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Abstract— Modelling of complex dynamic systems like 
pandemic outbreaks or traffic flows in cities on macro-level is 
difficult due to a high variance on entity micro-level and 
unknown or incomplete interaction models. Agent-based and 
Cellular Automata (CA) simulations based on micro-level 
modelling can be used to investigate the outcome of system 
observables in a sandbox. For a reasonable accuracy a high 
number of agents, sufficient behaviour variance, high 
computational times, and calibrated model parameters are 
required. Surrogate predictive modelling of the multi-agent 
system can be used to replace time-consuming simulations. In 
this work we present a hybrid approach combining Agent-
based Simulation, probabilistic contextual CA, and Machine 
Learning (ML). We investigate the replacement of the ABS-CA 
by surrogate ML models trained by simulation data. The 
predictive model is state-based and applied to time-series data 
to predict future development of aggregated system 
observables. We discuss and show the negative impact of 
uncalibrated real-world sensor data on time-series prediction 
and an improvement by surrogate modelling of simulation. A 
use-case of pandemic simulation using real-world statistical 
data is used to investigate and evaluate the suitability and 
accuracy of the proposed methods and to show the high 
sensitivity of surrogate modelling on distorted and biased data.  

Keywords- Large-scale simulation; Multi-Agent Systems; 
Cellular Automata; Surrotgae Machine Learning; Data 
Augmentation. 

I.  INTRODUCTION 

The typical goal of a simulation is the prediction of the 
behaviour of a complex system by aggregate observables for 
a particular situation. A simulation can be composed of a set 
of interacting entities on micro-level, like humans in social 
sciences, to investigate and predict the outcome of system-
level aggregate observables. Machine Learning as well as 
simulation are used to predict the response of a system to a 
stimulus that is hard to be studied in the real world and to get 
macro-level from micro-level observables (aggregates). Both 
techniques use data analysis and mathematical modelling [1]. 
In most cases a simulation is composed from elementary 
cells (holonomic approach). Each cell is defined by a micro-
level model and by a set of interaction functions. Agent-
based modelling (ABM) and simulation (ABS), and Cellular 
Automata (CA) are prominent examples of this 
decomposition approach for large-scale dynamic systems. 
CA can be considered as a simplified sub-class of 
ABM/ABS with strictly bounded interaction ranges, better 

suited and scaling for large-scale problems with a very high 
number of entities typically required to strength statistical 
quality. A simulation model is typically a simplification and 
abstraction of the complex real world that is characterised by 
the behaviour modelling of single entities (core cell elements 
of the simulation, e.g., an agent or a cell), the interaction 
between the elements, the number of elements relative to real 
world systems, and the variance of behaviour and interaction 
models. Mostly only an ensemble averaged model is used 
that is derived from real world observations and sensor data; 
individualism cannot be covered properly. 

The combination of Machine Learning and simulation 
can improve model and simulation quality, i.e., there is 
according to: 

1. Machine Learning assisted simulation improving 
the simulation model and quality [1]; 

2. Simulation assisted Machine Learning improving 
the prediction or classification model [1]; 

3. Emulation of the multi-agent behaviour model by 
an ML derived macro model (surrogate modelling) 
[2][3]; 

4. Model calibration using ML [1]. 

The central concept and novelty of this work is a ML-
based ensemble estimator for aggregate observables learned 
from an incremental hybrid and domain-hierarchical 
MAS/CA simulation with the aim to improve real-word 
system time-series data prediction. The CA extension was 
chosen for efficiency and scaling reasons. A tight coupling of 
the simulation to real-world entities is an additional feature 
that ensures real-time updates of the simulation and 
incremental calibration of the simulation at simulation time, 
supporting crowd sensing and digital twin methodologies 
(but not stressed in this work). The work utilises and 
combines: 

1. Hierarchical MAS-CA simulation incorporating 
real-world data for the parametrisation of the 
simulation world and agent modelling (digital twin 
concept) to predict future developments of system 
state observables from past data; 

2. Hierarchical domain-specific modelling and 
decomposition (with respect to longitudinal and 
spatial scale); 
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3. Predictive modelling of time-series data using 
state-based ML models trained on real-world and 
simulation data; 

The major issue with real-world coupled simulations and 
predictive machine modelling from simulation is the 
discrepancy of sensor data (input and output observables) 
collected in real and simulation domains. Typically, the 
simulation is almost inaccurate (and wrong) with respect to 
real world, but the sensor measuring is accurate and exact 
(all population entities can be accessed and measured 
directly). In contrast, to the real world domain where 
measurements are inaccurate and in many cases biased and 
distorted (or at least not representative), especially on the 
longitudinal scale. For example, considering traffic 
simulation, the sensors (counting and tracing traffic flows) 
are relatively accurate and representative in both domains. 
But in contrast, observations and simulation of pandemic 
situations disperse significantly in real and virtual world 
domains. Therefore, we have chosen the COVID19 
pandemic use-case to demonstrate the issues with real-world 
coupled and data-based simulation and the deployment of 
predictive machine models derived from inaccurate and 
biased data. 

The surrogate ML models should be able to predict future 
developments of aggregated macro-level observables from 
past data, e.g., the accumulative incidence rate of a pandemic 
situation. ML modelling is already applied in social science 
and ecological modelling [4]. The application of such 
learned surrogate models on inaccurate and distorted real-
world sensor data will still result in inaccurate prediction 
results. To solve this issue, a sensor correction and 
calibration model must be derived by using correct 
simulation sensor data that is acquired by real-world 
measuring principles resulting in strongly biased and 
distorted data. To overcome the computational scaling 
problem due to a required high number of agents (beyond 
100000) a hierarchical hybrid model of agents and 
contextual cellular automata simulating a lattice gas model is 
proposed. Fine-grained simulation is performed by spatial 
and temporal partitioning adapting models and simulations in 
consecutive time intervals based on changing environmental 
parameter space. As well simulation as prediction models 
can be updated incrementally by new measured data 
(longitudinal extension), e.g., by agent-based crowd sensing 
[5]. The following sections introduce the hybrid and 
hierarchical modelling and simulation model, showing 
results of time-series prediction on real-world data, and 
finally showing in comparison prelimenary results of time-
series prediction from simulation data. 

II. THE HYBRID AND HIERARCHICAL CONCEPT 

The hybrid and hierarchical methodology addressed in 
this work combines MAS-ABS with supervised ML, and the 
ABS combines two levels of agent behaviour model 

complexity, state-based reactive agents with complex long-
range interaction and CA cells with simple short-range 
interaction.  

The CA is a sub-domain model of the agent model. The 
simulation framework consists of an agent simulator [6] that 
is capable to process computational and physical agents 
(first-level class agents) as well as CA worlds seamlessly. 
The domain-hierarchical MAS-CA modelling decomposes 
complex real worlds in simplified organised cell networks on 
micro-level, the ML methods are used to estimate system-
level (ensemble) observables from sensors.  

Computational agents are mobile software that can 
migrate between real- and virtual worlds and they are used 
for real-world data collection (including mobile crowd 
sensing) and for creating digital twins in the simulation, 
whereas physical agents are pure simulation objects that 
represent physical entities in the simulation world. To reflect 
spatial variance, the simulation world ॺ is partitioned into 
spatial sub-domains ॺ={Sdi}, associated with a MAS. Each 
domain is handled by an agent agdi from the MAS that is a 
spatial and organisational representation of a large set of 
simple agents situated in a simplified CA world. Each CA 
represents a spatial region with a high number of interacting 
entities (e.g., humans). The MAS reflects the coarse-grained, 
the CA the fine-grained simulation model. The simulation 
model is composed basically of mobility, behaviour, and 
interaction of the observed entities. 

First-level domain agents represent larger spatial 
domains (e.g., terrestrial units or entire cities) and interact 
with each other to simulate crowd flows, organisation, and 
networking across spatial domains. Each rectangular CA 
world CW connected to one domain agent consists of cells 
arranged on a regular two-dimensional grid that is partitioned 
into logical sub-domains (regions) ld associated with specific 
interaction behaviour and environmental constraints, e.g., 
living and working areas, CW={ldj}, ldj={cell ∈ Aj}. The 
second-level class cell agents within the CA are modelled by 
a "mobile" data structure bound to one current cell in the CA 
world and processed by a cell activity function. The mobility 
of agents within the CA world is modelled with a 
randomised lattice-gas model by shifting the agent state 
spatially. A CA cell is occupied by one or no agent. Agents 
can access neighbouring cells (Moore neighbourhood) and 
can move to neighbour cells. The hybrid and hierarchical 
architecture is shown in Fig. 1. The main difference between 
first- and second level agents is the behaviour function. First-
level agents bind each their own behaviour function, whereas 
second-level agents are represented by on shared behaviour 
function.  

The aggregated data collected from simulation is used to 
train a surrogate machine model for time-series prediction. A 
state-based Long-Short Term Memory (LSTM) artificial 
neural network architecture was chosen for time-series 
prediction [7]. A LSTM network is able to predict a variable 
x for a future sample point n+Δ with past data {x1,..,xn}.  
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Figure 1.  Hybrid simulation with domain-specific MAS-ABS combined with probabilistic CAs. Each CA (bottom) represents a simulation container with 
simple agents (diamonds) for a spatial domain di controlled by a domain agent (circle). Each CA world is partitioned in logical domains sdj, too (bottom, 
left). Spatial domains are connected by the domain controller agents (middle,left). The LSTM (bottom, right) is trained with simulation data. 

The real-world data is collected remotely by 
computational agents, e.g., performing WEB scraping to get 
environmental state information. 

The next section demonstrates the novel hierarchical 
simulation approach for a pandemic use-case. The 
methodology can also be applied to other fields like traffic 
flow prediction and optimisation, logistic flows, and long-
term prediction with respect to migration and segregation 
effects (social networking). 

III. USE-CASE: PANDEMIC MODELLING AND PREDICTION 

We demonstrate the proposed hybrid and hierarchical 
simulation approach of real-world coupled MAS-CA 
simulation and longitudinal surrogate modelling for the 

forecasting of pandemic situations. Pure CA-based 
approaches were already applied to pandemic simulations 
[8]. This worst-use-case poses a highly unreliable and 
distorted measuring process, varying on longitudinal scale, 
and high dynamics based on micro-scale effects. 

A. Simulation and Surrogate Modelling 

Preliminary experiments were performed to investigate 
the accuracy and generalisation of a domain-specific 
prediction model from real data with a time-series prediction 
of infection observables using an LSTM ANN architecture. 
The input data are weekly infection cases rates of COVID19 
pandemic data base from [9], and the output of this model 
mΔ(t) is the prediction of Δ week ahead infection cases rates 
with respect to spatial domains and population age domains. 
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Each spatial domain is trained with its own model. Models 
are finally exchanged between spatial domains to test 
generalisation capabilities. The input data was used for seed 
conditions of the simulation, too. 

The simulation world consists of 38 domains of territorial 
units (TU) of Germany (shown in Fig. 2) with the simulation 
parameters: Spatial centre location, population statistics, and 
mobility interconnects between neighbouring TUs. The agent 
base model is SIRD (susceptible-infected-recovered-dead) 
population classification. Each spatial domain is represented 
by its own domain model and parameter set and is simulated 
independently by a domain agent associated with Lattice Gas 
Probabilistic and Context-based CA (LG-PCCA), i.e., each 
domain region is a container for statistical moving and 
interacting agents, defined by a set of cross-section 
parameters. Longitudinal day-night cycle simulation is 
performed. The domain agent is responsible for sensor data 
acquisition, monitoring, and inter-domain interaction. The 
CA is partitioned into logical domains, e.g., home, work, 
outside, school, and culture/sports areas. Sub-agents given by 
data structures holding parameter and state variables located 
at cells represent people. Mobility of individuals is given by 
random walk (gas model), directed diffusion (context 
model), a mean velocity, and neighbouring and sub-domain 
constraints. Interaction (infection) is given by a dynamic 
cross-section and accumulator model, i.e., the integral of 
mobility and interaction cross-section. Perception and 
movement of an agent is limited to neighbouring cells 
(Moore neighbourhood); an agent can change it place (cell) 
either my moving to a free neighbour cells or by agent-pair 
swapping. Agent can migrate between different CAs via the 
domain agents, i.e., domains interact with each other by 
crowd flows (holiday, travelling, and business). 

The agent behaviour model covers a wide range of 
behaviour parameter, i.e., age domains (child, youth, middle, 
elder people, etc.), activity domains (children, scholars, 
students, workers, non-workers, retired people), parameter 
sets (social networking factor, risk, mobility rate, protection, 
...), networks (family, temporary groups), infection test 
coverage and strategies. 

Output observables are accumulated monitored infection 
cases counts (with age distribution?) on daily basis 
(simulation) and on weekly basis (rates, real-world data). 
Input sensor variables (for simulation) are population and 
density distribution, age distribution, start infection count, 
social networking parameters, social cluster densities, 
mobility, opening status of domestic and private facilities, 
social restrictions, lethality, mortality, and the infection 
reproduction factor adapting the agent cross section and 
accumulator thresholds. Simulation is synchronised with 
real-world statistical pandemic data (accumulated, 1 week 
period). Agent-based WEB Scraping and Mining is used to 
sense environmental state variables, e.g., closed stores or 
schools, contact limitations. 

Population representation by agents in a CA world is 
controlled by a domain agent. A typical population-agent 
scale ranges from 1:1000 to 1:100 depending on population 
density; if infection probability is low (<0.01), a higher 
density is required.  

 

 
Figure 2.  Simulation world partitioned into 38 TUs (NUTS level 2) 
mapped on 38 CA worlds (left), Cartesian coordinates, not ratio scaled. 
Size of CA grid is related to TU domain size and population density. Each 
CA produces data for surrogate modelling by an LSTM (bottom, right).  

Model calibration is required for the simulation model 
(including time-scale calibration) from real to virtual world, 
and for the surrogate model from virtual to real world. 

B.   Preliminary Results 

1) Real-Data Prediction 
 

Raw real-world data from national RKI data base [9] was 
chosen to perform preliminary tests for predictive time-series 
modelling and simulation and to demonstrate the 
impossibility to predict future developments from past data. 
The data consists of weekly updated pandemic COVID19 
infection cases (positive tests), i.e., infection rates, 
partitioned horizontally in 5 year age ranges, and vertically 
in TUs. The accumulated absolute infection cases, i.e., the 
number of infected persons, cannot be measured accurately 
and is not used here (in contrast to simulation). 

The input sensor variables for the LSTM predictor is the 
infection rate (IR) grouped in four age ranges 〈IR(A00-A09), 
IR(A10-A19), IR(A20-A59), IR(A60-A99)〉. The output prediction 
variables (longitudinal extrapolation) are also the infection 
rates (IR), i.e., 〈IRΔ(A00-A09), IRΔ(A10-A19), IRΔ(A20-A59), 
IRΔ(A60-A99)〉. The LSTM predictor has a layer configuration 
of [4,8,4] with 8 fully connected LSTM cells [10], a sigmoid 
transfer function, trained by single-sequence learning. 
Results of a playback experiment for one TU (Bremen) used 
to train and predict the infection rate development (Δ=4 
weeks) is shown in Fig. 3. 

The entire data set was used for training and prediction 
(playback from start to end). A very high accuracy of 
prediction results were achieved (error below 10%).   
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Figure 3.  Playback of a domain-specific predictive system-level model 
derived from entire data series of longitudinal infection case rate 
development from real-world data (Top) Four week prediction (Δ=4w) for 
TU Bremen with respect to four population age ranges (Bottom) Model 
trained with TU Bremen data and applied to data from TU Koblenz [x: 
week, y: normalised infection case rate numbers, y0: reference data , y: 
predicted]  

 

 
Figure 4.  Future estimation of the same domain-specific predictive 
system-level modelling derived from the half of the data series (cut-off at 
week 40) of longitudinal infection case rate development from real-world 
data (Top) Four week prediction (Δ=4w) for TU Bremen with respect to 
four population age ranges [x: week, y: normalised infection case rate 
numbers, y0: reference data , y: predicted]  

But if a model trained for one domain is applied to data of 
another domain the prediction shows very high prediction 
errors and peaks, shown for the TU Koblenz. This result 
shows the requirement for domain-specific simulation and 
surrogate modelling, and that the surrogate prediction model 
learned some longitudinal data structure that is not related to 
any pandemic model and behaviour (black box pitfall)! But 
the aim of the predictive modelling of aggregate variables is 
future prediction. To illustrate the impossibility of long-term 
future prediction the experiment was repeated but with a 
training only using the first half data set, show in Fig. 4. The 
predictor function diverges quickly after the last trained 
point and tends to oscillate. 

2) Simulation and Prediction 
 

The simulation was performed with the probabilistic and 
contextual CA representing one artificial TU domain. The 
CA was spatially partitioned into 6 logical regions, shown in 
Fig. 5 (a): Home, outside, working area, shopping area, 
schools, and culture/sports. Agents that want to change the 
region always pass the centred outside region. Each region is 
defined by a mobility scaling factor. The agent movement is 
either randomised or directed. The simulation addresses day-
night cycles.  

All agents return to their root home position at night. 
Fractions of agents migrate to different regions at different 
time slots. In contrast to the real-world prediction, the 
normalised accumulated infection case number is the 
aggregated system state variable that is measured and 
predicted by the trained surrogate model. The sensor input 
variables is the infection count IC (full age distribution) with 
an auxiliary variable, the derivation: 〈IC, δIC/δt}. The output 
prediction variable is again ICΔ. The LSTM model has a 
layer configuration of [2,7,7,1] with two × 7 fully connected 
LSTM cell layers [10] (each cell with memoryToMemory, 
inputToOutput, and inputToDeep gates control), a 
sigmoid transfer function, and was trained periodically with 
multi-sequence learning.  

A high prediction accuracy for Δ=4 (arb. units) was 
achieved in playback mode (i.e., full-range training and 
replay prediction), as shown in Fig. 5 (b). But in contrast to 
the highly distorted and temporally biased real-word data 
predictions (with useless results), future prediction (of a 
second infection raise) can be predicted with high accuracy 
just by using past date only (cut-off point is here 30), as 
shown in Figure 5 (c). To conclude, the surrogate modelling 
of the CA/MAS system poses a high degree of generalisation 
(on the longitudinal scale), in contrast to the same model 
trained on real-world data. 

The seed of the simulation was a population of 600 
agents with a share of 5% infected agents. The cell 
placement is randomised. Some simulation runs (with same 
seed parameters) did not show a pandemic development. 
Without the (dependent) auxiliary variable, the prediction 
model could not be trained (no training convergence). 
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Figure 5.  (a) CA simulation world with logical regions (b) Playback of 
predictive modelling of longitudinal infection cases development; full-
range training (Δ=4 arb. units) from simulation data (c) Partial-range 
training and future prediction [x: time (arb. units), y: normalised infection 
case numbers, y0: reference data , y: predicted] Using the Template 

In the real-data prediction case, there were already four 
correlated input variables (age range variables). There is still 
no longitudinal updated simulation (with real world data) 
and surrogate model calibration. The time scale is artificial 
and arbitrary. 

IV. CONCLUSION 

The acquisition of real-world sensor data and the 
derivation of time-dependent system state observables can be 
a challenge. The measurement and the test sample 
distribution of real-world sensors are often distorted and 
biased, or sensor variables are nor accessible (on spatial 

and/or longitudinal scale). Pandemic situations are prominent 
examples. Simulations rely on accurate data for simulation 
world parametrisation and model calibration. Time-series 
prediction of system state variables is of high relevance for 
political and domestic decision making processes. We 
evaluated time-series prediction on real data from a RKI data 
base containing infection cases data rates of the COVID19 
pandemic (54 weeks) using a LSTM neural network. Firstly, 
we showed a high prediction accuracy on the longitudinal 
axis (4 week prediction) in playback mode, but very low 
accuracy on spatial scale, i.e., by applying a trained model to 
another spatial domain, and for future predictions. Secondly, 
we concluded that the trained model do not base on any 
reasonable pandemic model and that the original RKI data 
base contains highly distorted and biased data (especially on 
longitudinal scale). In the next step we introduced a multi-
domain hybrid and hierarchical agent-cellular automata 
simulation approach. The CA was partitioned into logical 
regions and agent mobility and interaction bases on a 
constrained lattice-gas model. The data collected from the 
simulation was again used for time-series prediction using a 
LSTM-ANN providing a surrogate model for the system 
state variable infection cases of the MAS-CA simulation. 
Again, a high accuracy for playback and forward predictions 
was achieved. But the simulation model cannot actually be 
applied to real-world data, and sensor calibration addressing 
longitudinal, measuring, and pandemic parameters have to be 
performed in future work to achieve a transfer to real-world 
data prediction. Finally, domain-specific variance must be 
improved and derived from real-world data. The surrogate 
modelling of the MAS-CA system poses a high degree of 
generalisation (on the longitudinal scale), in contrast to the 
same model trained on real-world data. 
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