
A Mixed-Reality Simulator for an Autonomous Delivery System Using Platooning

Prem Chand Pavani
CIAD (UMR 7533)

Univ. de Technologie de Belfort-Montbéliard
Belfort, France

email: prem-chand pavani@etu.u-bourgogne.fr

Pierre Romet
CIAD (UMR 7533)

Univ. de Technologie de Belfort-Montbéliard
Belfort, France

email: pierre.romet@utbm.fr

Franck Gechter
CIAD (UMR 7533) and MOSEL LORIA (UMR CNRS 7503)

Univ. de Technologie de Belfort-Montbéliard and Univ. de Lorraine
Belfort and Vandoeuvre, France
email: franck.gechter@utbm.fr

El-Hassane Aglzim
ISAT-DRIVE

Univ. Bourgogne Franche-Comté
Nevers, France

email: el-hassane.aglzim@u-bourgogne.fr

Abstract—Developments in the field of autonomous vehicles
have encouraged research to innovate technology to solve ev-
eryday problems. E-commerce has been on the rise and, freight
transportation is considered an environmental nuisance, espe-
cially in the city centers. Electric vehicles have been proposed to
reduce the environmental impact of transit vehicles. A package
delivery system using a platoon of autonomous electric delivery
vehicles and established public transport networks in cities can
be employed to solve these problems. But autonomous vehicle
testing is a point of concern for authorities and the public
alike. This paper acknowledges this problem of validating the
algorithms used to create an autonomous delivery system using an
innovative solution. A Mixed-Reality simulator based on Unity3D
and Robotic Operating System was successfully created to test
autonomous vehicle platooning.

Keywords—Mixed-Reality; Platooning; Autonomous Vehicles;
Vehicle-Hardware-in-the-Loop (VeHiL).

I. INTRODUCTION

For several years, a significant effort has been made to
optimize the transport of goods in urban and peri-urban
centers. These improvements are aimed at reduction of the
secondary effects of transportation, such as congestion, noise
pollution due to the dense traffic flow, or air pollution due
to conventional vehicles. Current legislative regulations limit
the size and weight of transport vehicles, delivery hours
during the day, and suggestions to construct central distribution
units close to the city. Other changes include the addition of
distribution circuits for tricycles or compact electric vehicles.
Nevertheless, these new guidelines and distribution routes
are far from reducing the negative impact of transit vehicles
circulating in space dedicated to the public. Gechter et al.
[1] discusses the solutions available to improve the fright
transportation in the city center and proposes a comprehensive
model to use the public transportation system and autonomous
subnormal-sized electric transits by forming a platoon. Gechter
et al. [1] clearly defines the advantages of using platoons of
autonomous vehicles that serve as the base for this paper which
is part of the project SURATRAM (Système Urbain et Rural
Autonome de TRAnsport de Marchandises).

Electric freight vehicles have been at the forefront of
combating climate change due to excess production of carbon
dioxide. Electrification makes the most sense in an urban en-
vironment for short commutes where the combustion engine is
the most inefficient. Most cities have separate lanes for public
transport that trace the entire city perimeters. Large freight
vehicles, which are not nimble on narrow city roads, can use
these routes to reduce the congestion. Programming a fleet of
autonomous robots to follow the existing public transport enti-
ties on these less-used routes by using platooning is a concept
that can prove advantageous. Autonomous vehicles require
extensive testing and, current simulation tools cannot replicate
real-world conditions with a hundred percent accuracy and do
not account for few critical or complex scenarios. On the other
hand, on-road testing is either forbidden or limited by law
in most countries. To address issues of autonomous vehicle
testing, we are developing a Mixed-Reality (MR) simulator to
validate the use-case of platooning and the algorithms.

Kalra et al. [2] demonstrates that autonomous vehicles
would need tests over 14 billion kilometers of on-road testing
that could take over 400 years with a fleet of 100 agents
running every single hour of the year with a supervisor in
the vehicle. Hussein et al. [4] introduces the framework used
in simulation using Robotic Operating Software (ROS) and
Unity3D to optimize experimentation using smart vehicles. A
MR platform based on UDP communication was built using
the AIM simulator and an autonomous vehicle to test scenarios
at an intersection [5]. AIM does not provide a realistic image
of the natural world and has limited application. Another MR
simulator was created in [7] using Gazebo and ROS to achieve
interaction between simulated and real objects while updating
the simulation according to the movement of the robot in the
real world. The usage of many commercially available robots
is simplified using Gazebo as they are integrated into the
simulator. But Unity3D has a more complex and adaptable
physics engine compared to Gazebo, giving better realism
during testing. Simulation of other elements like traffic can
be easily programmed to recreate real-life scenarios. Unity3D

72Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

also allows training of our driving models using Machine
Learning algorithms which is not possible using Gazebo.

Analyzing the convenience of use and the verisimilitude of
the simulation to the real world, we propose an MR simulator
for our autonomous delivery solution using platooning based
on Unity3D and ROS to test our autonomous driving algo-
rithms. The paper is organized as follows: Section II consists
of the present technology of simulators used in the literature,
while Section III details the MR simulator framework. Section
IV provides the results and analysis of our proposal, and
Section V concludes the presentation with improvements and
the future scope of the project.

II. STATE OF THE ART

As we climb up the various levels of driving automation
for on-road vehicles defined by the Society of Automotive
(SAE), the complexity of the systems keeps growing. Complex
systems include dozens of Electronic Control Units and sen-
sors [8]. Integration of these components becomes challenging,
and the necessity of alternative methods to on-road testing
becomes evident. Currently, automotive manufacturers are
working extensively with XiL in the system development cycle
to increase productivity [3].

The first step is to develop the actual model of the plant
or hardware in a simulation environment that represents the
influential features of the system [9]. A controller is conceived
to alter the output of the plant as per the application. This
method is known as Model-in-the-Loop (MiL) testing. The
behavior of the simulated plant model is governed by the
controller logic. MiL is a good starting step to perform
controlled tests of the system in a virtual world. When a MiL
produces satisfactory results, a code generated from only the
controller model replaces the controller block. We simulate
using the controller block made of the code with the software
model from the previous step [10]. This process is known as
Software-in-the-Loop (SiL) testing. The outcome of the test is
compared with those obtained in the MiL testing. We alternate
these two steps until a reliable algorithm is produced. It is
still important to test the controller on the real hardware as
the simulated model is based on certain important parameters.
Hence in the last step, the simulation model is replaced,
entirely or partially, by the actual hardware to test the accuracy
of the controller logic, hence the name Hardware-in-the-Loop
(HiL) testing [11]. Another class of testing depends on the
use of a prototype in the development cycle. The prototype is
examined in real-life conditions (like test tracks or on-road)
to have the best results. A prerequisite to this is the need for
extensive infrastructure. There are several limitations to the on-
road testing from the government due to safety concerns. A
hybrid that combines the HiL and prototype testing is Vehicle-
Hardware-in-the-Loop (VeHiL) that allows manufacturers to
test their approach in the initial stages of the development.
The method is flexible and convenient as we can moderate
all the environmental conditions. The tests are conducted on
a chassis dynamometer which is usually heavy and requires
plenty of space [3].

User interactive maps using Augmented Reality (AR) (pro-
jection of virtual elements in the real world [6]) gives us
an immersive experience during navigation through streets.
Another impressive technological advancement is the ability
to explore the world in Virtual Reality (VR), where we can
interface with the virtual elements or create a virtual world.
A composite of these technologies is MR, where the physical
entities can interact with elements in the virtual world [6].
Integration of MR in autonomous vehicle testing provides
versatility, increasing the duplicability of real-world conditions
in confined spaces. MR has been used previously to provide
driving assistance of welfare vehicles using a virtual platoon
control method allowing novice users to control the kart with
ease [12].

Given the state-of-the-art, we understand that VeHiL testing
is advantageous but requires an actual vehicle or prototype in
the testing loop alongside a simulation, as defined in [3]. We
built our VeHiL around a Radio Controlled (RC) car to reduce
the infrastructure requirement and allow flexible testing of our
platooning application using the MR simulator. Developing
algorithms using a 1:1 model of the bus and vehicle is
financially inconvenient due to costs of fuel and renting a bus.
Large vehicles require space for testing. The nearest testing
ground is 30kms away from the laboratory. Travelling to the
site to validate small changes in the algorithms or ideas is
logistically cumbersome and not time efficient. A detailed
explanation is provided in the next section.

III. MIXED REALITY SIMULATOR

Evaluating the advantages and disadvantages of the avail-
able testing methods, we propose a VeHiL test using an MR
simulator using Unity3D and ROS. We will use Unity3D
to create a platoon simulation using a bus (representing the
public transport) and a Hyundai Kona (representing an electric
transit van). Simulation test cases include the car following
the bus, parking the vehicle on the side of the road at bus
stops to avoid congestion, and dynamically attaching to a bus
on a different route to the present one at an intersection to
deliver at a specific location. Using the schedule data provided
by the public transport provider in Belfort, Optymo, we can
synchronize this change of route fluidly. In this paper, we
discuss only the platooning test case. We will start our VeHIL
tests using a scaled model of the car, in the form of an RC
robot equipped with sensors like LiDAR, Ultrasonic Distance
Sensor (UDS), Inertial Measurement Unit (IMU). We use ROS
to manage data and control the robot. A schematic with the
framework of the MR simulator is presented in Figure 1. A
comprehensive description of each component is provided in
the upcoming few subsections.

A. Smart Robot

The MR simulator is based on an electric Kona, which
would act as our autonomous delivery vehicle. During the
VeHIL test phase, we did not have the Kona at our disposal.
To proceed with the development of the simulator, we used an
RC car to replicate the characteristics of the Kona. Hence, the

73Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

Figure 1. Mixed-Reality simulator framework.

results obtained are not entirely homologous to experiments
performed with a Kona due to a mismatch of the physics model
of the robot and simulation. We normalized the parameters of
the Kona, like torque and turning radius, in the simulation to
suit the handling of the robot. Using the PiCar-S kit V2.0 from
the robotics company SunFounder, we were able to customize
the robot by adding a LiDAR and an IMU, in addition to the
UDS to replicate the functionality of the actual vehicle (Figure
2).

Out of the box, the PiCar depends on a Raspberry Pi (RPi)
4B for its computational power running Ubuntu (based on
Linux; officially supported by ROS). The propulsion system
constitutes of two pulse width modulation (PWM) motors.
A 2D LiDAR from SLAMTEC (RPLIDAR A2) used in the
project produces up to 8000 samples/second and has a range
of 12m with a resolution of 0.15m. A MEMS-based IMU
(MPU6050) fuses the programmable 3-axis accelerometer (2g-
16g), and 3-axis gyroscope (250◦/sec-2000◦/sec). An UDS
with a range of 0.02m-4m works in the frequency range of
40kHz. The manufacturer provides a library for the RC car,
coded in Python that allows users to easily set up the robot.

Figure 2. Smart robot equipped with a LiDAR, an IMU and an UDS.

B. Unity3D Simulation

To perform the MiL test, we chose Unity3D to run our
initial experiments. The simulation primarily consists of two
objects, a bus, and a car. The simulation aims to reproduce
a platoon that includes a public transport entity (in our case,
the bus) and an electric delivery van (Figure 3). The bus will
act as the leader of the platoon, with the car behaving as
the follower. The bus follows a predefined path, and the car
can autonomously follow the bus based on the telemetry data
of the leader. The data collected from the follower vehicle
is transmitted to the robot. A feedback loop updates the
location of the car in the simulation per the real world. The
bus is a representative model of Lion’s city hybrid buses
used in the city of Belfort, manufactured by MAN. The car
is comparable to a Kona electric, produced by the Korean
manufacturer, Hyundai. We modeled a Kona electric in the
simulation as we have the actual vehicle, fitted with a RADAR,
two LiDAR’s (one frontal, one on the roof), and a Global
Navigation Satellite System with an integrated IMU. Unity3D
has a configurable physics engine that can adapt to the vehicle
using parameters like mass, the center of gravity, or the drag
coefficient. Unity3D also allows users to incorporate the tire
model by providing the forward friction and sideways friction
values (extremum slip, asymptote slip). The simulation also
accounts for the unsprung mass and suspension system (damp-
ing rate, suspension distance, force application point distance).
The maximum torque values and speed limits of both vehicles
are programmed. These features can help program physics of
most vehicles in Unity3D, making the simulation versatile to
test other platooning projects.

Using waypoints, we set the path for the bus to follow.
At the beginning of the simulation, we congregate all the
waypoints and store them in an array to keep track of the
number of points. To steer the bus, we calculate a relative
vector to the upcoming waypoint from the current position
of the bus; this returns a value between [-1, 1], indicating
the direction (negative value implies that the point is to the
left of the heading of the bus and on the contrary, a positive
value indicates a point on the right). To determine the steering
angle, we multiply the relative vector with the maximum
steering angle. When the bus is within 5m of the current
waypoint, we calculate the steer value to the next waypoint
in the array. To control the speed of the bus, we apply a
torque to the rear wheels of the bus corresponding to the
distance to the next waypoint and reduce this value as we
approach the waypoint or if we must navigate a sharp turn.
We update our steering and torque values at a fixed period
of 20ms or at a frequency of 50Hz. A similar method is
deployed on the follower (Kona) to allow the car to move
relative to the leader. Analogous to the bus, we use a tracker
point placed on the rear axle of the bus to determine the
angle of steering required on the car. A Proportional-Integral-
Differential (PID) controller (Gain values P: 80, I: 30, D: 35)
adjusts the speed of the Kona proportionately to the distance
between the two vehicles. The distance is measured from the

74Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

front of the Kona to the tracker point. The aim is to maintain
a safe distance of 10m which accounts for emergency braking.
The PID controller gain values can be updated during the
simulation. The PID controller recalculates the speed of the
Kona every 100ms (10Hz) by adjusting the error at the rate of
50Hz increases the data queue to be transmitted significantly.
As the simulation does not emulate the physics of the robot,
a novel PID controller (Gain values P:10, I:7, D:6) and a
separate code for steering were adapted to the pace and the
turning radius of the robot.

The company Siemens, developed an open-source library
in C# to communicate with ROS from .NET applications
like Unity using TCP/IP sockets (available on GitHub as
ros sharp). The library includes standard message publishers,
subscribers, and Action servers. We created a new object that
contains a ros connector, two data publishers, and a Pose
stamped subscriber. The ros connector script helps us connect
to the ROS server running on the robot. We modified two 32-
bit float (std msgs ROS) publishers to transmit the speed and
steering angle. We adopted a pose stamped subscriber from
the ros sharp library to receive the coordinates of the robot
generated by the Simultaneous Localization and Mapping
(SLAM) algorithm.

Figure 3. Simulation of the platoon in Unity3D.

C. ROS

ROS acts as a middleware to manage the data generated by
different sensors and helps various programs running on the
robot communicate. It also behaves like a control mechanism
for the robot by collecting the data from the simulation.
We used ROS Noetic Ninjemys that has good community
support and compatibility with the packages required for this
project. The first package that is vital is the rosbridge suite
library. The library contains a rosbridge server package with
rosbridge websocket launch file that creates a server with the
IP address of the RPi. A simple listener coded in Python can
subscribe to the /speed and /steer topics and receive the 32-bit
float messages from Unity3D over the server. Using a modified
library provided by SunFounder, we can manipulate the robot

according to the received data. The LiDAR point-cloud data is
visualized in RVIZ using the package provided by SLAMTEC.
This point cloud is accessible from the topic /slam. We used
a Python script to decode data from the MPU6050. The linear
acceleration and angular velocity values are published using
the topic /imu. Next, to fuse the data from the IMU and the
LiDAR to form a 2D map of the environment, three SLAM
packages are currently available: gmapping [9], Cartographer
[10], and Hector SLAM [11]. In our case, we are fusing data
from LiDAR and IMU, so hector slam seems to be the best
choice. The SLAM module, based on an Extended Kalman
Filter (EKF), generates coordinates of the robot’s location in
the real world, published using the topic /slam out pose. We
relay the position to Unity3D via the ROS server, where a Pose
Stamped (geometry msgs ROS) subscriber node converts the
data into Unity3D coordinates.

IV. EXPERIMENTS & RESULTS

An oval path (L1: 30 units, L2: 20units) is drawn for the
bus to trace using waypoints in Unity3D. Each experiment
corresponds to the bus completing one full revolution (unless
specified) of the oval while being followed closely (10m
distance) by the car in the simulation. This section will provide
details regarding the analysis and results of the performance
of our MR simulator, based on three main criteria: time
delay, deviation of simulation from the real-world position,
and analysis of the SLAM algorithm.

A. Time Delay

As we are working on a real-time system, it is crucial to
determine the time delay between the transmission of data,
the actuation of the system, and the feedback. Anticipating
the delay can improve the efficiency of control strategies. A
ping of 20ms is commonly observed in wireless connections
working at 2.4GHz but, the delay varies for each query. ROS is
known to have delays in communication between nodes, which
can influence the delay in the system. We identified three
components that make up the total delay in our system include:
messages to reach ROS from Unity; the time necessary to
process the data; update world pose data from ROS to Unity.

1) From Unity to ROS: The pose stamped messages (ge-
ometry msgs ROS) were sent from Unity using the ros sharp
library to understand the delay during transmission of data
from Unity to ROS. The data is converted to suit the coordinate
system in ROS (right-handed, with X forward, Y left, and
Z up) as Unity uses a left-handed, Y-Up, Z-forward, and X-
left convention. The pose message header contains the time
at which the data was generated during the simulation. When
the data reaches the ROS subscriber node, the information is
parsed, and the output is printed on the command window
with time in the Unix format (nanoseconds). The session gets
recorded into a rosbag file and saved in a CSV file format.
Using a python script, timestamps of the sent and received
messages are separated from the CSV file and converted into
readable date and time format. Matlab is used to import the
data and construct a graph describing the delay for each packet

75Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

of data to reach ROS from Unity over the number of frames.
For each frame, we generate one message.

Figure 4. Delay of each message received in ROS from Unity3D.

Tested over 1870 messages (at 50Hz Frame rate), we ob-
serve that the first message arrives in ROS after 0.98 seconds,
after which the delay for each consecutive packet of data fluc-
tuates between 10ms-20ms (Figure 4). So, the robot is lagging
the simulation by 1.3 seconds. The rosbridge socket server is
CPU intensive and takes time to process substantial amounts of
inbound data. Since the ROS server and simulation are running
on different machines, the latency increases significantly. The
variation in delay between messages is known as jitter. This is
an issue of using the 2.4GHz band as most appliances use the
same frequency range along with other people living in the
neighborhood, causing significant variations in delay between
queries.

2) Processing Delay: Every processor takes time to make
sense of the received data. We would like to measure the
delay between the time when the message is received in ROS
to when the robot starts moving. This is measured to show
the worst-case delay observed in the system moving from
complete rest. Two separate loops are used to process the
speed and steering angle data received in ROS, increasing
the processing time of the data. When a message is received,
the content of the message and the time get printed on the
command window. The IMU is sensitive enough to detect
every movement. A message with the current time is printed
on the command window once there is a change in acceleration
in the X-axis above a threshold value of 0.2g. The difference
between the timestamp of the first message received from
Unity and the timestamp when there is motion provides the
time required for processing.

Over nine trials performed to determine the delay between
the reception of command and actuation of the servo motor
- we observe a mean delay of 1.5 seconds (Figure 5). This
loss in time can be attributed to the time delay for the first
message to be received in ROS, which is around 0.98 seconds,
as mentioned in the previous experiment. So we can deduce
that the processing delay is approximately 0.5 seconds which
can be due to the sensitivity of the motors to low-speed inputs
at the start.

Figure 5. Delay between the reception of message and the robot moving.

3) From ROS to Unity: Similar to the delay observed during
the relay of data from Unity to ROS, there is a delay during the
transmission of data from ROS to Unity3D over the wireless
network. We would expect the delay to be around 0.02seconds.
To estimate this delay, we generate a Pose Stamped message
after the world position of the robot is calculated by the
SLAM module and relay this data to Unity. The pose-stamped
data from ROS is converted to suit the coordinate system in
Unity by the subscriber node in Unity3D. The pose stamped
messages contain the timestamp representing the time when
they were generated in ROS. Once the message is received in
Unity3D, we log the current time. These logs can be accessed
from the player log editor. The timestamps are imported into
Matlab, and we create a graph between the number of frames
and delay in seconds.

Figure 6. Delay of each message received in Unity3D from ROS.

A comparison between the timestamps of the data reveals
that - on average, there is a delay of 0.13 seconds. It varies
between 0.11-0.19 seconds (Figure 6). The obtained delay is
significantly higher than expected. In addition to the jitter
observed while using the 2.4GHz frequency band, we have
a delay during the exchange of data between the node respon-
sible to publish the pose stamped messages and the WebSocket
server in ROS. Since the server is running on the RPi and the
subscriber on the computer, we have a latency between the
two host machines and is a factor in the high delay values
observed.

76Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

B. Deviation from actual World Pose

Since the physics model of the simulated entity and the
robot are different, it is interesting to see how this difference
affects our simulation. We will be able to judge if there is
a need to mimic the physics of the actual vehicle in the
simulation. The coordinates produced by SLAM module are
used to update the simulation. Another object that contains a
pose stamped subscriber is created in Unity3D. This object
represents the path traced by the robot in the real world. A
vector between the path taken by the virtual car and the path
traced by the robot is recorded every second in the simulation.

Figure 7. Deviation of simulation from actual world position of the robot.

A comparison between the simulated position and the
coordinates of the robot shows a deviation of one meter per
every meter of movement in the simulation (Figure 7). At the
start of the simulation, the deviation is relatively less as the
speed of the vehicles is low. As proven earlier, the RC car
lags the simulation by more than a second. Combined with
the fact that Unity currently uses a physics model of a car,
there is a significant deviation of the path reproduced by the
robot in comparison to the virtual car. This result proves the
need for an accurate physics model of the virtual vehicle with
respect to the real vehicle.

C. Accuracy of SLAM

The closeness of the location provided by the SLAM
algorithm to the ground truth will increase our confidence in
our measurements, enabling us to safely navigate in densely
populated urban environments. To test the accuracy of SLAM,
a grid (1 cm2) paper is laid out on the floor. The RC car is
positioned on one of the edges of the grid cell. We run one
cycle of the simulation while filming the robot from a bird’s
eye view. The position data from the SLAM is recorded into
a rosbag file. We note the position of the robot from the video
by counting the number of cells traveled on the grid at a period
of three seconds and the coordinates given by SLAM in ROS.

We plot the two points to recreate the path followed by
the robot in the real world and according to SLAM (Figure
8). The SLAM can localize the robot with good accuracy
fusing the LiDAR and IMU data. The robot is not able
to recreate the oval circuit drawn in Unity3D due to the
difference in physics model. Optimizing speed and angle of
steer produces a semicircular movement over three revolutions

Figure 8. Comparison of position provided by SLAM to actual position.

in Unity, contrary to the other experiments. We could not
achieve enough points to evaluate the SLAM with a single
revolution of the vehicle in the simulation.

Another graph to depict the deviation over time is plotted by
calculating a resultant vector between the two points (Figure
9). We see a mean error of 0.03m between both measurements.
The error does not accumulate with time due to the presence
of an EKF in the SLAM algorithm, which can predict the
trajectory of the robot, reducing the deviation from the actual
position. The error can be further reduced by fusing data from
an odometer.

Figure 9. Error between SLAM and actual position.

V. CONCLUSION AND FUTURE WORK

As the use of autonomous vehicles becomes more promi-
nent, innovations in the field of testing become critical. This
paper evaluated the adoption of an MR simulator with a
VeHiL testing to validate algorithms for an autonomous freight
delivery system using the public network system proposed in
[1]. We can address a few issues to improve the precision of
the simulator. First, the use of a 5GHz wireless communication
can reduce jitter during data transmission. To reduce the
deviation between the virtual and real-world, we can introduce
a Kalman filter in Unity3D. Extending the project to support
ROS2 can lower the delay caused due to communication
between different nodes, as nodes can communicate directly
with each other without the need of a ROS Master. The PID
controller can be replaced with more robust controllers to

77Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

improve follower’s capability to keep up with the leader. The
fusion of odometer data from the real vehicle can increase
the accuracy of the SLAM algorithm. Future research to
implement the simulator with the Kona in the VeHiL phase
instead of the robot is envisioned, along with testing of other
test cases mentioned in Section III. This will avoid issues due
to the contrast of the simulation model with the robot. The
simulator can be extended to other platooning projects where,
researchers can model their vehicles (using the physics model
parameters as indicated in Section III: C) in Unity3D along
with 3D maps of cities to test their self-driving robots in small
spaces, reducing risk of on-road testing and cost of expensive
testbeds.

ACKNOWLEDGMENT

This work is done with the support of the Région
Bourgogne-Franche-comté, through the SURATRAM Project.

REFERENCES

[1] F. Gechter,et al. ”Transportation of Goods in Inner-City Centers: Can
Autonomous Vehicles in Platoon Be a Suitable Solution?” in 2017 IEEE
Vehicle Power and Propulsion Conference (VPPC), pp. 1–5.

[2] N. Kalra, and S. M. Paddock, ”Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
in 2016 Transportation Research Part A: Policy and Practice , pp. 94,
182–193.

[3] C. Galko, R. Rossi, and X. Savatier, ”Vehicle-Hardware-In-The-Loop
system for ADAS prototyping and validation”, in 2014 International
Conference on Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), pp. 329–334.

[4] A. Hussein, F. Garcia, and C. Olaverri-Monreal, ”ROS and Unity Based
Framework for Intelligent Vehicles Control and Simulation,” in 2018
IEEE International Conference on Vehicular Electronics and Safety, pp.
1–6.

[5] M. Quinlan, Tsz-Chiu Au, J. Zhu, N. Stiurca, and P. Stone, “Bringing
simulation to life: A mixed reality autonomous intersection,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 6083–6088.

[6] W. Honig, et al. “Mixed reality for robotics,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
5382–5387.

[7] I. Y.-H. Chen, B. MacDonald, and B. Wunsche, “Mixed reality sim-
ulation for mobile robots,” in 2009 IEEE International Conference on
Robotics and Automation, pp. 232–237.

[8] S. Moten, F. Celiberti, M. Grottoli, A. van der Heide, and Y. Lem-
mens, “X-in-the-loop advanced driving simulation platform for the
design,development, testing and validation of ADAS,” in 2018 IEEE
Intelligent Vehicles Symposium (IV), Changshu, Jun. 2018, pp. 1–6.

[9] A. R. Plummer, ”Model-in-the-Loop Testing” Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering in
2006;220(3): pp. 183-199.

[10] S. Demers, P. Gopalakrishnan and L. Kant, ”A Generic Solution to
Software-in-the-Loop,” MILCOM 2007 - IEEE Military Communica-
tions Conference, 2007, pp. 1-6.

[11] W. Deng, Y. H. Lee and A. Zhao, ”Hardware-in-the-loop simulation for
autonomous driving,” 2008 34th Annual Conference of IEEE Industrial
Electronics, 2008, pp. 1742-1747.

[12] N. Matsunaga, R. Kimura, H. Ishiguro, and H. Okajima, “Driving
Assistance of Welfare Vehicle with Virtual Platoon Control Method
which has Collision Avoidance Function Using Mixed Reality,” in 2018
IEEE International Conference on Systems, Man, and Cybernetics, pp.
1915–1920.

[13] G. Grisetti, C. Stachniss, and W. Burgard, ”Improved Techniques for
Grid Mapping with Rao-Blackwellized Particle Filters,” IEEE Transac-
tions on Robotics, pp. 34-46.

[14] W. Hess, D. Kohler, H. Rapp, and D. Andor, ”Real-Time Loop Closure
in 2D LIDAR SLAM,” in Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, pp. 1271–1278.

[15] S. Kohlbrecher, et al. (2014) ”Hector Open Source Modules for Au-
tonomous Mapping and Navigation with Rescue Robots”. RoboCup
2013: Robot World Cup.

78Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

