
Optimisation Modelling with Excel and CMPL2

Mike Steglich
Technical University of Applied Sciences Wildau

15745 Wildau, Germany
e-mail: mike.steglich@th-wildau.de

Abstract – In companies and other organisations, spreadsheet
programs are essential tools for preparing and supporting
decisions, as they are easy to use and available in most
workplaces. For complex problems, optimisation software is
used. This offers a wide range of modelling capabilities but relies
on external data, such as that maintained in spreadsheets. It
therefore makes sense to combine spreadsheets and
optimisation software. Add-ins in spreadsheet programs such as
Excel solver are relatively widespread. They allow interactive
work, although the method of modelling using cell ranges does
not seem to be suitable for complex models. Another possibility
is to use the spreadsheet interfaces of algebraic modelling
languages, which are excellent for modelling complex problems.
Unfortunately, as pure data interfaces, they do not allow
interactive work. There are some approaches that combine
modelling languages with Excel in the form of an Excel add-in,
thus combining interactive work with the modelling possibilities
of the modelling languages. Unfortunately, these solutions are
only available for Windows and some of them seem to have been
discontinued. The consideration of all the advantages and
disadvantages of the available tools led to the motivation to
create an easy-to-use interface between the open-source
modelling language CMPL and Excel, which allows interactive
work and is available for Windows and macOS. This paper
describes this interface.

Keywords – spreadsheet optimisation; algebraic modelling
language; interactive decision-making process; optimisation.

I. INTRODUCTION
To solve optimisation problems, the optimisation routines

must be addressed, as well as the provision and organisation
of the required data. This is often done in companies or other
organisations with spreadsheet programs. This is the reason
why a variety of software solutions have emerged that
combine spreadsheet programs and optimisation environ-
ments. These solutions can be divided into spreadsheet add-
ins and data interfaces.

The best-known spreadsheet add-in is the freely available
Excel solver [1] and its commercial version by Frontline [2].
Similar solutions include the solver in LibreOffice/Calc [3],
the open-source solution OpenSolver [4] [5], Frontline’s add-
in for Google Sheets [6], the Excel add-in Evolver by Palisade
[7], Lindo’s Whats’sBest! [8] and XLOPTIM by Addinsoft
and LocalSolver [9].

In all these approaches, after organising the data, the user
has to define the objective function, the variables and the
constraints in a user dialogue, as shown in Figure 1. These
definitions are made in the form of cell references. After

optimisation, the solution is written in the spreadsheet cells
defined for the variables. Further outputs, such as reduced
costs and shadow prices can be written in separate tables.

Figure 1. Solver add-in in LibreOffice.

With such solver add-ins, data and models can be easily

combined and shared as needed. Since changes to the data lead
to new solutions after new optimisation, interactive work is
possible. On the other hand, the formulation of model
relationships in the form of cell references is not suitable for
complex models. Debugging models is also rather
complicated [10]. Another disadvantage is that some of these
add-ins are only available for Windows (e.g., What’sBest! and
Evolver) and not for macOS.

Another widely used approach is algebraic modelling
languages, which are more suitable for modelling and solving
optimisation problems in terms of their functionality and
flexibility than the solver add-ins. Most of these optimisation
environments, such as AMPL [11], MPL [12], AIMMS [13],
GAMS [14], OPL [15], MOSEL [16] and SAS [17] , offer an
interface with which data can be read from spreadsheet files
and results can be written to it. These interfaces allow the user
to combine the capabilities of the languages with a widely
available data source and to use the possibilities of a
spreadsheet program to further process a solution that has
been found. Unfortunately, these interfaces do not usually
allow interactive work, as the spreadsheet files cannot be used
by other processes while they are being written and thus

24Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

cannot be opened. Some of these software solutions (e.g.,
MPL, MOSEL) offer a VBA library for Microsoft Excel that
allows these languages to be used within Excel [18] [19]. But
such approaches are more suitable for programmers than for
typical corporate decision-makers.

The combination of both an algebraic modelling language
and Excel in an interactive mode seems to be a good approach
to many real decision-making problems in companies and
other organisations. In this context, it is worth mentioning the
commercially available AIMMS Excel add-in [20] and
SolverStudio [10] [21], which is available free of charge.
Microsoft’s Solver Foundation was an interesting offer which
is evidently not being continued [22].

After choosing certain settings like the project file and
licence server, a user of the AIMMS Excel add-in has to define
so-called execution sequences to determine the sets and
parameters to be read into the AIMMS project, the execution
of the problem and the reading back of the results into the
Excel spreadsheet. This facilitates interactivity in the process
of formulating, solving and interpreting an optimisation
problem, albeit in a rather complex way. SolverStudio offers
a simpler approach. This Excel add-in allows several algebraic
modelling languages (PuLP, Pyomo, AMPL, GMPL, GAMS,
CMPL and Gurobi via its Python modelling interface) to be
used within Excel [21]. The first step is to select one of the
modelling languages and formulate the optimisation model.
Then, as shown in Figure 2, the Data Item Editor is used to
define the sets and parameters that are to be read into the
optimisation model and the solution elements to be written
into the Excel spreadsheet after the optimisation is completed.
The optimisation is started either by clicking the smiley in the
toolbar or via the language menu [10].

Figure 2. SolverStudio.

SolverStudio is an excellent and very convenient tool, but

unfortunately the project does not seem to have been
continued seriously, as the last update was in 2016. The
interfaces to the languages depend on IronPython 2.7 which is
no longer up to date. They would have to be redeveloped for

IronPython 3.4, which is currently only available as an alpha
version [23]. Another disadvantage is that both SolverStudio
and the AIMMS Excel add-in are only available for Windows
and not for macOS.

One of the languages supported by SolverStudio is CMPL
[24], whose interface to SolverStudio was developed by the
author of this paper. The problem with the non-updated
SolverStudio and the consideration of all the advantages and
disadvantages of all available tools led to the motivation to
create an easy-to-use interface between this modelling
language and Excel, which allows interactive work and is
available for Windows and macOS.

This paper describes this interface. After a short
introduction to CMPL, the interface CmplXlsData is
explained, followed by an example.

II. CMPL
<Coliop|Coin> Mathematical Programming Language

(CMPL) is a mathematical programming language and a
system for the mathematical programming and optimisation
of linear and quadratic optimisation problems. The CMPL
syntax is similar in formulation to the original mathematical
model but also includes syntactic elements from modern
programming languages. CMPL is intended to combine the
clarity of mathematical models with the flexibility of
programming languages [25].

A typical LP problem is the product-mix problem. The aim
is to find an optimal quantity for the products, depending on
given capacities. The objective function is defined by the
profit contributions per unit 𝑐	and the variable quantity of the
products 𝑥. The constraints consist of the use of the capacities
and the ranges for the decision variables. The use of the
capacities is given by the product of the coefficient matrix 𝑎
and the vector of the decision variables x and restricted by the
vector of the available capacities 𝑏. The simple example

can be formulated in CMPL as follows:

01
02
03
04
05
06
07
08
09
10

par:
 c := (25, 20);
 a := ((1.5, 2), (12, 5));
 b := (100, 150);
var:
 x[defset(c)] : real[0..];
obj:
 c^T * x ->max;
con:
 a * x <=b;

Listing 1. The product-mix problem in CMPL

1 2

1 2

1 2

1 2

25 20 max!
. .
1.5 2 100
12 5 150
, 0

x x
s t
x x
x x

x x

+ ®

+ £
+ £
³

25Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

A CMPL model usually consists of four sections. In the
par section (lines 01–04), sets and parameters (here the
vectors 𝑐 and	𝑏 and the matrix 𝑎) must be specified. The var
section (lines 05–06) is used to define the variables of the
problem. In line 06, a vector x of non-negative continuous
variables is defined using the definition set of the parameter
vector c. The objective function in the obj section (lines 07–
08) and the constraints in the con section (lines 09–10) are
specified by vector and matrix multiplications.

CMPL executes CBC, GLPK, Gurobi, SCIP or CPLEX
directly to solve the generated model instance. Because it is
also possible to transform the mathematical problem into MPS
or Free-MPS, alternative solvers can be used.

CMPL is a COIN-OR [26] open-source project initiated
by the Technical University of Applied Sciences Wildau.
Binaries for Windows, macOS and Linux can be downloaded
free of charge from http://coliop.org/.

The CMPL distribution contains Coliop, which is CMPL’s
Integrated Development Environment (IDE), application
programming interfaces (APIs) for Python3 and Java
(pyCmpl and jCmpl) and, in CMPLServer, [27] an XML-
RPC-based web service for distributed and grid optimisation.

III. CMPLXLSDATA
CmplXlsData was introduced with CMPL version 2.0 and

is CMPL’s interface for reading sets and parameters from an
Excel file and for writing optimisation results to an open Excel
file. If the Excel file is not open, CMPL will open it
automatically and the results of the optimisation can be seen
immediately. Please note, this feature is only available on
Windows and macOS if Microsoft Excel is installed.
CmplXlsData is mainly implemented with Python3 using the
(open-source) Python for Excel library by xlwings [28].

As in SolverStudio or the AIMMS Excel add-in, a user
must specify which data from an Excel file should be read into
a CMPL model and which results should be written back.
These specifications are made in a CmplXlsData file. A
CmplXlsData file is a plain text file that contains the definition
of parameters and sets with the cell addresses of their values
in the specified Excel file in a particular syntax. Additionally,
the optimisation results to be written to Excel with their cell
addresses can be specified in this file.

A CmplXlsData file contains usually the three sections
@source, @input and @output.

The @source section is intended to specify the Excel file
and optionally the sheet to be used to read sets and parameters
and to write the optimisation results.

@source Section for specifying the Excel
file and the default sheet

%file <fileName> Name of the Excel file

[%sheet <sheetName>]

Optional argument to specify the
name of the active sheet
In each entry for the inputs and
the outputs, the sheet can be
specified directly.

Listing 2. Source section

In the @input section, the sets and parameters to be read
into the CMPL model have to be specified with their cell
ranges.

@input Section for specifying sets and

parameters to be read into CMPL

%name <cell>

A scalar parameter name is
assigned a single string or
number available in Excel at the
specified cell.

%name set[[rank]] ¿
 <cellRange>

Definition of an 𝑛-tuple set
A set definition starts with the
name followed by the keyword
set. For 𝑛-tuple sets with 𝑛 > 1
the rank of the set is to be
specified enclosed by square
brackets.
The set is assigned the entries
available in Excel in the cells
specified in the cell range
reference.

%name[set[,set1, ¿
...]] <cellRange>

Definition of a parameter array
The specification of a parameter
array starts with the name
followed by one or more sets,
over which the array is defined.
The data entries can be strings or
numbers and have to be found at
the specified cell range reference
in Excel.

Listing 3. Input section

The @output section specifies the optimisation result

elements to be written to the Excel file. These results are
displayed directly in the Excel file.

@output Section for specifying the

optimisation results to be written
to Excel

%name.activity ¿
 <cell>
%name.type <cell>
%name.lowerBound ¿
 <cell>
%name.upperBound ¿
 <cell>
%name.marginal ¿
 <cell>

Singleton variable or constraint
For a singleton variable or
constraint named name, the
activity, type, limits and dual
values can be written to Excel in
the cell.
The name is followed by a dot
and one of the keywords
(activity, type,
lowerbound, upperbound,
marginal) for the information
to be written to Excel.

%name[set[,set1, ¿
...]].activity ¿
 <cellRange>

Arrays of variables or constraints
A complete array of variables or
constraints named name, the
activity, type, limits and dual

26Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

%name[set[,set1, ¿
...]].type ¿
 <cellRange>
%name[set[,set1, ¿
...]].lowerBound ¿
<cellRange>
%name[set[,set1,
¿...]].upperBound ¿
 <cellRange>
%name[set[,set1, ¿
...]].marginal ¿
 <cellRange>

values can be written to Excel in
the specified cell range.
The specification of an array of
variables or constraints starts
with the name followed by one
or more sets, over which the
array is defined. This is followed
by a dot and one of the keywords
for the attributes activity,
type, lowerbound,
upperbound, marginal of
the result information to be
written to Excel.

%objName <cell> Writes the name of the objective
function to Excel in the specified
cell

%objSense <cell> Writes the objective sense

%objValue <cell> Writes the objective function
value

%objStatus <cell> Writes the status of the objective
function

%nrOfVars <cell> Writes the number of the
variables

%nrOfCons <cell> Writes the number of the
constraints

%solverName <cell> Writes the name of the solver

%solverMsg <cell> Writes a message of the solver

Listing 4. Output section

To connect a CmplDataFile with the CMPL model, the

command line option xlsdata is used. The arguments of
this command line option define parameters and sets for
CMPL, whose source Excel file and the corresponding cell
ranges are specified in a CmplXlsData file. It is recommended
that this command line option be used in the CMPL header.

%xlsdata [filename] : [set1 set[[rank]]] ¿
 [, set2 set[[rank]] , …]

%xlsdata [filename] : [param1] ¿
 [, param2 , …]

%xlsdata [filename] : [paramArray1[set]] ¿
 [, paramArray2[set] , …]

Listing 5. CmplXlsData in CMPL header

The first argument is the file name. If the file name
contains white spaces, the name must be enclosed in double
quotes. If filename is not specified, the generic name
model.xdat is used, where model.cmpl is the name of
the CMPL file. After the colon, the sets, scalar parameters and
parameter arrays to be read can be specified and separated by
commas.

IV. CMPLXLSDATA EXAMPLE
In this section, a transhipment problem is used to illustrate

the functionalities of CmplXlsData. A transhipment model is
intended to organise an optimal supply of a homogeneous
good between a set of sources (origins, suppliers), a set of
transhipment nodes and a set of sinks (destinations,
customers) in order to minimise the total transportation cost
(or distances, times, etc.) [29].

In this example, a transport plan between three plants, two
warehouses and four distribution centres is to be determined
to minimise the total transport costs. The unit transport costs
are shown in the picture below as weights at the edges. The
capacity of each possible road (edge) is restricted to 500 units
due to the vehicle pool.

Figure 3. Transhipment problem example.

In the first step, an Excel file transhipment.xlsx

containing the sheet transhipment is created. As shown
in Figure 4, the IDs, supplies and demands of the nodes are
given in the columns A to C. Please note that the transhipment
nodes W1 and W2 have to be split (W1a, W1b, W2a, W2b)
owing to their capacities and the fact that the min-cost flow
model does not allow capacities for nodes [30]. Therefore,
each transhipment node must be split into two nodes, with a
cost-free edge connecting the two nodes. The maximum flow
on such an edge equals the capacity of the transhipment node.
Consequently, the definition of the 2-tuple set of the edges in
the columns F and G also contains these two auxiliary edges
W1a to W1b and W2a to W2b in addition to the normal edges.

The corresponding cost rates, minimum and maximum
capacities of these edges are given in columns H to J. The
columns K and M are for the activities and marginal values of
the flow variables. The costs in column L yield the product of
the activities in column K and the cost rates in column H.
These values are displayed after the optimisation in addition
to the objective function value in cell C15 and the activities of
netFlow constraints of the nodes in column D.

P1

P2

P3

W1

D1

D2

D3

D4

W2

400

500

600

350

450

500

200
750

800
50

60
40
50

70
30

20

10

30

40

70

30

30

50

Supplies

[units]

Demands

[units]

Capacities

[units]

Plants Warehouses Distribution centres

Transp. costs

[Euro/unit]

Transp. costs

[Euro/unit]

27Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

Figure 4. Transhipment problem in Excel.

The CmplXlsData transhipment.xdat file starts in

the source section with the entry for the Excel file
transhipment.xlsx and the sheet transhipment
from which the data is to be read and into which the results
are to be written.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22

@source
 %file < transhipment.xlsx >
 %sheet < transhipment>

@input
 %edges set[2] < F3:G18 >
 %nodes set < A3:A13 >

 %c[edges] < H3:H18 >
 %d[nodes] < C3:C13 >
 %s[nodes] < B3:B13 >

 %minCap[edges] < I3:I18 >
 %maxCap[edges] < J3:J18 >

@output
 %x[edges].activity < K3:K18 >
 %x[edges].marginal < M3:M18 >

 %netFlow[nodes].activity < D3:D13 >

 %objValue < C15 >

Listing 6. CmplXlsData file of the transhipment problem

The following input section usually starts with the

definition of index sets that will later be used for parameter
arrays. In line 06, a 2-tuple set edges is defined, to which the
IDs of the edges stored in cells F3:G18 are assigned. The
following line defines the set nodes and assigns the IDs
given in the Excel sheet in the cell range A3:A13. These sets
are used to define the parameter arrays for the cost rates c of
the edges (line 09), as well as the supplies s and demands d
of the nodes (lines 10 and 11) and assigns the data stored in
the cell ranges indicated in the angle brackets. The minimum
and maximum capacities (minCap and maxCap) of the
edges are given in lines 13 and 14.

The output section is designed to enable all the
requested results of the optimisation to be written into the

specified Excel sheet. In lines 17 and 18 it is specified that the
activities and marginals of the flow variables x must be
written in the cell ranges K3:K18 and M3:M18. The
activities of the netFlow constraints of the nodes should be
displayed in D3:D13 and the objective function value in cell
C15.

These specifications are connected with the corresponding
CMPL model using the CMPL header entry %xlsdata in
the first line of the model.

01

02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17

%xlsdata : nodes set, s[nodes],
d[nodes], edges set[2], c[edges],
maxCap[edges]

var:
 { [i,j] in edges: x[i,j] :
 real[minCap[i, j]..maxCap[i, j]];
 }

obj:
 sum{[i,j] in edges:
 c[i,j]*x[i,j]} ->min;

con:
 {i in nodes : netFlow[i]:
 sum{j in edges *> [i,*] : x[i,j]}-
 sum{j in edges *> [*,i] : x[j,i]}=
 s[i] - d[i];
 }

Listing 7. CMPL file of the transhipment problem

The variables of the model are organised in an array x,

which is defined by using the 2-tuple set edges. They are all
continuous variables with lower and upper bounds defined in
the vectors minCap and maxCap. These variables are the
flows of the uniform good on the edges (lines 04–06). The
objective function to be minimised is defined in the obj
section (lines 09–10) as the sum over all edges of the product
of the unit transport costs c[i,j] and the flow x[i,j] on
the edge. For all nodes, a flow balance constraint
netFlow[i] has to be created in which the difference
between the outgoing and incoming flow on the left-hand side
must be equal to the difference between the supply s[i] and
the demand d[i] of this node on the right-hand side (lines
13–17).

The results can be found after the optimisation in the cells
specified in the CmplXlsData file as shown in Figure 5.

The planned quantities on the edges can be seen in column
K. A few of the edges are unused, whereby the marginal
values in column M show the reduced cost of these non-basic
variables. For fully utilised edges, the marginals show the
shadow prices. For example, the auxiliary edge for the
transhipment node W1 has a shadow price of 20 due to the
fully used capacity of 800 units. The activities of the
netFlow constraints written in column D show that all the
supply, demand and flow balance constraints of the nodes are
satisfied. This transport plan results in a minimum transport
cost of 100,500 which is shown in cell C15.

28Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

Figure 5. Results for the transhipment problem in Excel

CMPL’s Excel interface CmplXlsData is not an add-in,

but it enables interactive working, as both Excel and CMPL’s
IDE Coliop can be run simultaneously (Figure 6). Each
change to the data organised in Excel results in new solutions
when CMPL is restarted, which are immediately displayed in
the specified cell ranges in Excel. If the Excel file is not open,
CMPL opens it automatically.

Figure 6. Interactive mode with Excel and Coliop

Unlike the AIMMS Excel add-in and SolverStudio,

CmplXlsData is available for Windows and macOS. An
additional installation routine to connect Excel and CMPL is
not required. A user only needs to install Excel and CMPL.
The connection between the two is established automatically
by CmplXlsData.

As shown in the example, this interface is easy to use as it
provides a simple and structured syntax similar to CmplData,
which is another data interface of CMPL.

V. SUMMARY
This paper deals with the combination of spreadsheet

programs and optimisation software.
Spreadsheet programs, which are easy to use and available

at most workplaces, are essential for preparing and supporting
decisions. It is reasonable to connect spreadsheet programs
with optimisation software to combine the modelling
capabilities of optimisation software with the data maintained
in spreadsheets. Such software solutions can be divided into
spreadsheet add-ins and data interfaces, which are
investigated in this work. Add-ins in spreadsheet programs
such as the Excel solver add-in allow interactive work,
although modelling with cell ranges does not seem suitable for
complex models. Data interfaces to spreadsheets of algebraic
modelling languages, which are excellent for modelling
complex problems, do not allow interactive work. In addition,

there are some approaches that combine modelling languages
with Excel in the form of an Excel add-in and thus combine
interactive work with excellent modelling possibilities.
Unfortunately, these are only available for Windows and some
of them seem to have been discontinued.

The consideration of all the advantages and disadvantages
of the available tools led to the motivation to create
CmplXlsData, which is CMPL’s interface to Excel. It is an
easy-to-use interface between this modelling language and
Excel, which allows interactive work and is available for
Windows and macOS. This paper describes this interface with
its main functionalities and an illustrative example.

REFERENCES

[1] Microsoft, “Define and solve a problem by using Solver,”

2021. [Online]. Available: https://support.microsoft.com/en-
us/office/define-and-solve-a-problem-by-using-solver-
5d1a388f-079d-43ac-a7eb-f63e45925040. [retrieved: July
2021].

[2] Frontline, “Excel Solver – Overview and Example” 2021.
[Online]. Available: https://www. solver.com/excel-solver-
overview-and-example. [retrieved: July 2021].

[3] LibreOffice, “Solver,” 2021. [Online]. Available:
https://help.libreoffice.org/7.0/en-US/text/scalc/01/
solver.html?DbPAR=CALC. [retrieved: July 2021].

[4] OpenSolver, “About OpenSolver,” 2021. [Online].
Available: https://opensolver.org. [retrieved: July 2021].

[5] A. J. Mason, “OpenSolver – An Open Source Add-in to
Solve Linear and Integer Progammes in Excel,” in
Operations Research Proceedings 2011, Berlin and
Heidelberg, pp. 401-406, 2012.

[6] Frontline, “Solver - Add-on for Google Sheets,” 2021.
[Online]. Available: https://workspace.google.com/
marketplace/app/solver/539454054595. [retrieved: July
2021].

[7] Palisade, “Evolver - Innovative Optimization for
Spreadsheets,” 2021. [Online]. Available: https://www.
palisade.com/evolver/default.asp. [retrieved: July 2021].

[8] L. S. Inc., “ What'sBest! 17.0 - Excel Add-In for Linear,
Nonlinear, and Integer Modeling and Optimization,” 2021.
[Online]. Available: https://www.lindo.com/index.php/
products/what-sbest-and-excel-optimization. [retrieved: July
2021].

[9] Addinsoft, “The leading Optimization Solver for Microsoft
Excel®,” 2021. [Online]. Available:
https://www.xloptim.com/en. [retrieved: July 2021].

[10] A. J. Mason, “SolverStudio: A New Tool for Better
Optimisation and Simulation Modelling in Excel,”
INFORMS Transactions on Education, vol. 14, no. 1, pp. 45-
52 , 2013.

[11] AMPL, “AMPL Direct Spreadsheet Interface,” 2021.
[Online]. Available: https://ampl.com/resources/new-
features/spreadsheets/. [retrieved: July 2021].

[12] M. Software, “MPL for Windows Manual - Import Data from
Excel Spreadsheet,” 2021. [Online]. Available: http://www.
maximalsoftware.com/mplman/mpw07060.html. [retrieved:
July 2021].

29Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

[13] A. B.V., “AIMMS Excel Library - AXLL,” 2021. [Online].
Available: https://how-to.aimms.com/Articles/85/85-using-
axll-library.html. [retrieved: July 2021].

[14] GAMS, “Data Exchange with Microsoft Excel,” 2021.
[Online]. Available: https://www.gams.com/latest/docs/
UG_DataExchange_Excel.html. [retrieved: July 2021].

[15] IBM, “ILOG CPLEX Optimization Studio/ 20.1.0 /
Spreadsheet Input/Output,” 2021. [Online]. Available:
https://www.ibm.com/docs/en/icos/20.1.0?topic=sources-
spreadsheet-inputoutput. [retrieved: July 2021].

[16] FICO, “The Excel interface,” 2021. [Online]. Available:
https://www.fico.com/fico-xpress-optimization/docs/latest/
mosel/mosel_data/dhtml/secsetup_sec_secexcelsetup.html.
[retrieved: July 2021].

[17] V. DelGobbo, “Integrating SAS® and Microsoft Excel:
Exploring the Many Options Available to You,” SAS
Institute Inc., https://www.sas.com/content/dam/
SAS/support/en/sas-global-forum-proceedings/2019/2991-
2019.pdf, 2019 [retrieved: July 2021].

[18] M. Software, “OptiMax Component Library,” 2021.
[Online]. Available: http://www.maximalsoftware.com/
optimax/. [retrieved: July 2021].

[19] FICO, “Launching Mosel from Excel using VBAFICO
Xpress Optimization Examples Repository /,” 2021.
[Online]. Available: https://examples.xpress.fico.com/
example.pl?id=excelmosel1. [retrieved: July 2021].

[20] AIMMS B.V., “AIMMS - The Excel Add-In User’s Guide,”
https://download.aimms.com/aimms/download/references/A
IMMS_excel.pdf, 2016. [retrieved: July 2021]

[21] A. J. Mason, “SolverStudio,” 2021. [Online]. Available:
https://solverstudio.org. [retrieved: July 2021].

[22] Microsoft, “Solver Foundation,” 2014. [Online]. Available:
https://docs.microsoft.com/en-us/previous-versions/
msdn10/hh145003(v=msdn.10). [retrieved: July 2021].

[23] .NET Foundation, “IronPython - the Python programming
language for .NET,” 2021. [Online]. Available:
https://ironpython.net. [retrieved: July 2021]

[24] M. Steglich and T. Schleiff, “CMPL,” 2021. [Online].
Available: http://coliop.org. [retrieved: July 2021]

[25] M. Steglich and T. Schleiff, “CMPL: Coliop Mathematical
Programming Language,” Wildauer Schriftenreihe -
Entscheidungsunterstützung und Operations Research, vol.
1, 2010.

[26] COIN-OR, 2021. [Online]. Available: https://www.coin-
or.org. [retrieved: Sep 2021]

[27] M. Steglich, “CMPLServer - An open source approach for
distributed and grid optimisation,” AKWI Anwendungen und
Konzepte der Wirtschaftsinformatik, no. 4, pp. 9-21, 2016.

[28] xlwings, “xlwings - Python for Excel,” Zoomer Analytics
GmbH, 2021. [Online]. Available: https://www.xlwings.org.
[retrieved: July 2021]

[29] F. Hillier and G. Lieberman, Introduction to Operations
Research (International edition), vol. 10th ed., New York et
al.: McGraw-Hill, 2015.

[30] M. Steglich, D. Feige, and P. Klaus, Logistik-
Entscheidungen: Modellbasierte Entscheidungsunterstütz-
ung in der Logistik mit LogisticsLab, Berlin and Boston: De
Gruyter, 2016.

30Copyright (c) IARIA, 2021. ISBN: 978-1-61208-898-3

SIMUL 2021 : The Thirteenth International Conference on Advances in System Simulation

