
UNREAL ENGINE

A Photorealistic Rendering Infrastructure

for Man-in-the-Loop Real-Time Vehicle Simulation

Alessandro Tasora

Dept. of Engineering and Architecture

University of Parma

Parma, Italy

email: alessandro.tasora@unipr.it

Dario Mangoni

Dept. of Engineering and Architecture

University of Parma

Parma, Italy

email: dario.mangoni@unipr.it

Abstract— We discuss a software system for high-quality

interactive rendering of virtual environments. Such tool

embeds a state-of-the-art rendering engine middleware that is

capable of rendering environments with high level of detail at

interactive frame rates on modern GPUs. The model of the

vehicle is defined via a model-based Functional Mock-up Unit

that can be generated with an external tool, using the Modelica

language.

Keywords – rendering; real-time; vehicle simulation.

I. INTRODUCTION

Thanks to recent advancements in the field of graphics
processing unit (GPU) processors, the last generation of 3D
rendering engines provides high frame rates even in case of
large scenes with high level of detail and complex surface
shaders. This allows the adoption of complex effects − such
as global illumination and reflections − with a time budget of
20ms per frame, or less; this satisfies the requirement of
>50Hz refresh rate for fluid man-in-the-loop interactive
simulations, at the same time providing a realistic rendering
quality for the best visual cueing [1]. In the past, high refresh
rates were achieved at the cost of limiting the complexity of
shading and details, hence failing in the so called
“suspension of disbelief” effect, that is welcome in fields like
virtual reality and vehicle simulators [2]. In detail, the
addition of ray-tracing cores on the last generation of GPUs
can provide unprecedented quality in renderings because ray
tracing algorithms can be used, instead of a conventional
rasterized rendering [3]. Ray tracing, also evolved as path
tracing, can generate physically exact lighting effects, where
conventional real-time renderers had to fake effects like
reflections or global illumination in sake of performance.

Many applications that require high-performance real-
time rendering, such as video games and simulators, are
based on extremely powerful third-party middleware such as
Unity, CryEngine or Unreal Engine [4][5]. These tools
provide ready-to-use rendering algorithms in exchange for
some royalties on the final product, or even for free if used in
academic projects. In our project, we decided to use Unreal
Engine, mostly because it features a well-documented C++
application program interface and because it is renowned for
its unparalleled rendering quality.

 Although there are many examples of applications that
leverage on these rendering technologies for creating car
simulations (videogames about racing being a special case of
them), in most cases the model of the vehicle is designed
directly inside the authoring tools that are provided by the
developers of the rendering solutions - in our case it is the
Unreal Editor. Doing so, the application could still
implement a GUI that allows a user to adjust simple
parameters such as the stiffness of a suspension, but if a
vehicle designer needs to change some non-trivial property
(such as the topology of a suspension or the type of
powertrain), the Unreal Editor must be used and the
application must be rebuilt again. However, passing through
the Unreal Editor all the time that a change is needed, can
slow down the design iterations.

Figure 1. Workflow and software architecture.

In our solution, on the contrary, the user does not need to
rebuild the simulator even if radical changes are needed
since the vehicle model is separated from the visualization
code. In fact, the model of the vehicle is stored into a
separated piece of code that always exposes a standardized
Application Programming Interface (API), thus allowing for
a quick and effective model switching, as shown in Figure 1.
This code can be generated by an independent tool − namely
an editor for model-based systems − and later loaded in the
visualization tool, where the user focuses only on rendering
settings and bindings with user inputs.

II. IMPLEMENTATION

Using the workflow that we designed, the physical

model of the vehicle is generated with an external tool

(namely, Altair Activate), that is capable of creating a

ACTIVATE
model-based design

FMU

REAL TIME VISUALIZER

49Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

Functional Mockup Unit (FMU) from a model-based

description of the vehicle, by leveraging components from

both the Modelica Standard Library, containing basic

mechanical and electrical components, and from an in-house

vehicle-specific library for dynamical vehicle simulations,

written in Modelica language [6]. The model, contained in

the FMU, is automatically optimized by the underlying

Modelica engine in order to offer best performances while

retaining the flexibility of block-based graphical user

interfaces. Additionally, also a multi-physics approach can

be followed to assemble complex systems at a glance:

complex vehicles with electric powertrains can be enriched

with thermal and dynamical analysis of the system, together

with full multi-body suspension geometries; and this

without leaving the common Activate user interface.

Figure 2. Example of a wheeled vehicle in a photorealistic environment,

including vegetation and atmospheric effects.

Then, we designed a visualization tool based on the

Unreal Engine (UE) rendering technology. The

performance-critical part of such tool is written in C++

thanks to the API and build toolchain of UE, whereas the

graphical user interface (GUI) is built using the Blueprint

visual scripting system of UE. Currently, only the Windows

platform is supported.

In detail, the visualization tool parses the FMU and

performs a run-time linking of the libraries that are

contained in the FMU, and that define the functions for the

time integration of the dynamical model. In order to bind

visualization shapes to moving objects, the tool parses the

XML file that is embedded in the FMU and that describes

the name of the variables: a hierarchical structure of classes

is constructed from that information, so to detect if the FMU

was generated from Modelica blocks that represent 3D

shapes (the Modelica standard defines Visualizer classes to

this end). Once shapes are detected, a GUI shows a dialog

that allows the user to pick a 3D mesh from the disk, as

saved from a CAD, or to associate it to an asset prepared

with the Unreal Editor and packaged in a .pak file. The latter

option is meant for advanced users: at the cost of requiring

the Unreal Editor, it allows additional effects such as the

addition of particle effects and sounds, for instance spinning

wheels can generate smoke and scratches at the ground,

while engines can produce realistic noise. We also provide a

method for bidirectional connectivity between the Unreal

Blueprint scripts and the FMU variables.

The user can also attach inputs such as steering wheels,

joysticks and buttons to FMU variables. Vice versa, output

FMU variables can be exported to plots, CSV file logs, GUI

and user-designed head-up displays, so that a full Human

Machine Interface (HMI) can be implemented and tested in

real-time.

Additional GUI panels allow the control of the level of

photorealism, enabling depth of field, lens flares and lens

bloom, global illumination, motion blur, color grading, etc.

The user can import scenarios designed with the CAD or

with Unreal Editor, for example a vehicle can be tested in a

virtual city or in a desert land or off road, as in the example

of Figure 2. The sky and weather of the imported scenarios

can be modified in run time thanks to a real-time

atmospheric subsystem that generates sun, moon, stars, sky

scattering, clouds and fog.

III. CONCLUSION

We designed a tool that allows the run-time linking of

FMU in a visualization framework. This system allows

efficient and photorealistic simulations of vehicles of man-

in-the-loop type.

ACKNOWLEDGMENT

This work has been partially sponsored by Altair
Engineering Inc. We thank Ewald Fischer, Chrysa
Nikopoulou, Georgios Ntaountakis, Pranay Kumar, Michael
Hoffmann, Filippo Donida, Livio Mariano, Franck Delcroix
and others at Altair for testing the beta release of the tool and
for reporting bugs and suggestions.

REFERENCES

[1] T. Akenine-Möller, E. Haines, and N. Hoffman, Real-Time
Rendering, 4th edition, CRC Press, 2018.

[2] M. Pharr, W. Jakob, and G. Humphreys, Physically Based
Rendering: From Theory to Implementation, 3rd edition,
Morgan Kaufmann, 2016.

[3] Nvidia RTX platform, https://developer.nvidia.com/rtx
[retrieved: July, 2021].

[4] Unity rendering engine, http://www.unity.com [retrieved:
July, 2021].

[5] UnrealEngine rendering engine and 3D content creation tool,
http://www.unrealengine.com [retrieved: July, 2021].

[6] P. Fritzson, Introduction to Modeling and Simulation of
Technical and Physical Systems. Wiley-IEEE Press, 2011.

[7] P. Fritzson, Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3, Wiley, 2014.

50Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

