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Abstract—Missing values is an annoying, but common, artifact
of many real-world data sets. The most convenient solution is to
simply discard the variables with missing values. This is, however,
not a risk-free operation, as it may entail the elimination of
useful information, while under certain circumstances ignoring
missing data may even introduce bias in downstream statistical
inferences. A more statistically valid approach is to employ
multiple imputation to impute plausible values at locations
where values are missing. This paper provides an experimental
comparison of some multiple imputation methods from the R
package mice on two real-world data sets. Our analysis suggests
some interesting hypotheses, e.g., that the absolute number of
missing values is of more profound influence on the performance
of imputation methods than the relative number of missing
values. From the analysis, we draw some guidelines for data
analysts who intend to impute missing values. Our work is also of
particular relevance for statisticians, as most statistical analyses
require complete data.

Index Terms—multiple imputation, interval score, R package
mice.

I. INTRODUCTION

A. Background on Imputation

Missing data are common in real-world applications, such as
in large-scale clinical trials [1] and in temporal climate time
series [2]. It is considered good practice to investigate the
mechanism causing missing data before any analysis on the
data set is performed. That mechanism may depend neither
on the observed data nor on the missing data, in which
case the data are said to be Missing Completely at Random
(MCAR) [3]. The incomplete data sample is then likely still
representative of the population, meaning that there are no
systematic differences between the missing and the observed
data values [4]. If the missing mechanism only depends on the
observed data, then the missing data are Missing At Random
(MAR), which allows prediction of the missing values based
on the complete subset [3]. If the mechanism depends on
the missing data, and this dependency remains even given
the observed data, then data are classified as Missing Not At
Random (MNAR) [5].

The importance of identifying the missing data mechanism
lies in its relevance for appropriately handling missing data.
If the data are MCAR, then one can employ a missing
data ignoring technique [6], given the observation that the
complete subset is representative of the population. In contrast,
when data are missing systematically, improper handling can

introduce bias. For example, if women who earn a high salary
are more likely to skip a survey question about income than
are men who earn a high salary, then ignoring the missing data
will artificially inflate male salaries relative to female salaries
[7]. The widespread solution in such cases is missing data
imputation.

B. Use of Multiple Imputation

Multiple Imputation (MI) is an imputation methodology that
proceeds with replicating the incomplete data set multiple
times and replacing the missing data in each replicate with
plausible values drawn from an imputation model [8]. The
statistical analysis of interest is then performed on each
completed data set separately. MI is often preferred over single
imputation, as it properly accounts for the uncertainty in the
imputed values [7]. In particular, MI allows to construct con-
fidence intervals around the imputed values. These confidence
intervals may then be exploited in a subsequent analysis of
interest to reflect uncertainty in the outcomes of the analysis.
Given this feature of MI, it is no surprise that this technique
has gained popularity as a powerful statistical tool for handling
missing data [9], and that its use is frequently recommended
by journal reviewers whenever missingness is present [10].

C. Outline of the Paper

This paper compares some MI methods from the R package
mice. The philosophy behind the mice methodology is that
multiple imputation is best done as a sequence of small steps,
each of which may require diagnostic checking [11]. The
R package mice is very convenient, in particular because
it implements a lot of MI methods, and changing between
methods essentially requires only to adjust the parameter
’method’. The results that are described below may equally
well apply to MI methods from other software packages. The
imputation methods are applied on five real-world time series
from economics that are highly complex, each containing a
very large number of missing values, and on one publicly
available benchmark data set (cf. Section II). The selected
imputation methods are outlined in Section III. It is, obviously,
of vital importance to employ an imputation method that is
accurate, since the accuracy of the imputed values may have
a severe effect on any downstream task. Yet, practitioners
frequently overlook that it is of almost equal importance to
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consider the appropriateness of the resulting confidence inter-
vals for the imputed values. Very wide confidence intervals
are evidently undesired, but the same applies to very small
confidence intervals if the correct value is mostly outside of
the interval. Therefore, the selected imputation methods are
not only compared in terms of accuracy, but also in terms of
the resulting confidence intervals, which goes beyond most
existing experimental work (cf. Section IV-A). Experimental
results are described in Section IV.

II. DATA SETS

A. Financial ratios

In the first experiment, we consider five financial ratios over
time, which will be used in a later stage to predict bankruptcy
in a recently granted project. The ratios were collected from
the Bel-First Finance database, which contains extensive and
highly detailed financial information on companies based in
Belgium and Luxembourg [12]. The data set has previously
been used by colleagues from Ghent University to predict
bankruptcy using a Markov model, where imputation was
performed by a simple mean method [13].

After consultation with domain experts from economics,
it was internally agreed to restrict attention to five financial
ratios that are considered most predictive for bankruptcy. An
overview of these five ratios is provided in Table I (for the
definition of the selected ratios, we refer to the aforementioned
paper). Each financial ratio is a time series from 2010 until
2019, and data were collected for about 1 million companies.
The table shows the percentage of missing values per ratio.
It is observed that the five data sets are highly complex in
terms of missingness, with over half of the values missing.
Ratio 5 is an extreme case, with 97% of the values missing.
Yet, given the very large number of companies and the fact
that there are ten time points, even 3% non-missingness (as
applies to ratio 5) still corresponds to about 300 000 non-
missing values. This paper thus considers the very interesting
research question whether multiple imputation methods can
handle data sets where missingness in relative terms is very
large, but where the amount of non-missing values in absolute
terms is still very high. As an illustration of the distribution
of missing values, Fig. 1 shows which time points are missing
for ratio 3 for the first 5000 companies.

TABLE I
EUROPEAN FINANCIAL RATIOS FROM THE BELFIRST DATABASE USED IN

THE CASE STUDY

Ratio index Description % missing values
Ratio 1 Return on total assets 59%
Ratio 2 Interest cover 63%
Ratio 3 Solvency ratio 59%
Ratio 4 Liquidity ratio 61%
Ratio 5 Operating revenue per employee 97%

To gain some further insight into the characteristics of
the financial ratios, we computed the correlation between
consecutive time points, which turned out to be rather constant

Fig. 1. Missing values for ratio 3 for the first 5000 companies

over time per ratio. Table II contains the average correlation
between consecutive time points for all financial ratios. For the
first three ratios this correlation is low, while the other ratios
display a very high correlation. Since the relative number of
missing values for the first four ratios is similar, as shown
in Table I, we expect imputation values more accurate for
the fourth ratio, given the very high correlation between
consecutive time points. For the last ratio, there is also a
very high correlation between consecutive time points, but the
relative number of missing values is also extremely large. It
will be part of the experimental analysis to identify which of
both counteracting features has the greatest influence.

TABLE II
AVERAGE CORRELATION BETWEEN CONSECUTIVE TIME POINTS

Correlation
Ratio 1 0.35
Ratio 2 0.5
Ratio 3 0.6
Ratio 4 0.86
Ratio 5 0.87

The correlation between the ratios is shown in Table III.
The table clearly shows that the correlation between the ratios
is low to very low.

TABLE III
CORRELATION BETWEEN THE RATIOS

Ratio 2 Ratio3 Ratio 4 Ratio 5
Ratio 1 0.23 0.04 0.19 0.01
Ratio 2 0.12 0.20 0.01
Ratio 3 0.40 0
Ratio 4 -0.02

The R method mcar_test was applied to verify if the
data set is MCAR. The results show that none of the ratios
is MCAR, with extremely small p-values. Testing for MAR
was performed by applying logistic regression, where for a
given time point all missing values are set to 1 and all non-
missing values to 0, and predicting these values with the other
time points as input. The coefficients of the logistic regression
model turned out to be statistically very significant, implying
that the data set is at least MAR. Testing for MNAR is,
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however, not feasible, since this would require to know the
missing values.

B. HTRU2 data set

As a second experiment, we also applied the selected
imputation methods on the High Time Resolution Universe
(HTRU2) data set from the University of California Irvine
(UCI) Machine Learning Repository [14], which describes a
sample of pulsar candidates collected during the High Time
Resolution Universe Survey [15]. It contains 17 898 instances
and 9 attributes. The fact that there are no missing values
implies that this data set may be used as some sort of
control data set. For example, if the considered imputation
methods turn out to perform poorly on the financial ratios,
while accuracy is high on the HTRU2 data set, it may be
hypothesized that the relative number of missing values has
a severe influence on the general performance of imputation
methods. Table IV shows the pairwise correlations between the
variables of the HTRU2 data set. It is seen that the correlations
vary significantly, from very small correlations (e.g., between
the second and the seventh variable) to very large correlations
(in particular, between the third and the fourth variable).

TABLE IV
CORRELATION BETWEEN THE VARIABLES OF THE HTRU2 DATA SET

2 3 4 5 6 7 8 9
1 0.55 -0.87 -0.74 -0.30 -0.31 0.23 0.14 -0.67
2 -0.52 -0.54 0.01 -0.05 0.03 0.03 -0.36
3 0.95 0.41 0.43 -0.34 -0.21 0.79
4 0.41 0.41 -0.33 -0.20 0.71
5 0.80 -0.62 -0.35 0.40
6 -0.81 -0.58 0.49
7 0.92 -0.39
8 -0.26

C. Introducing missing values

Obviously, evaluating imputation methods requires a ground
truth. Therefore, a predefined percentage of non-missing val-
ues was randomly set to missing. For the first experiment, con-
cerning the five financial ratios, this percentage was chosen as
2%. In the second experiment, involving the HTRU2 data set,
a varying number of percentages was applied, ranging from
0.5% to 20%, in order to evaluate the impact of increasing
missingness on the performance of the MI methods.

Each of the considered MI methods was applied 10 times,
thus resulting in 10 imputed data sets for each chosen per-
centage of introduced missing values. To reduce the effect of
random influences, in particular to avoid that the performance
of the imputation methods is severely affected by an unfor-
tunate random selection of non-missing values that are set to
missing, the aforementioned procedure is repeated three times.
We refer to these repetitions as “sub-experiments”, reserving
the term “experiment” to refer to either the financial ratios
data set or the HTRU2 data set.

Imputation was performed on all missing values, but eval-
uation was restricted to the fictitious missing values.

III. IMPUTATION METHODS

We selected five MI methods from the R package mice:
• mean: Imputes the arithmetic mean of the observed data.

This is a very simple and fast method, but imputing the
mean of a variable is almost never appropriate [11].

• norm: Calculates imputations for missing data by
Bayesian linear regression [16].

• lasso.norm: Imputes missing normal data using lasso
linear regression with bootstrap [17] [18].

• lasso.select.norm: Imputes missing data using
Bayesian linear regression following a preprocessing
lasso variable selection step [17] [18].

• rf: Imputes missing data using random forests [19].
The selection includes simple methods, such as mean, as

well as much more advanced methods, such as rf. The
methods were selected in terms of applicability and popularity.
Linear regression methods, such as norm.predict, turned
out to fail on the given data sets, due to high correlation
between certain variables. Furthermore, we restricted attention
to the best known methods, which is why methods such as
21only.mean and polr were not considered.

The statement that the mean method is very simple lies,
in particular, in the fact that it does not take the correlation
between the variables into account, while the other methods
do. Methods relying on random forests are especially recom-
mended when the variables have high inter-correlations [20].

IV. RESULTS

A. Evaluation measures
The five MI methods were evaluated using two evaluation

measures that have also been used in our previous work [21].
Denote the values that were set to missing by νi and the
corresponding imputed values for the jth imputed data set by
ν̂ij , j = 1, . . . , 10. Furthermore, let ν̂i represent the average
of the values ν̂ij over the 10 imputed data sets.

For each imputed data set we compute the Average Relative
Difference (ARD):

ARD =
1

N

N∑
i=1

∣∣∣ ν̂ij − νi
νi

∣∣∣ (1)

where N refers to the number of non-missing values that
were set to missing (cf. Section II). These values are then
averaged over the 10 imputed data sets. The range of the ARD
is [0,+∞).

The ARD measure evaluates the quality of the imputed
values. It is, however, frequently overlooked in the literature to
also evaluate the confidence intervals that result from applying
multiple imputation. Given imputed values ν̂ij , j = 1, . . . , 10,
we first compute the average value and the sample variance:

m(ν̂i) =
1

10

10∑
j=1

ν̂ij (2)

v(ν̂i) =
1

9

10∑
j=1

(
ν̂i − ν̂ij

)2
(3)
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A 95% confidence interval for the considered data point can
then be constructed as

[m(ν̂i)− 2
√
v(ν̂i),m(ν̂i) + 2

√
v(ν̂i)]

Very wide confidence intervals are undesired, given that they
represent large uncertainty about the true value. But very
small confidence intervals are also undesired if the true value
is frequently found outside this interval. A useful evaluation
measure for confidence intervals is the interval score, which
rewards narrow intervals, while penalizing lack of coverage
[22]. For a (1−α)% confidence interval [l, u], with α = 0.05
chosen in this paper, it is computed as:

IS = (u− l) + 2

α
(l − ν)1{ν<l} +

2

α
(ν − u)1{ν>u}

where 1{expr} refers to the indicator function, being 1 if
expression expr holds and 0 otherwise, and where ν refers
to the true value. We then define the Average Interval Score,
denoted AIS, as the average interval score over all data points
that were set to missing, and this for each sub-experiment. The
lower the value of AIS, the higher the quality of the confidence
interval.

B. Description of the results

1) Experiment 1: Results are shown in Tables V to VII,
which present the average ARD for the three sub-experiments
of the first experiment, i.e. for the imputed data sets for the
financial ratios, where each sub-experiment corresponds to a
different random selection of 2% non-missing values that are
deliberately set to missing. The value of the best performing
MI method is displayed in bold for each financial ratio. The
relative performance of the MI methods is consistent over the
financial ratios, with rf being the best method for the last four
ratios. Surprisingly, the very simple mean method outperforms
the other methods for the first ratio, its average ARD value
being even several times smaller than the corresponding value
for the other methods.

Another observation is that all average ARD values in the
first sub-experiment are much worse than in the other two
sub-experiments, at least for the first four ratios. This is also
illustrated by Fig. 2, which provides a comparison of the
average ARD values for the rf method between the sub-
experiments. Given that the percentage of missing values is
the same for all sub-experiments, this shows that there might
be a severe influence of the specific variables that have missing
values and/or that the values at the non-missing locations
affect performance (since, obviously, the non-missing values
also vary over the sub-experiments). Table VIII provides, for
completeness, the average ARD values over the three sub-
experiments. The ARD values, which represent a percentage
error, for the first sub-experiment are so large that they are
clearly of no use. For ratio 2, the rf MI method even generates
imputed values that deviate 1 300% from the real values.
In such a case, imputation may even adversely affect any
downstream analysis, as in such a case the imputed values are

outliers that may distort statistical analyses and violate their
assumptions. Results are better for the other sub-experiments,
except for ratio 5, for which the errors in imputation are
prohibitively large. It is reminded that this ratio comes with an
extremely high relative number of missing values (cf. Section
II-A), which might be a plausible explanation for the fact that
none of the imputation methods is able to produce accurate
values.

It is also noticed that results for the fourth ratio are much
better than for the other ratios, confirming the hypothesis that
the very high serial correlation for this ratio translates into
more accurate imputed values (cf. Section II-A).

Tables IX to XI show the AIS for the three sub-experiments
of the first experiment. The method rf clearly outperforms all
other methods, and this for all financial ratios. The discrepancy
in performance of the MI methods between the first sub-
experiment and the other sub-experiments that was observed
for the ARD, is also apparent for the AIS. Compared to the
values in the second and the third sub-experiment, the values in
the first sub-experiment are extremely large, making it highly
unlikely that the 95% confidence intervals have any relevance
in the first sub-experiment. The extreme AIS values in this
case suggest that the true data values either lie far outside the
corresponding confidence interval and/or that the confidence
interval is so wide that it is of no practical use. The AIS
values for ratio 5 confirm that imputation for this ratio is a
meaningless task.

2) Experiment 2: Results are shown in Tables XIII to XV,
which present the average ARD for the three sub-experiments
of the second experiment, i.e. for the imputed values for the
HTRU2 data set, where an increasing number of non-missing
values has been set to missing. The leftmost column of each
table contains the percentage of missing values.

The rf imputation method clearly outperforms the other
methods, and this for all ratios and independent of the percent-
age of missing values. Remarkably, results do not necessarily
improve as fewer values are missing. This would be an
intuitive hypothesis, as a larger amount of non-missing values
represents more information that may be used to estimate
plausible imputed values. That this hypothesis does not hold
is obvious from, e.g., the second sub-experiment, where the
average ARD is 1.10 for 5% missing values and 0.96 for
20% missing values when rf was applied. This reinforces
the above hypothesis that there might be a severe influence of
the specific variables that have missing values and/or that the
values at the non-missing locations affect performance. Yet, it
is striking that this effect outweighs the fact that there are four
times more missing values in the 20% case. The result is also
apparent by comparison between experiment 1 and experiment
2. Although the average ARD over the three sub-experiments
is much worse in experiment 1 compared to experiment 2
for rf (cf. Tables VIII and XVI), this is mainly due to the
very poor results in the first sub-experiment of experiment 1.
Ignoring this particularly unfortunate sub-experiment provides
a more nuanced perspective. For example, compare the second
sub-experiment of experiment 1 (cf. Table VI) to the second
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sub-experiment of experiment 2 (cf. Table XIV). For this sub-
experiment it is observed that rf performs better on the first
four ratios in experiment 1 than on any of the data sets in
experiment 2. This is a remarkable observation, since it means,
in particular, that imputed values are more accurate for the
financial ratios with more than 50% of the data values missing
than for the HTRU2 data set with 0.5% missing values. This
indicates that the performance of rf is not critically dependent
on the relative number of missing values.

Another conclusion is that the ARD values are surprisingly
high. The lowest ARD is obtained in the third sub-experiment
with an ARD value of 0.56 for rf for the 0.5% case. So,
even though there are very few missing values, the average
percentage error is 56%. This result emphasizes the importance
of using multiple imputation, since it would be unwise to use
the imputed values without taking into account the uncertainty
in accuracy. Of course, this only works if the confidence
intervals themselves are an accurate representation of this
uncertainty, which is why the interval score is an essential
validation measure in imputation tasks.

Tables XVII to XIX show that rf also performs best in
terms of the AIS. Furthermore, the AIS does generally worsen
with the increase in the number of missing values for this
method. Such a trend was much less obvious for the ARD.
Thus although the accuracy of the imputed values might show
a rather stable or fluctuating pattern as the number of missing
values is increased, the uncertainty related to the accuracy of
imputed values increases. As a summary, Table XX shows the
average AIS over the three sub-experiments.

TABLE V
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): EXPERIMENT 1,

SUB-EXPERIMENT 1

mean norm rf l.norm l.s.norm
Ratio 1 2.06 38.86 8.87 39.01 38.96
Ratio 2 32.58 74.32 13.00 73.58 74.21
Ratio 3 13.49 20.85 3.02 20.87 20.83
Ratio 4 4.79 2.23 1.80 2.19 2.26
Ratio 5 11.73 48.11 4.78 44.21 48.17

TABLE VI
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): EXPERIMENT 1,

SUB-EXPERIMENT 2

mean norm rf l.norm l.s.norm
Ratio 1 0.09 1.73 0.44 1.71 1.70
Ratio 2 1.70 3.90 0.54 3.86 3.83
Ratio 3 0.69 1.08 0.17 1.08 1.07
Ratio 4 0.27 0.12 0.08 0.11 0.12
Ratio 5 7.78 31.47 3.57 28.43 31.22

V. CONCLUSION

This paper describes experimental results related to the
application of several multiple imputation methods from the
R package mice on two data sets with different features. The
first data set consists of five financial ratios over time, with

TABLE VII
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): EXPERIMENT 1,

SUB-EXPERIMENT 3

mean norm rf l.norm l.s.norm
Ratio 1 0.11 1.98 0.41 1.96 1.95
Ratio 2 1.67 3.90 0.60 3.82 3.89
Ratio 3 0.64 1.04 0.19 1.02 1.03
Ratio 4 0.24 0.13 0.12 0.13 0.13
Ratio 5 7.86 40.55 4.33 35.64 40.64

TABLE VIII
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): EXPERIMENT 1,

AVERAGE OVER SUB-EXPERIMENTS

mean norm rf l.norm l.s.norm
Ratio 1 0.75 14.19 3.24 14.23 14.20
Ratio 2 11.98 27.37 4.71 27.09 27.31
Ratio 3 4.94 7.66 1.13 7.66 7.64
Ratio 4 1.77 0.83 0.67 0.81 0.83
Ratio 5 9.12 40.04 4.23 36.09 40.01

Ratio 1 Ratio 2 Ratio 3 Ratio 4 Ratio 5
0

5

10

A
R

D

Sub-experiment 1
Sub-experiment 2
Sub-experiment 3

Fig. 2. Comparison of ARD for rf between the sub-experiments of the first
experiment

TABLE IX
AVERAGE INTERVAL SCORE (AIS): EXPERIMENT 1, SUB-EXPERIMENT 1

mean norm rf l.norm l.s.norm
Ratio 1 794.83 342.44 239.08 342.45 342.28
Ratio 2 1977.51 646.24 458.91 646.89 648.45
Ratio 3 158.03 47.85 28.38 47.82 47.82
Ratio 4 1206.81 116.77 98.35 117.24 117.05
Ratio 5 51076.13 25009.93 11109.64 23059.73 24990.42
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TABLE X
AVERAGE INTERVAL SCORE (AIS): EXPERIMENT 1, SUB-EXPERIMENT 2

mean norm rf l.norm l.s.norm
Ratio 1 39.25 16.86 11.45 16.69 16.85
Ratio 2 106.75 34.33 23.72 33.40 34.06
Ratio 3 7.71 2.34 1.42 2.34 2.33
Ratio 4 61.72 5.68 4.82 5.77 5.70
Ratio 5 34108 17001 7948 15547 17012

TABLE XI
AVERAGE INTERVAL SCORE (AIS): EXPERIMENT 1, SUB-EXPERIMENT 3

mean norm rf l.norm l.s.norm
Ratio 1 40.42 17.83 12.43 17.61 17.66
Ratio 2 104.88 33.72 23.40 33.95 34.05
Ratio 3 7.50 2.28 1.33 2.29 2.27
Ratio 4 60.78 5.90 5.09 5.86 5.84
Ratio 5 34198.34 19901.34 7937.03 17767.43 19868.10

TABLE XII
AVERAGE INTERVAL SCORE (AIS): EXPERIMENT 1, AVERAGE OVER

SUB-EXPERIMENTS

mean norm rf l.norm l.s.norm
Ratio 1 291.50 125.71 87.65 125.58 125.59
Ratio 2 729.71 238.10 168.68 238.08 238.85
Ratio 3 57.75 17.49 10.38 17.48 17.47
Ratio 4 443.10 42.78 36.09 42.95 42.86
Ratio 5 39794.32 20637.30 8998.09 18791.31 20623.46

TABLE XIII
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): EXPERIMENT 1

mean norm rf l.norm l.s.norm
0.5% 6.10 3.25 0.65 3.24 3.31
1% 6.40 3.49 0.45 3.26 3.34
5% 6.96 4.39 0.81 4.17 4.17
10% 14.95 5.73 0.86 5.61 5.59
15% 10.48 5.40 0.97 5.44 5.21
20% 8.64 5.43 0.85 5.30 5.36

TABLE XIV
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): EXPERIMENT 2

mean norm rf l.norm l.s.norm
0.5% 8.02 4.02 1.10 3.81 3.77
1% 8.00 4.19 0.62 3.72 3.71
5% 22.90 14.12 2.32 14.78 17.19
10% 8.06 4.51 0.76 4.42 4.32
15% 15.28 11.03 1.69 10.37 9.49
20% 11.59 5.59 0.96 5.62 5.62

TABLE XV
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): EXPERIMENT 3

mean norm rf l.norm l.s.norm
0.5% 4.94 2.60 0.56 2.67 2.77
1% 7.90 3.78 0.68 3.72 3.77
5% 9.13 4.82 0.84 4.95 4.57
10% 9.36 5.22 0.88 5.67 6.29
15% 19.82 29.81 1.95 19.83 20.81
20% 14.15 10.30 1.35 10.66 11.12

TABLE XVI
MEAN OF AVERAGE RELATIVE DIFFERENCE (ARD): AVERAGE OVER

EXPERIMENTS

mean norm rf l.norm l.s.norm
0.5% 6.35 3.29 0.77 3.24 3.28
1% 7.43 3.82 0.59 3.56 3.61
5% 13.00 7.78 1.32 7.97 8.64

10% 10.79 5.15 0.83 5.23 5.40
15% 15.19 15.41 1.54 11.88 11.84
20% 11.46 7.10 1.05 7.19 7.37

TABLE XVII
AVERAGE INTERVAL SCORE (AIS): EXPERIMENT 1

mean norm rf l.norm l.s.norm
0.5% 602.37 43.20 12.29 39.77 40.12
1% 539.44 42.33 12.45 41.10 42.55
5% 578.09 44.64 14.00 43.29 44.87

10% 587.01 49.05 14.43 49.22 49.08
15% 599.02 55.21 16.81 54.46 55.32
20% 593.21 60.14 17.89 61.69 60.29

TABLE XVIII
AVERAGE INTERVAL SCORE (AIS): EXPERIMENT 2

mean norm rf l.norm l.s.norm
0.5% 603.13 42.88 12.02 42.37 48.59
1% 568.52 47.42 12.65 48.32 45.50
5% 601.17 46.52 13.93 45.87 46.71

10% 601.11 50.32 15.53 51.22 51.36
15% 576.74 53.31 15.65 53.75 53.46
20% 598.30 60.48 18.04 60.86 60.61

TABLE XIX
AVERAGE INTERVAL SCORE (AIS): EXPERIMENT 3

mean norm rf l.norm l.s.norm
0.5% 640.41 55.07 13.51 53.56 52.20
1% 550.80 39.32 12.44 38.39 37.48
5% 564.94 43.22 13.22 43.91 43.39

10% 592.26 51.37 14.66 50.90 51.42
15% 602.88 56.76 16.49 57.01 57.48
20% 582.27 56.58 17.47 56.40 57.27

TABLE XX
AVERAGE INTERVAL SCORE (AIS): AVERAGE OVER EXPERIMENTS

mean norm rf l.norm l.s.norm
0.5% 615.30 47.05 12.60 45.23 46.97
1% 552.92 43.03 12.51 42.60 41.84
5% 581.40 44.79 13.72 44.36 44.99

10% 593.46 50.25 14.87 50.45 50.62
15% 592.88 55.09 16.32 55.07 55.42
20% 591.26 59.07 17.80 59.65 59.39
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a very high number of missing values in relative terms. The
second data set is HTRU2, a publicly available benchmark
data set where all data values are non-missing. For the first
data set, a certain percentage of the number of non-missing
values is deliberately set to missing in order to evaluate five
selected multiple imputation methods. For the HTRU2 data
set, an increasing number of non-missing values is set to zero
to allow an analysis of the influence of the relative number of
missing values on the performance of the imputation methods.

A number of interesting results can be deduced from the
experimental analysis:
• The rf method, which relies on random forests, is

superior to the other imputation methods, both in terms
of average relative difference as well as with respect to
the average interval score.

• For a fixed number of missing and non-missing values for
a given data set, the performance of imputation methods
may vary significantly according to the specific data
points that are missing.

• The relative number of missing values might not be a
determining factor for the performance of imputation
methods, except if that relative number is extremely
high. Performance of all imputation methods with respect
to financial ratio 5, with 97% of its values missing,
was observed to be disastrous. In general, however, the
absolute number of non-missing values is probably of
more significance for the accuracy of the imputed values.

• It is of crucial importance to perform a preliminary impu-
tation analysis, where non-missing values are deliberately
set to missing, to check the acceptability of the imputed
values. The reason is that the scenario where imputation
introduces outliers cannot be excluded a priori.

• If the preliminary analysis indicates that a chosen mul-
tiple imputation method is feasible for the data set at
hand, meaning that ARD and AIS values are below pre-
defined thresholds, the confidence interval should always
be computed and taken into account. Only in this way
the multiple imputation methodology is fully exploited,
by providing a measure of uncertainty about the accuracy
of the imputed values.

These results may act as guidelines for practitioners, al-
though future experimental work is needed to verify the
generality of the above working hypotheses.
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