CPU @ 2.20 GHz and 188 GiB of RAM. In
this section we considered the following AirSim acceleration
factors: 1x (Real-time - Baseline), 5x, 10x, 50x, 100x.

B. Trajectory accuracy and speed-up

The first characterization test focuses on evaluating the
impact of the AirSim acceleration factors on the trajectory
accuracy for both the ADSC and the proposed TCSC. This
is done in the AirSim-DE with the UAV flying following the
pre-defined deterministic path DP1.

Each command considered (ADSC/TCSC) has been simu-
lated at each AirSim acceleration factors [1x, 5x, 10x, 50x,
100x] for different command durations (0.1 s, 0.2 s, 0.5 s, 1 s)
for an increasing command length (DP1-1r to DP1-24r). Each
simulation setting has been repeated for 20 times.

Figure 5 reports the distribution of the STLC distance
for each setting computed against the ADSC real-time case
(ADSC-1x), which we consider as the baseline. This means
that for all ADSC-1x steps, the STLC distance reaches near
maximum value, STLCd = 2. Slight differences are due to the

Effective speed-up in DP1-24r

AirSim acceleraction factor

E
ff

ec
ti
ve

 s
p
ee

d
-u

p ADSC TCSC

Fig. 6. Effective speed-up of the trajectories accuracy test on DP1-
24r. Effective speed-ups (y-axis) are distinguished by the command
duration. The x-axis identifies the set AirSim acceleration factor. The
effective speed-up is computed for both commands, ADSC (on the
left) and TCSC (on the right). The black line indicates the ideal
curve.

non-determinism of the simulator, for which the trajectories
vary between repetitions. In other tests, the variance of the
STLC distance distributions increases as the AirSim acceler-
ation factor increases. In the figure, we group the computed
STLC distance based on the command length. The top plot
refers to the ADSC case, while the bottom plot refers to
the TSCS case. Different sub-plots refer to different AirSim
accelerator factors, while the x-axis reports the command
length on which the STLC distance has been computed.

For a given AirSim acceleration factor, the trajectory ac-
curacy worsens with the command length, suggesting the
error accumulates between consecutive commands. This is
expected as the source of the trajectory error is the command
latency. For the same reason, the proposed TCSC command
significantly outperforms the ADSC trajectory accuracy.

Let us consider achieving an STLC distance higher than 1.8
in the median case (reported with a red line in the box plot).
The proposed TCSC provides acceptable trajectory accuracy
for all the AirSim acceleration factors while the default ADSC
reaches it for acceleration lower than 5x.

To evaluate how an AirSim acceleration factor translates
to simulation time reduction, we measured the time taken
to perform the simulation in the above-tested settings and
computed the effective speed-up against the real-time baseline.
Figure 6 reports this value for the ADSC (left plot) and TCSC
(right plot) for the different AirSim acceleration factors (x-
axis). Different lines refer to different command durations. In
the y-axis, we report the average effective speed-up computed
against the real-time ADSC case, averaged among the repeti-
tions and command lengths. With the dashed black line, we
report the ideal effective speed-up curve.

From the plot, we can notice that, in general, the TCSC
outperforms the ADSC showing an effective speed-up closer
to the ideal curve. For the ADSC, the effective speed-up
increases by increasing the command durations. This effect
is more visible at high AirSim acceleration factors. This can
be explained by the fact that for each command, the time spent
in it is composed of the time of processing the command, the
communication and callback latency, and the simulation time.
The AirSim acceleration factor reduces only the simulation
time. For shorter command durations, the simulation time is
weightless on the total time; thus, the simulation acceleration
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Fig. 7. Correlation between UAV position error measured and DVS-
ED (x-axis) in DP2. Distance from positions is computed with eu-
clidean distance (y-axis). Colors indicate the set Airsim acceleration
factor.

benefits reduce. It is interesting to note that the proposed
TCSC shows better scalability. This can be explained by the
fact that the ADSC has an additional wait callback w.r.t. the
TSCS, which is the source of a more significant amount of
latency at high AirSim acceleration factors.

C. Visual perception accuracy

In this subsection, we evaluated the impact of the AirSim ac-
celeration factor on the visual perception accuracy simulations.
This is done by simulating the different AirSim acceleration
factors of a UAV moving on the pre-defined deterministic path
DP2 on the AirSim-RLE.

Figure 7 reports on the x-axis the DVS-ED and the y-axis
the UAV position error measured as the euclidean distance.
Both metrics are computed for each DVS camera image
captured by the drone in the DP2 against the real-time AirSim
acceleration factor one. Each point corresponds to a DVS
camera image. Different colour refers to the different AirSim
acceleration factors.

TABLE I
SUCCESS RATIO RELATING TO DIFFERENT AIRSIM ACCELERATION

FACTORS TRAINING EVALUATED IN REAL-TIME INFERENCE. THE SUCCESS
RATIO, COMPUTED IN AIRSIM-RLE IS PERFORMED WITH THE SAME

TRAINING COMMAND (ADSC AND TCSC).

AirSim Acceleration Factor

1x 5x 10x 50x 100x

ADSC 23 1 0 0 0
TCSC 21 30 23 14 13

As shown in Figure 7, the points relative to an AirSim
acceleration factor of 5x are close to the origin: the euclidean
distance is within 5 cm, the DVS-ED is below 3% from
the DVS camera image obtained in real-time. This means
that the simulation accelerated to 5x is almost identical to
the real-time simulation. Increasing the AirSim acceleration
factor to 10x slightly increases the DVS-ED to 5% while still
maintaining the euclidean distance below the 5 cm. Also, there
is not a big difference from the real-time simulation. It is
interesting to notice that when the AirSim acceleration factor
is increased to higher values (50x and 100x), the Euclidean
distance increases but less than the DVS-ED. Moreover, at
these AirSim acceleration factors, many points have similar
euclidean distances but significantly different DVS-ED. This
means that the difference in the images seen from the UAV’s
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Fig. 8. Distance traveled in meters (x-axis) by the UAV agents during
the 100 games inference (y-axis). The lines refer to the inference
executed on different AirSim acceleration factors training. The red
line represents the goal of the AirSim-RLE lane.
camera does not depend only on the position error induced by
the simulation acceleration but that the latency in command
can lead to a different camera orientation while the UAV is in
a relatively similar position.

D. RL agent performance
This last section evaluates how the effects discussed impact

the performance of an agent trained in RL in an accelerated
simulation environment. As described in Section III-C3 we
trained with RL a policy neural network (πθ) to avoid obstacles
based on the DVS camera input. In real-time with the ADSC
(ADSC-1x), the training of 5000 games takes one week and
14 hours. The agent achieves a UAV success ratio of 23%.

Table I reports the UAV success ratio obtained when training
the policy neural-network (πθ) at different AirSim acceleration
factors. All the UAV success ratios have been computed in
real-time in the AirSim-RLE.

We can notice that the TCSC-1x has a similar performance
to the baseline achieving the 21% of UAV success ratio.
Moreover, the UAV success ratio is preserved till AirSim
acceleration factors of 10x. For higher accelerations (50x
and 100x), the score reduces to 62%. This indicates that the
proposed command can preserve the RL training accuracy until
a simulation acceleration of 10x. It is interesting to notice that
the AirSim acceleration factors of 5x improve upon the ADSC-
1x, suggesting that for this acceleration, the trajectory noise
helps the trained model to generalize. In contrast, at higher
acceleration factors, the loss in the DVS accuracy (DVS-ED)
increases, jeopardizing the training accuracy.

Figure 8 reports on the x-axis the distance travelled in
meters by the UAV agent in 100 trials (games) simulated
in real-time using the policy neural network (πθ) trained
with accelerated simulations. For a given AirSim acceleration
factor (reported in the plot with different colours), all the 100
trials have been simulated using the policy neural network
weights (θ) obtained during the corresponding accelerated
training. The y-axis reports the number of UAV agents sharing
the same, which reached a given distance. In the plot, we
report as well the reference cases performed in real-time
with ADSC and TCSC are plotted. The lines have a similar
trend with peaks corresponding with obstacle locations. The
figure validates the TCSC experiment by demonstrating that
simulation acceleration applied to RL algorithms does not alter
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Fig. 9. Time in hours required for each training phase and effective
speed-up of the training. The x-axis indicates the set AirSim ac-
celeration factor. Y-axes indicate the hours required for the training
separated by phases (on the left) and the effective training speed-up
(on the right).

the simulation environment. By increasing the acceleration of
the simulation, the trajectories and perception perturbations
increase, impacting the performance of the RL.

Finally, Figure 9 reports on the left y-axis the simulation
time required by the RL training for each AirSim acceleration
factor (x-axis). On the right x-axis is reported the effective
speed-up measured w.r.t. the real-time training time. With
different colours, we account for the time spent in the RL
training in performing the UAV agent in simulation, the policy
neural network (πθ) inference (choice of the following action),
and image pre-processing to compute the DVS image. From it,
we can notice that in real-time, the training time is dominated
by the simulation time, which gets reduced by the AirSim
acceleration factor. However, when comparing the effective
speed-up with the one previously obtained with the rendering
disabled (Figure 6) we can recognize a significant drop in the
scalability. Indeed, with the rendering disabled, the effective
speed-up for the TCSC was 50x. For a 100x AirSim accel-
eration factor (ClockSpeed) in the RL training (w. rendering
enabled), we achieve for the same AirSim acceleration factor a
15.4x of effective speed-up. For the other AirSim acceleration
factors, when considering only the simulation time, we obtain
4x speed-up with ClockSpeed set to 5x and 6.4x speed-up with
10x. At 50x ClockSpeed the achievable acceleration saturates
to 14.8x of speed-up.

We can conclude that thanks to the proposed TCSC ap-
proach, the training time of one week has been reduced to two
days (3.6x with ClockSpeed = 5) or one day and a half (5.2x
with ClockSpeed = 10) without impairing the accuracy of the
trained policy. In contrast, we empirically demonstrated that
theefault ADSC does not allows performing an RL training
with accelerated simulation. ClockSpeed values of 50x and
100x do not equal real-time but still achieve excellent results.

V. CONCLUSIONS

In this work, we described a method to speed-up the training
of UAV agents trained in RL by reducing the simulation time.
We refer to this method as a Time-Controlled Simulation
Command (TCSC) in opposition to the AirSim Default Syn-
chronous Command (ADSC). At the same time, we mitigate
the issues related to the simulation acceleration. The proposed
TCSC mitigates the error on the trajectories of UAV agents

in accelerated simulation up to 65x diverging within 10 %
compared to those computed in real-time. To validate the
TCSC on RL algorithms, we replicated the work done by [13].
The designated task involves avoiding obstacles in a 150m lane
through the use of camera images. The acceleration of the
simulation generates perturbations in the camera images. We
mitigated this noise by introducing a method based on image
brightness. We performed accelerated training with TCSC and
ADCS, comparing them in 100 games inferences on real-time
simulations. Training with TCSC on accelerated simulation up
to 6.4x has the same UAV success ratio of the inference with
training performed in real-time. By accelerating the simulation
to 4x in training, we have improved the UAV success ratio of
the inference with training performed in real-time. Training
with ClockSpeed of 50x and 100x achieved effective speed-
up of 14.8x and 15.4x and replicated more than 62% of the
UAV success ratio in real-time. Accelerated simulation training
with ADSC failed to complete games in real-time inference.
With TCSC, a training that in real-time simulation requires
one week of simulations has been replicated in less than two
days.
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