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Abstract— Severe adolescent idiopathic scoliosis (AIS) is 

corrected by surgical procedures that necessitate ligament 

releases. To determine appropriate release allotments, soft 

tissues must be localized on a patient-specific basis. However, 

routine computed tomography (CT) imaging precludes 

traditional, voxel-based soft tissue localization. Fortunately, 

recent studies have proposed top-down segmentation methods, 

which elucidate soft tissues using pre-operative CT volumes. 

While the accuracy of vertebral segmentations obtained from 

these methods has been determined, the accuracy of soft tissue 

segmentations has not. To ensure the soft tissue segmentation 

methods are clinically applicable, soft tissue validation must 

occur. This study presents an evaluation measure for surmised 

soft tissues, accomplished through the use of synthetic CT 

(sCT) volumes. The sCTs have geometrically scoliotic shapes 

and provide ground truth information, which was used to 

evaluate soft tissue segmentations and establish their clinical 

utility. This proposed validation method is achieved fully in 

silico and is generically applicable, allowing future soft tissue 

elucidation methods to be assessed. 

Keywords-patient-specific modeling; osseoligamentous mesh; 

synthetic CT; in silico validation; adolescent idiopathic scoliosis. 

I.  INTRODUCTION 

A. Background 

Adolescent idiopathic scoliosis (AIS) affects about 30 
million individuals worldwide [1]. If not resolved, AIS can 
lead to serious back problems, decreased lung capacity, and 
heart damage. AIS treatments depend on the patient’s 
primary, lateral spine curvature. Severe curvatures, defined 
by angles greater than 45 degrees, are resolved with invasive 
surgical interventions like posterior spinal fusion (PSF) 
[1][2]. PSF surgical outcomes seek to prevent progression, 
maintain coronal and sagittal alignment, level the shoulders, 
correct the spinal deformity, and preserve motion segments 
[1]. Prior to PSF operations, computed tomography (CT) or 
biplanar X-ray imaging is used to evaluate curvature angles 
and determine correction strategies [3]. Unfortunately, such 
images provide little understanding as to how patients will 
respond intraoperatively during corrective procedures [4]. 
Thus, extra steps to mobilize the spine are performed, 
resulting in increased morbidity, operating room time, and 
patient blood loss [5]. To make operations safer and more 

efficient, patient-specific, biomechanical, finite element (FE) 
simulations may be used to explore various corrective 
strategies and approaches [6]. FE biomechanical simulation 
offers risk-free ways to determine necessary corrective 
forces when multi-material, volumetric meshes encompass 
all patient anatomy, including soft tissues [7]. Unfortunately, 
the nature of pre-operative CT and X-ray imaging modalities 
makes it nearly impossible to localize soft tissues and 
determine required ligament releases needed to mobilize the 
spine during PSF correction. 

B. Related Work 

A recent method for ligament segmentation using a top-
down segmentation approach, based on anatomy that is 
conspicuous in CT imaging, has been proposed [8]. By 
exploiting an osseoligamentous computer-aided designed 
(CAD) mesh, context-aware deformable registration of the 
osseoligamentous mesh onto vertebral anatomy of CT 
imaging allows for the position of volumetric soft tissues, 
including ligaments, to be surmised on a patient-specific 
basis. Fig. 1 shows the method. While registration accuracy 
of this method has been evaluated for anatomy conspicuous 
in CT and magnetic resonance imaging (i.e., vertebrae and 
intervertebral discs, respectively), validation of the ligament 
positioning has not been performed. Such validation requires 
that ground truth segmentations of ligaments within CT 
images be known. However, if ground truth ligament 
segmentations could be obtained manually, the need for top-
down segmentation would be obviated: bottom-up, voxel-
based methods would be sufficient to determine ligament 
positions. The inability to obtain expertly segmented ground 
truth ligaments presents a serious roadblock. One option for 
the elucidation of ligament ground truths is through synthetic 
CT (sCT) imaging. Literature describing synthetic image 
creation is often focused on the conversion of sCTs from 
other imaging modalities, namely magnetic resonance 
imaging (MRI). Methods creating sCTs are wide-ranging 
and use simple algorithms or computationally expensive, 
conditional generative adversarial networks [9][10][11]. 
However, these methods disregard the soft tissues that are 
conspicuous within MRIs but are non-conspicuous in CTs 
and do not transfer soft tissues information during MRI to 
sCT conversion. 
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Figure 1.  Tapp et al. overview [8].  (Left to right) The method begins with an osseoligamentous CAD torso, with red and green coloring for bones and soft 
tissues, respectively. Then a patient CT is fed to a neural network, which automatically outputs vertebrae segmentations. CAD vertebrae and vertebrae 

segments are affinely aligned using a corresponding particles system. This is followed by elastic deformations of the CAD to a patient-specific mesh. 

Therefore, an alternative scoliotic sCT volume creation 
method that maintains soft tissue positioning information is 
necessary [12]. The method benefits from having its 
foundation rooted in FE analyses. While many FE studies 
have explored AIS etiology, they end after scoliotic 
induction is completed [4][13][14]. If post-study FE meshes 
containing volumetric or 3-dimensional (3-D) ligaments are 
converted to sCT volumes, the ligament ground truth 
segmentation roadblock may be circumvented. AIS-shaped 
sCT volumes would have corresponding ligament ground 
truths, provided by the FE meshes. The ligament positions 
surmised by the top-down segmentation approach could then 
be validated with the FE mesh-based ground truths. This 
validation would assist in substantiating methods that 
localize ligaments in routine CT and X-ray imaging; again, 
these methods provide a critical step toward determining the 
minimum number of ligament releases required to mobilize 
the spine when AIS patients undergo PSF operations. 

This study examined the accuracy of all anatomy 
generated by the top-down segmentation approach using an 
sCT-based validation measure, which provided 3-D ground 
truth segmentations for vertebrae, intervertebral discs (IVDs) 
and other soft tissues. sCT volumes were generated for the 
lumbar and thoracolumbar sections of the spine with a 
conversion method that harnesses FE meshes, which contain 
3-D bone and soft tissue structures and have been deformed 
by FE analysis methods to appear geometrically scoliotic. 
After applying the top-down segmentation method of Tapp 
et al. to the sCT volumes, the surmised, patient-specific 
anatomy is compared to its respective ground truths. This 
contribution provides the medical image analysis community 
with the means to verify the accuracy of methods surmising 
soft tissues, which are practically impossible to manually 
segment.  

II. METHODS 

A. Creating Synthetic CT Volumes 

The FE spine mesh with 3-D ligaments was developed 
into a synthetic CT volume that is geometrically scoliotic 
with the process seen in Fig. 2. The process begins by 
running FE analyses on FE spine meshes. All FE spine 
meshes contain tetrahedral, 4-node elements that represent: 
cortical bone, trabecular bone, posterior bone, vertebral 

endplates, cartilaginous endplates, nucleus pulposus, annulus 
matrices, annulus fibers and any spinal ligaments. Material 
properties for elements of all the FE spine mesh are derived 
from published studies and are shown in Table 1 
[15][16][17][18]. A neo-Hookean model represents only 
trabecular and posterior bone, the nucleus pulposus and both 
endplates. Cortical bone uses an orthotropic elastic material. 
The annulus fibrosus is represented with a compressible 
Holmes-Mow matrix model and fiber components that apply 
an exponential power law to describe strain energy density. 
All 3-D ligaments use the same viscoelastic, coupled, 
transversely-isotropic Mooney-Rivlin material, which was 
experimentally determined [17][18]. This study utilized 
FEBio for FE analysis because of its credibility and open-
source availability [19]. Scoliotic shapes were induced 
phenomenologically, by applying simplistic boundary 
conditions to FE spine meshes. Linear, prescribed, transverse 
displacement was applied to all nodes comprising the bony 
structure of the most central vertebra. To imitate that FE 
spine was part of a larger column, upper vertebral endplates 
of the most superior vertebrae and lower vertebral endplates 
of the most inferior vertebra were fixed. Linear boundary 
conditions were continuously applied in a transient manner 
until a subsequent time step caused deformations that 
prematurely terminated the run of the FE analysis. 

Once the FE spine meshes undergo FE analyses to appear 
scoliotic, meshes are converted to sCT volumes. First, FE 
spine meshes are exported as triangular surface meshes, and 
the surface mesh is resampled into a volume using a true CT. 
The resampling maintains the mesh’s structure but adjust its 
size and spacing to match that of the true CT. Then, using 
Elastix, the true CT is deformably registered onto the newly 
created mesh volume, which is structurally identical to the 
surface mesh it was created from [20]. This volume-to-
volume registration method consistently transfers Hounsfield 
unit values from the true CT to the sCT. A mask that 
obscures bone bereft portions of the true CT will explicitly 
preserve the original image intensity values that surround 
bony structures of the true CT and rapidly produce sCT 
volumes with Hounsfield unit (HU) intensity values for all 
portions of the image. The triangular surface mesh that was 
exported after the FE analysis is the ground truth for the sCT. 
The ground truth can be stripped of bone or soft tissues to 
allow for the use of each type of anatomy, as needed. 
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TABLE I.  MATERIAL PROPERTY CONSTANTS OF THE FE MESHES  

Structure Materials Property Constants Ref 

Cortical 

bone 

Orthotropic          

elastic 

E1 = 8k MPa, E2 = 8k MPa, 
E3 = 12k MPa, v12 = 0.4, 

v23 =   0.3, v31 = 0.35 

15,16 

Trabecular 

bone 
Neo-Hookean E = 100 MPa, v = 0.2 15,16 

Posterior 

bone 
Neo-Hookean E = 3500 MPa, v = 0.3 15,16 

Vertebral 
endplate 

Neo-Hookean E = 1000 MPa, v = 0.3 15,16 

Cartilagino

us endplate 
Neo-Hookean E = 23.8 MPa, v = 0.42 15,16 

Nucleus 

pulposus 
Neo-Hookean E = 1 MPa, v = 0.49 15,16 

Facet 

cartilage 
Neo-Hookean E = 30 MPa, v = 0.4 15,16 

Annulus 

matrix 
Holmes-Mow E = 1 MPa, ẞ1 = 3.4 15,16 

Annulus 

fibers 

Fiber-exp-

power 

𝛼2 = 65, ẞ3 = 2, ξ4 = 0.296 

MPa 
15,16 

3-D 

Ligaments 

Coupled 

transversly-

isotropic 
Mooney-Rivlin 

c1 = 2.1660 MPa, c3 = 
0.2677 MPa, c4 = 83.0594, 

c5 = 535.5720, k5 = 

436.845 MPa, 𝜆6= 1.0498 

17,18 

a. For 3-D ligaments: 1: exponential stiffening coefficient, 2: coefficient of exponential argument, 3: 

power of exponential argument, 4: fiber modulus, 5: bulk modulus, 6: max fiber straightening stretch 

 

Figure 2.  Overview of the FE mesh to sCT volume method [12]. The FE 

mesh is deformed, converted to an image registered with a true CT volume. 

B. Generating Volume-Specific, Osseoligamentous Meshes 

While more details can be found in the manuscript by 
Tapp et al., a brief outline of how to develop a volume-
specific osseligamentous spine mesh is described below. As 
mentioned, because of the inconspicuous presentation of soft 
tissues in CT imaging, segmenting ligaments by intrinsic 
voxel-based or neural network (NN) techniques is precluded. 
Therefore, the top-down, segmentation approach must begin 
with an anatomist-developed CAD mesh of a torso. The 
torso’s structure is characteristic of a healthy, average, adult 
human and contains bone, ligament, and some other soft 
tissues, but no muscle. The deformable registration process 
of the CAD mesh first requires it to be approximately 
positioned within the CT image space. To accomplish this, 
vertebral segmentations, attained from the sCT using a deep 
learning NN, are utilized as a basis for the positioning of the 
CAD mesh vertebrae. The deep learning NN obtains 
vertebral segmentations in a fully automatic, 3-step, coarse-
to-fine process [21]. The first step predicts approximate x 

and y coordinates of the spine as x̂spine ∈ ℝ2 using a U-Net 

variant. The second step localizes the center of the vertebral 
bodies through a Spatial-Configuration-Net (SC-Net), which 
is comprised of 2 components that work together to 
determine local landmark appearance while considering the 

landmark’s spatial configuration. The predicted spine 
coordinate x̂spine of the first step is used to narrow the 
portions of the sCT processed. Finally, individual vertebrae 
are segmented with the same U-Net variant as in Step 1. The 
centroids output by SC-Net provide a semantic label that 
crops the region around the landmark, allowing vertebrae to 
be segmented at full resolution and independently of one 
another. The resulting output segmentations are resampled to 
their original input position in the overall sCT volume. The 
CAD meshes are then aligned to relevant sCT image space 
by an affine transformation that exploits these NN-derived 
vertebrae segmentations. The CAD vertebrae meshes and the 
NN vertebrae segmentations are populated with surface 
particles that spatially correspond between both vertebrae’s 
surfaces [22]. The particles guide an initial affine transform. 

After the affine transform of the CAD mesh onto relevant 
sCT space, the CAD mesh is deformably registered [23]. 
This occurs by lumping all CAD mesh vertices as a single 
mass component, which is driven toward pertinent CT 
voxels. The meshes’ vertex motions are solved using an 
implicit Euler scheme that determines Newtonian dynamics-
based forces described by ∱i = 𝛼i(Ri - Pi), where Pi is a vertex 
position and ∱i is the force that attracts Pi towards its target 
vertex, Ri. Weighting factors consider image gradients and 
upper-quartile voxel intensities to encourage CAD vertebrae 
deformation toward highly conspicuous aspects of the sCT, 
i.e., the sCT’s vertebrae. Simultaneously, anatomy around 
the vertebral portions of the CAD mesh is locally deformed 
due to the vertices mass grouping, surmising positions of soft 
tissues, such as ligaments, that are inconspicuous in the sCT. 

C. Validation Metrics 

Several validation metrics were employed to evaluate the 
volume-specific meshes generated through the deformable 
registration of the osseoligamentous CAD mesh onto sCT 
volumes. The metrics compare the post-registered meshes 
with their respective ground truth segmentations, which are 
given during the FE spine mesh to sCT conversion pipeline. 
The volume-specific meshes are converted to segmentations 
prior to comparison to their ground truths. For more detailed 
descriptions of the comparisons utilized, we refer the reader 
to Yeghiazaryan & Voiculescu [24]. Briefly, three accuracy 
metrics for segmentation that are commonly considered to be 
gold standards are described. The first metric, Dice similarity 
coefficient (DSC), volumetrically compares the number of 
segment elements that overlap with the total elements found 
in the ground truth segmentations; the DSC of a segment 
compared to itself would be 1. A second metric, average 
Hausdorff distance (aHD), compares the overall surfaces of 
segmentations, measuring disparity, in millimeters (mm), 
between the surface a segmentation and the corresponding 
surface of its ground truth. The third metric is Intersection 
over Union (IoU), also known as Jaccard similarity. This 
metric is quite similar to DSC, but penalizes false positives 
to a greater degree. Again, a segment compared to itself is 
equal to 1. Additional metrics that are not described in detail 
are: 95th percentile HD (95%) in mm, sensitivity (SE), 
specificity (SP), false positive rate (FP) and false negative 
rate (FN). 
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III. RESULTS 

A. Synthetic CT Volumes 

The CAD-based FE meshes with 3-D ligaments were 
deformed using prescribed displacement to create a scoliotic 
curve profile. For the CAD-based lumbar mesh, the L3 
vertebra was displaced by 5.1 mm and for the CAD-based 
thoracolumbar mesh, the T10 vertebra was displaced 6.5 
mm. The two CAD-based meshes were then successfully 
converted into two sCT images using true CT volumes from 
their respective anatomical regions. The lumbar sCT volume 
is seen in Fig. 2 and the thoracolumbar sCT volume is shown 
next to its true CT in Fig. 3. Both sCT volumes had voxel 
intensity values that remained consistent with their true CT 
counterparts. sCT voxel values ranged from -1272 to 1716 
HUs. Fig. 4 shows histograms that reflect HUs of the lumbar 
and thoracolumbar sCT volumes and their true CTs. 

 

           

Figure 3.  The thoracolumbar sCT (right side) and its true CT (left side). 

 

  

 

 

 

Figure 4.  From top to bottom: histograms of the true lumbar CT, lumbar 

synthetic CT, true thoracolumbar CT and thoracolumbar synthetic CT. 

B. Validating Volume-Specific, Osseoliagmentous Meshes 

NN training was done with CT data of MICCAI’s VerSe 
grand challenge (verse2020.grand-challenge.org/). Training 
and testing was performed with Tensor-flow using a mini-
batch size of 1 for all networks, 10,000 iterations for the 
spine localization network, 50,000 iterations for the 
vertebrae localization network and 50,000 iterations for the 
segmentation network. The Adam optimizer with a 10-4 
learning rate was used for Modified U-Nets; the Nesterov 
optimizer at a 10-8 learning rate was used for SC-Net [21]. 

Both volume-specific, osseoligamentous meshes were 
evaluated with the metrics described in section 2C. The 
osseoligamentous meshes were assessed as a whole, with the 
soft tissues removed (i.e., only comparing vertebrae), and 
with the bone removed (i.e., only comparing soft tissues). 
Further, to provide a frame of reference and determine the 
necessity of the affine and deformable registration methods, 
the NN-derived vertebrae segmentations were also evaluated 
with bone-only ground truths. Table 2 contains a summary of 
detailed results for each of these four evaluations. Fig. 5 
shows a qualitative view of the 3 ground truth segmentations 
compared to their meshes during lumbar spine evaluation. 
Briefly, DSC, aHD and IoU of all anatomy evaluation was 
determined to be 0.72, 2.4mm and 0.55, respectively for the 
lumbar meshes and 0.68, 2.1mm and 0.52, respectively for 
the thoracolumbar meshes. For the vertebrae only evaluation, 
it is important to note the whole vertebrae, not just vertebral 
bodies of vertebrae, were evaluated. DSC, aHD and IoU of 
the vertebrae was determined to be 0.66, 2.27mm and 0.50, 
respectively for the lumbar meshes and 0.64, 1.97mm and 
0.48, respectively for the thoracolumbar meshes. For the soft 
tissue only comparison, all 3-D ligaments and the IVDs were 
examined. For the soft tissues of the lumbar patient-specific 
mesh DSC was 0.46, aHD was 4.5mm and IoU was 0.30. For 
the soft tissues of the thoracolumbar patient-specific mesh, 
DSC was 0.50, aHD was 2.9mm and IoU was 0.34. Finally, 
for unassisted, NN-derived vertebrae segmentations in the 
lumbar mesh DSC was 0.58, aHD was 2.61mm and IoU was 
0.41 while in the thoracolumbar mesh DSC was 0.54, aHD 
was 3.47mm and IoU was 0.37. 

 

TABLE II.  QUANTITATIVE RESULTS SUMMARY. L AND T ARE LUMBAR 

AND THORACOLUMBAR EVALUATIONS, RESPECTIVELY.  ST IS SOFT TISSUE, 
8 IS VERETBRAE MESHES OBTAINED WITH [8]’S METHOD, 21 IS VERTBRAE 

MESHES OBTAINED WITH THE NN. 2C DEFINES ABBREVATIONS AND UNITS. 

Mesh DSC aHD IoU 95% SP SE FP FN 

L-all 0.72 2.40 0.55 6.38 0.98 0.63 0.02 0.37 

L-ST 0.46 4.46 0.30 12.4 0.99 0.33 0.01 0.67 

L-8 0.66 2.27 0.50 5.74 0.97 0.60 0.03 0.40 

L-21 0.58 2.61 0.41 5.84 1 0.41 0.00 0.59 

T-all 0.68 2.08 0.52 5.67 0.97 0.63 0.02 0.37 

T-ST 0.50 2.90 0.34 8.02 1 0.39 0.00 0.61 

T-8 0.64 1.97 0.48 5.31 0.98 0.60 0.02 0.40 

T-21 0.54 3.47 0.37 13.2 1 0.37 0.00 0.63 
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IV. DISCUSSION 

The presented evaluation demonstrated that the published 
method achieves a somewhat decent agreement when 
comparing all anatomical structures – the soft tissues and the 
vertebrae. The method also reported better overall scores 
compared to the current MICCAI vertebrae segmentation 
challenge winning network for vertebrae in the sCT [21]. 
The network seems to have struggled significantly when 
segmenting the sCT volumes, possibly due to their synthetic 
nature, their zoomed cropping around the region of the spine, 
or their structurally adjusted shape. Regardless, the poor 
segmentations caused the downstream methods to perform 
significantly worse than in previously published studies. In 
particular, Fig. 5 shows the NN’s segmentation results for 
the transverse processes of the vertebrae guided a completely 
incorrect placement of the transverse ligaments. Typically, 
the NN performs quite well on patient CT volumes and 
allows the downstream affine and deformable registration 
processes to outperform state of the art methods in related 
studies. Unfortunately, there are no studies that evaluate all 
spinal soft tissues, so comparison or discussion of these 
results is extremely limited. However, given DSC and aHD 
are weakest in soft tissue evaluations, additional work will 
need to be considered for better soft tissue fitting. Further, as 
seen in Fig. 5. the subtraction technique performed to obtain 
soft tissue ground truths may not be ideal. Alternatively, soft 
tissues should be exported as their own mesh; the present 
study subtracted the fully included anatomy ground truth by 
the bone only ground truth to provide soft-tissue ground truth 
data and may have resulted in the noted underperformance 
due to additional, inaccurate “ground truth” information. 
Finally, scoliotic geometry of sCT volumes were minor. sCT 
with geometry of moderate to severe scoliotic spines should 
be tested with Tapp et al. and Payer et al.’s methods [8][21]. 
 

A. Conclusion 

This study implemented previously published methods to 
evaluate the spinal anatomy segmentations derived from the 
MICCAI vertebral segmentation challenge winning NN and 
from an emerging top-down segmentation approach. The 
top-down approach surmises the position of ligaments and 
soft tissues by exploiting bone structures, like vertebrae, that 
are conspicuous in CT imaging. By using a sCT that 
provides 3-D soft tissue ground truths, all portions of patient-
specific osseoligamentous meshes developed with the top-
down approach can be evaluated. The presented technique 
quantitatively evaluates the soft tissue positions obtained by 
the top-down segmentation approach completely in silico. 
This validation technique is required for advancing scoliosis 
interventions, like PSF, which currently necessitate unknown 
numbers of ligament releases. Ligaments must first be 
accurately localized on a patient-specific basis to develop a 
full patient-specific model that will help to determine ideal 
ligament release strategies. Corrective procedures like PSF, 
can be made safer and more efficient by yielding models that 
contain 3-D ligaments and calculate the number of ligament 

releases required to mobilize the spine during surgical 
interventions. Aside from its capability to verify soft tissues 
in the spinal column, the presented method is broadly 
applicable for validating the presence of other soft tissues 
and may be especially beneficial for future studies performed 
on areas of the knee, shoulder, hand, and foot. 

 

  
 

  

Figure 5.  Lumbar Qualitative results.  Ground truth is green, meshes 
evaluated are gray. (top left) All anatomy evaluated, including bone and 

soft tissue. Then, (top right) soft tissues evaulated; vertebrae are removed. 

Finally, (bottom left) vertebrae only evaluation using the method of [8] 

compared to [21]’s segmentations (bottom right). 

 

B. Future Work 

Parameters of the top-down segmentation methodology 
need to be updated to provide better soft-tissue alignment. 
The FE meshes must also undergo varied analyses to see 
what kinds of severe scoliotic curve geometries can be 
induced. FE meshes with more than one curve are also being 
considered for development. This breadth of FE meshes, 
which will be used to produce sCT volumes, may be utilized 
for additional methodological validation. sCT volumes 
should encompass an entire spinal column, from the skull to 
the sacrum for future validation work. Further, the sCT 
volumes and their ground truths will ultimately be used to 
train a deep learning neural network that performs one-shot 
segmentations given the sCT image and the ground truth. 
The segmentations may include all anatomy or exclusively 
output soft tissues. 
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