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Daimler TSS GmbH
Wilhelm-Runge-Str. 11, 89081 Ulm, Germany

Email: {matthias.b.schneider, soeren.frey}@daimler.com

Abstract—We present a system for simulating home and public
charging operations of Plug-in Electric Vehicles (PEVs). We
model PEV traffic streams that result in corresponding charging
operations. The simulation allows to configure many influential
factors, such as the number of PEVs, consumption, charging
stations, their locations, charging power, working hour distri-
butions, holiday seasons, and the ratio of regular to irregular
rides. In this paper, we demonstrate the applicability of our
simulation in the context of predicting the short-term, regional
energy demand of PEV charging. The prediction can be used to
support energy suppliers and charging infrastructure operation,
for instance. We use automated machine learning (AutoML) to
train a forecasting model based on the simulation output. This
combined workflow, integrating discrete-event simulation and
machine learning, allows us to build a prediction pipeline where
simulation data can be swapped with real data once available.

Index Terms—Plug-in Electric Vehicle Charging; Simulation;
Energy Demand Prediction; Machine Learning; AutoML.

I. INTRODUCTION

The transportation sector is facing a massive transformation
in the upcoming years as the penetration of Plug-in Electric
Vehicles (PEVs) is rapidly increasing [1]. This paper describes
our work-in-progress Discrete-Event Simulation (DES) that
models PEV traffic and emits corresponding charging oper-
ations. The simulation can be used in a variety of ways to
advance electric mobility, e.g., for analyzing charging patterns
and fostering the understanding of PEV owners’ charging
behavior and their corresponding needs. The simulation incor-
porates aspects related to driver behavior, e.g., working hour
distributions, holiday seasons, and ratio of regular to irregular
rides. It also involves equipment and adoption aspects, such as
the number of PEVs, charging stations, charging power, bat-
tery capacity, and consumption. We demonstrate the usefulness
of our simulation with the following application example.

A vital component for the propagation of electric mobility
is a reliable and broadly available charging infrastructure. To
enable this, it is important to accurately predict the realistic
PEV charging operations while taking into account major
influencing factors, such as the driver behavior [2]. Connected
cars can fuel the underlying data basis for those predictions by
providing data points that cover public and home charging op-
erations. However, until connected PEVs will be the prevalent

vehicle class, simulation data can be used as a versatile proxy
to build up a resilient prediction pipeline. We use the output of
our simulation, i.e., charging data, as the basis for training a
prediction model with automated machine learning (AutoML,
see Section IV) [3]. The model forecasts the short-term (up to
a day) energy demand of PEV charging on a regional level.
The paper provides the following main contributions:

1) A simulation of PEV charging behavior
2) An application example using the simulation output to

train a model for regional energy demand prediction
3) An evaluation of the simulation and prediction model

The remainder of the paper is structured as follows. Sec-
tion II examines the related work. The simulation is presented
in Section III and employed in the application example in
Section IV. Then, the evaluation is described in Section V
before the conclusions are drawn in Section VI.

II. RELATED WORK

The simulation of traffic streams was relevant long before
electric mobility became more widespread. The traffic sim-
ulation SUMO [4] was utilized in traffic management and
routing research, for instance. For the analysis of electric
vehicle traffic, many different approaches are used, such as
Monte Carlo methods [5] or M/M/s queueing theory [6]. In
comparison, we use DES and allow for a combination of
workday and holiday patterns and incorporate the usually
rather slow (private) home charging. Similar to [5] and [6],
most other approaches (e.g. [7]) focus only on public charging.

The electric mobility simulators most similar to our system
are V2G-Sim [8], ACN-Sim [9], and EVLibSim [10]. V2G-
Sim was used to study battery degradation and integration of
PEVs in smart grids as power sources, for instance. ACN-Sim
and EVLibSim focus on the charging infrastructure perspective
and incorporate detailed models for, e.g., pricing or unbal-
anced three-phase infrastructure. In contrast, we model traffic
streams that result in charging operations. There exist several
approaches that utilize Machine Learning (ML) for PEV
charging load forecasting [11], but our application example
is, to the best of our knowledge, the first that uses AutoML.
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III. PEV CHARGING SIMULATION

A. Overview

We utilize the DES framework SimPy [12] for simulating
the charging behavior of PEVs. The active components like
PEVs or charging stations are modeled as processes, which in-
teract with each other and their environment using events. For
example, when a PEV starts to charge, it has to interact with a
public or home charging station. This interaction is represented
by a triggered charge event, which initiates the recharging of
the PEV’s battery. The major simulation entities are illustrated
in Figure 1. A public or home ChargingStation comprises
a number of ChargingPoints. At a ChargingPoint, only one
vehicle can charge at a time. PEVs and ChargingStations are
always situated at a specific Location. Additionally, PEVs have
a permanently assigned home Location. Furthermore, a PEV
is also tied to a regular or irregular Tour (see Section III-B),
which in turn has exactly two Locations (start and destination).

B. Assumptions

The charging behavior of the simulated PEVs underlies
some basic assumptions.

1) As soon as a PEV reaches its destination, it charges if it
is not capable to perform the next tour with the current
State of Charge (SoC). In this case it may have to find
a suitable charging station nearby.

2) If a PEV arrives at its home location and the home
location has an existing charging station, the PEV always
starts to charge regardless of its SoC status.

3) If a vehicle needs to charge during a tour, a suitable
charging station is searched along the tour.

The consumption is calculated on the basis of the tours’
distance and the average consumption of the PEV.

Public and home charging stations are able to charge mul-
tiple PEVs at the same time. This behavior is also reproduced
in the simulation. The charging power of the charging points
can be configured (see Section III-C).

There are two categories of tours a PEV drives: regular and
irregular tours. A regular tour is, for example, the commute
to the worksite and back. An irregular tour occurs sometime
between the regular tours and represents, for example, a
spontaneous trip to drive the children to school because the
school bus broke down. When an irregular tour overlaps
with a regular tour, the regular tour will be canceled. The
times when the PEVs start their regular tours are determined
by a normal distribution. Each kind of regular tour has its
own normal distribution whose parameters can be configured
individually. For example, the simulation initiates tours on
weekday mornings and late afternoons, representing rush hour
traffic. On weekends the distribution changes and the tours
are initiated later than on weekdays. Furthermore, the average
amount of tours PEVs drive during weekend days is lower
than on weekdays.

In addition to the changing driving behavior between week-
days and weekends, vacation periods are also included in the
simulation. During vacation periods, significantly fewer trips

Fig. 1. The most important simulation entities.

are simulated because, for example, the commute to work is
omitted. Furthermore, it is assumed that some people are not
at home during vacation time and therefore fewer trips and
charging events take place. Both the daily number of trips
during vacation periods and the vacation periods themselves
(start and end times and duration) can be configured (see
Section III-C).

C. Simulation Input

The simulation is configured via a set of files, which are
read at the beginning of the simulation. The files contain in-
formation regarding charging stations, worksites, and vacation
periods, for instance. Moreover, we account for the inherent
probabilistic nature of charging behavior by incorporating
several distributions in the configuration files. For example, the
duration of a vacation period can be configured via a normal
distribution, i.e., through defining its corresponding mean (µ)
and standard deviation (σ). An excerpt of the simulation
input parameters is shown in Table I. In total, there exist 71
degrees of freedom that can be configured with corresponding
simulation parameters.

D. Simulation Design

As mentioned in Section III-A the simulation contains
events, which define the simulation flow. The events are
triggered by the processes of the simulation. The event flow
for each PEV is depicted in Figure 2.

The simulation of each PEV starts with a WaitEvent. This
event is triggered when a PEV has currently no tour to drive
and/or is sufficiently charged. If a WaitEvent ends, a new
tour begins by triggering a DrivingEvent, which simulates a
tour of a PEV by reducing the PEV’s SoC. In our work-in-
progress implementation the amount of SoC reduction solely
depends on the distance the PEV traveled and its average
speed. It is always decided in advance which tour (regular
or irregular) will be run and when it will start. Moreover, it
has to be determined if the PEV’s battery has to be recharged.
If a charging operation has to be initiated, either a Home-
ChargeEvent or a PublicChargeEvent is triggered, depending
on the PEV’s location. If charging was not necessary or the
charging operation finished, a new WaitEvent is triggered. The
termination condition of the simulation is met as soon as
the simulation time is greater than the configured maximum
simulation time.
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Fig. 2. Event flow for each PEV.

E. Simulation Output

The simulation writes the relevant information of the ex-
ecuted charging operations to a CSV file, such as their start
time and duration. The most important charging operation data
is shown in Table II.

IV. APPLICATION EXAMPLE

A. Overview

We demonstrate the simulation’s applicability with a pre-
diction of regional energy demand on the basis of simulation
results. The output of the simulation is utilized to train an
AutoML-based model. AutoML creates ML models automat-
ically by using dynamically selected ML techniques. The
parameterization of the ML models is also automated. Thus,
AutoML only requires a training and test dataset as input, from
which an ML model is then generated [3].

In this application example, the presented simulation is used
to simulate the charging operations of the city of Stuttgart
(Germany) for an entire year. For this purpose, the simulation
inputs (e.g., locations of the charging stations or the number of
PEVs) are adjusted accordingly. The simulation output is then
passed to the AutoML-library auto-sklearn [13], which creates
an ML model, predicting the regional energy demands. In
order to pass the simulation output to AutoML, the output data
must first be transformed. This transformation is also known
as Feature Engineering (see Section IV-B) in the context of
ML.

B. Feature Engineering

Features are measurable properties of the problem to be
solved and are used for training the ML model. We dynam-
ically divide the region Stuttgart into several partitions and
create corresponding features by transforming and aggregating
the simulation output as follows: (1) All charging operations
that occur in a given partition are aggregated. A partition
is a rectangle whose height and length are adjustable, i.e.,
the number of partitions decreases or increases. (2) Charging
operations are aggregated by time intervals. (3) All other val-
ues describing a charging operation (e.g., charged amount of
energy in kW) are aggregated and averaged. In this application
example, we use different combinations of one partition size
and one time interval at each time to create several AutoML
model candidates. The goal is to determine the combination
that delivers the AutoML model with the best performance.

TABLE I
SIMULATION INPUT PARAMETERS (EXCERPT)

Name Description
ChargingStation.Location Location of the charging station
ChargingStation.MaxCPower Max. charging power of charging station
ChargingStation.NrCP Nr. of charging points at charging station
Context.NrPEV Nr. of simulated PEVs
Home.Location Home location of the PEV’s owner
StartOfWork.NDist.Mean Mean start time of work
StartOfWork.NDist.Sd Standard deviation start time of work

TABLE II
SIMULATION OUTPUT DATA (EXCERPT)

Name Description
ChargingOperation.Duration The duration of the charging operation
ChargingOperation.Kw The charged energy amount in kW
ChargingOperation.Location Location of corresponding charging point
ChargingOperation.Start Start time of the charging operation
Vacation.Present Vacation period present during charging?

Table III shows example input data for a single partition (Id:
6449) and multiple time intervals (with their corresponding
start times) and with various derived features. For example,
several charging operations might occur in a specific time
interval. Hence, we created the feature MajorityChargingType
that describes, which type of charging operation (public or pri-
vate) occurred most often. As a consequence, the total charging
time (feature SumChargingTime) and average charging time
(feature AvgChargingTime) might also differ if multiple charg-
ing operations took place. We used 75% of the data for training
and 25% for testing the models.

V. EVALUATION

A. Simulation

The simulation has to comply with the underlying assump-
tions described in Section III-B. In particular, we analyze and
compare the results for simulating weekdays with weekend
days. Figure 3 contrasts these two cases and shows the
corresponding number of private and public charging oper-
ations for examplary days. We find that the total number of
charging operations on weekends decreases compared to those
on weekdays.

On a weekday, around 5am, private charging operations
decrease noticeably, while charging operations at public charg-
ing stations increase. This is due to the fact that PEVs are
being driven to work sites or other locations. In the evening,
the private charging operations then rise considerably, which
means that the PEVs are coming home again. This is also
supported by the fact that public charging initially decreases
during this period. These observations are consistent with
findings from [14] and [15]. Chowell et al. and Mucelli
Rezende Oliveira et al. report that (1) trips to the worksite
usually start around 5am, (2) reach their maximum at 8am,
and (3) the workday ends on average between 3-4pm. The
renewed increase in public charging operations in the evening
suggests that tours take place again (to locations of public
life and leisure). This behavior is not seen as strongly on
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TABLE III
ML INPUT DATA (EXAMPLE)

StartTime DayOfWeek Partition Id ChargedKwh MajorityChargingType IsVacation SumChargingTime AvgChargingTime
1590364800 monday 6449 39.88 public true 36723.46 36723.46
1590451200 tuesday 6449 55.18 private true 50814.11 25407.05
1591660800 tuesday 6449 41.54 public false 38255.0 12751.66

Fig. 3. Amount of charging operations for an exemplary weekday
(Wednesday) and weekend day (Sunday).

weekend days. On weekends, it can be observed that there is a
strong increase in home charging at around 3pm. This suggests
that PEVs are returning from leisure trips (started earlier) at
these times. The fact that charging does not increase as much
thereafter suggests that many PEVs do not make any more
trips on a weekend day. Thus, on average, a PEV drives less
tours on weekend days than on weekdays.

The overall behavior of the simulation is plausible and
corresponds to the assumptions made in Section III-B.

B. AutoML

Figure 4 compares the AutoML model candidates created
for the combinations of partition sizes (height = length)
and time intervals using the metric R2 score (coefficient of
determination [16], best 1.0, worst 0.0). This metric is defined
as follows:

R2 (y, ŷ) = 1−
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)

2 (1)

Fig. 4. R2 scores for various AutoML model candidates. Each model was
trained with a specific pair of partition- and time interval configuration.

Here, yi is the true value of the i-th sample, ŷi is the
predicted value for the i-th sample, and ȳ is the arithmetic
mean [16].

It can be seen that the AutoML models with the greatest
height/length of 14,000 meters produce inferior results. All
other combinations of edge length and time interval give
acceptable results. Apart from the bottom line (partition
height/length 14,000), the quality of the models also tend to
increase with larger time intervals. In addition, it can be seen
that the best models have neither very small nor very large
partition sizes. The best result is obtained by the model with
partition height/length of 100 meters and a time interval of
86,400 seconds. These observations are also consistent when
applying other metrics, such as Mean Squared Error (MSE).
Here, the best combination found with R2 also shows a low
MSE (799.53) in contrast to the other combinations that exhibit
poor R2 results. For example, for the combination of 14,000
meters and 86,000 seconds, the MSE also reaches the overall
worst result of 11,320,389.63. In summary, depending on the
partition size and time interval, AutoML has created well-
performing ML models based on the simulation output.

VI. CONCLUSION

Simulating PEV charging behavior can support numerous
use cases in the context of electric mobility. We presented
our corresponding simulation and showed that its results can
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be applied to train useful ML models. Employing AutoML
in our application example yields suitable ML models that
can provide very good predictions for the short-term, regional
energy demand that is induced by PEV charging operations.

We will further improve the simulation’s underlying physi-
cal model to take into account additional relevant parameters,
such as the outside temperature, battery temperature, and
PEVs’ charging curves.
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