
Mixed Reality Autonomous Vehicle Simulation: Implementation of a
Hardware-In-the-Loop Architecture at a Miniature Scale

Robin Baruffa
Univ. de Technologie de Belfort-Montbéliard

Belfort, France
email: robin.baruffa@utbm.fr

Jacques Pereira
Univ. de Technologie de Belfort-Montbéliard

Belfort, France
email: jacques.pereira@utbm.fr

Pierre Romet
CIAD (UMR 7533)

Univ. Bourgogne Franche-Comte, UTBM
Belfort, France

email: pierre.romet@utbm.fr

Franck Gechter
CIAD (UMR 7533)

Univ. Bourgogne Franche-Comte, UTBM
Belfort, France

email: franck.gechter@utbm.fr
Mosel Loria (UMR CNRS 7503)

Université de Lorraine
Vandoeuvre-lès-Nancy-54506, France

Tobias Weiss
CIAD (UMR 7533)

Univ. Bourgogne Franche-Comte, UTBM
Belfort, France

Institute of Energy Efficient Mobility
Univ. of Applied Science

Hochschule, Karlsruhe, Germany
email: tobias.weiss@hs-karlsruhe.de

Abstract—Validation of autonomous vehicles is a resource in-
tensive and time-consuming endeavour because of their safety crit-
ical nature. X-In-the-Loop proposes a development method that
uses a simulated environment to overcome real-world constraints
to test and improve autonomous vehicle capabilities. Development
time can be reduced as each iteration on the control software does
not necessarily require real-world testing. This paper focuses on
studying the influence of switching from simulated to real-world
camera data on control algorithms execution time in the context
of a preliminary work consisting in implementing a Hardware-
In-the-Loop architecture on a miniature car.

Keywords—Hardware-In-the-Loop; autonomous vehicles;
miniature car.

I. INTRODUCTION

The project detailed in this paper is part of a new alternative
freight transportation system in cities and in the countryside
called SURATRAM (Système Urbain et Rural Autonome
de TRansport de Marchandises). It aims to revitalize small
businesses struggling to meet the level of flexibility and
competitiveness that e-commerce companies can offer. The
proposed solution is to deploy an autonomous fleet of cargo
vans in various areas to facilitate the transportation of goods,
lowering transportation fees by optimizing the path of each
package and lessening the need for maintaining extensive
stocks; and improving logistic chains’ flexibility and speed.
The increase in traffic caused by the additional number of
vehicles among cities would be mitigated by restricting these
autonomous vans to follow existing human-operated public
transport vehicles such as tramway or buses in a platoon
formation. Thus, the next logical step in the development of
this transportation system is using a real vehicle as a testbed in
order to assess the state of the art platoon algorithms [1]. This
System-under-Test (SuT) must demonstrate its reliability in
various extreme scenarios such as an imminent collision with
a pedestrian or an emergency stop performed by any vehicle
from the convoy. Extensive testing of hardware in real driving

conditions can be very costly as it requires having access to
special facilities, and in our case, renting a bus with a driver
during the whole test campaign. A solution to this problem
is to develop a simulated replica of the real-world system
dynamic and its sensors, allowing for thorough validation of
the SuT by breaking free from physical and time constraints.
With this method, known in the literature as Hardware-In-
the-Loop (HIL) [2], the real hardware is used to process the
simulated sensor data and outputs actions that are fed back in
the simulation.

Figure 1. Image of the miniature car.

In order to pave the way for the future design of a complete
HIL implementation of a full-sized car, a miniature car has
been designed to verify the relevance and performance of the
chosen HIL architecture (Figure 1).

This preliminary work aims at highlighting the difference
in the control algorithm execution time when fed with real-
world or with simulated camera data. It is an important metric
to check as if the gap is too wide, the control algorithm will
not behave as expected when tested in real conditions.

In Section II, we first present the current state of the
art in the autonomous vehicle development field. Section III
then describes our implementation of the HIL framework on
a miniature car. Section IV provides a description of the
experimental protocol and the preliminary results regarding

59Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

the gap between car and its cyber-twin. Finally, in Section V,
we close this paper with a summary and an outlook on the
future improvements needed to validate the simulation.

II. STATE OF THE ART

In the literature, the general framework X-In-the-Loop is the
subject of numerous works [3][4], especially in the robotics
and autonomous vehicle field where the SuT can be a safety-
critical system [5].

The classical approach is to use Model-In-the-Loop [6] as
a first step to create a mathematical representation of the
system’s dynamics.

Figure 2. Environment in HIL architecture to MR [7].

In some cases, limitations can occur both in simulation (e.g.,
in terms of fidelity) and in the real world (e.g., in terms of
price and safety), therefore a hybrid framework like Mixed
Reality (MR) [8] can be used to mitigate this. Its purpose
is to create hybrid observations by mixing simulated and real
observations in order to add entities such as pedestrians, cars or
obstacles [9][10]. It can provide an intermediary step between
the relatively easy and inexpensive HIL, and costly real-world
testing [7]. Figure 2 shows how much time and financial
investment is required for each development method.

As it is critical to make sure that the SuT will perform
similarly in real world testing and in its virtual world, nu-
merous works [11][12] focus on quantifying the difference in
dynamics between the real world model and the simulated
model. We think software execution time differences deserve
to be studied in more detail as they can influence the overall
behaviour of the SuT.

III. PROPOSITION

The short-term goal of this project is to implement HIL
on a miniature car and its cyber-twin to have it follow a
simulated bus, both in the simulation and in the real world.
Our architecture allows for testing the control algorithm with
sensor data coming from the simulation or from the real car
interchangeably, which is a key component of HIL methods.
Additionally, when using only simulated observations, it is
possible to execute the actions in an open-loop configuration
on the real-world car, with the purpose of verifying the
fidelity between the simulated vehicle dynamics and its real
counterpart.

Related work focuses first on developing the control algo-
rithm in simulation, then implementing it in a test platform. A

key advantage of our miniaturisation method is its simplicity
and low cost. After a description of the global architecture, this
section will go into details about the subsystems architecture.

A. Global architecture

On the one hand, a computer runs the simulation, which
updates the car’s position and velocity when receiving an
action, then sends the simulated sensors readings over the
network. On the other hand, the raw data is fed to a decision
making unit running on the real car’s hardware, which outputs
an action composed of throttle level and steering angle. This
action will be transmitted to both the simulator and the
Electronic Control Unit (ECU), controlling the real vehicle.

Figure 3 shows the overall architecture. The top simulation
part is executed on a computer because of its computationally
intensive nature, while the bottom part is executed on the
miniature car’s embedded hardware.

Figure 3. Global architecture of our HIL implementation.

B. Simulator architecture

Simulators have different goals and capabilities. The re-
quirements are that they must offer both a realistic and cus-
tomizable graphical environment, along with realistic physics.
In literature, the use of a robotic simulator like Gazebo
[7][9][10][13] or game-based engines such as Unity [8][14]
or Unreal-Engine [15] are standard.

For this work, it was decided to choose Unity3D (which uses
the PhysX 4.1 physical engine), as it comes free of charge for
non-commercial use and has good rendering capabilities which
are needed for realistic camera sensors.

A generic 3D model of a car and a bus are used (Figure 5).
Their dynamical parameters are set arbitrarily, as having an
accurate physics model is currently beyond the scope of this
project, but it will be investigated in future works. The bus can
either be user-controlled or driven by a predefined spline. A
virtual camera and a tachometer measuring the rotation speed
of the wheels are used as sensors.

C. Software architecture

The simulation layer is managed by Unity3D. A script
parses the JSON (JavaScript Object Notation) output from
the simulator (camera feed and odometry), then forwards it
through the local network to the real car. The latter sends
the received observation information to be processed over the
Robotic Operation System (ROS) network. An output action

60Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

Figure 4. ROS computation graph along with measured computation time.

is then forwarded simultaneously to the ECU and back to
the simulation. The ROS middleware is very convenient and
often used in the literature [7][9] as it integrates many sensors
drivers, natively supports multi-machine communication, inte-
grates various visualization packages and offers the possibility
to record and replay every incoming observation and outgoing
actions in a deterministic manner.

Since the scope of this project is not about the sensor
processing nor about the control algorithm, both have been
simplified in the following way :

1) Camera processing: An ArUco marker (Figure 5) is
used on the back of the bus. These markers are widely used
for robotic and autonomous vehicles applications [16], as their
detection and position estimation is made easier thanks to their
simple binary shape. A ROS node called /aruco detect node
receives the camera stream (from the simulation or the real
sensor) and outputs the marker’s coordinate system concerning
the camera (shown as /tf in Figure 4). A copy of the video feed
with the detected axis system overlaid is used for debugging
purposes.

2) Control algorithm: The relative distance between the car
and the bus is calculated and fed into a PID (Proportional
Integral Derivative) controller that outputs a throttle command
based on this distance and a user-defined distance setpoint
parameter. The car’s heading error is defined as the angle
between the centre of the camera and the lateral position of the
ArUco marker. This heading error is fed to a PID controller
along with the desired heading angle (null in this case) and
outputs a steering command.

D. Hardware architecture

The model car is a 25cm long and 14cm wide four-wheel
drive with front steering wheels and rear propulsion. Its on-
board computer is a Raspberry PI 4 running the ROS server
which communicates with the simulation computer via a Wi-
Fi connection. The steering angle and throttle commands are
transmitted to an external ECU that controls the motors in
an open-loop configuration through GPIO (General Purpose
Input Output) pins. The front-mounted camera is set to have
a resolution of 640×480px at 10Hz.

IV. EXPERIMENTS

This section will present two different experiments. The first
one consists in controlling the bus manually in the simulation
while the car will follow it from a safe distance. Then it is
visually confirmed if the miniature car movements are both
synchronized and coherent with the simulation.

The second experiment will aim to demonstrate that our
HIL infrastructure can operate in real testing conditions: a
manually controlled three-wheeled robot will represent the bus
in the real world. The model car will run the same software
and its performance will be visually assessed. In the two
experiments, measurements are performed to quantify both
delays in sensor data transmission from the simulation to the
car’s local network and the camera processing time resulting
in usable information for the control algorithm. Comparing
response time in HIL and real-world configuration permits to
assess the coherence between both systems, which is critical
since any delay discrepancy in the control loop can lead to
different behaviours.

In Figure 4, T1 represents the delay between the rendering
of the virtual camera and its reception on the ROS network,
and T2 and T3 are the times taken by the ArUco detection
node to compute the marker coordinate from simulated and
real camera data respectively. Delays measurements of the
robot using simulated observations were performed on 308
samples and 343 samples when using real-world observations.
The camera framerate was set to 5 Hz, which is the maximum
frequency the ArUco detection package would handle on our
hardware before starting to drop measurements.

Figure 4 shows a significant difference in delay between
the two experiments, even though it is performed by the same
code running on the same hardware. The only difference is
the content of the video stream, as it has been setup to use the
same compression format, encoding, framerate and resolution.

A. Real car guided by the simulated one

The leading virtual bus is placed at a distance from the
virtual car, which will have to accelerate then slow down to get
to its distance setpoint from the bus and maintain it while the
simulated bus follows a predefined spline trajectory. The real
miniature car will perform the same actions as its virtual twin.

61Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

The laptop running the simulation and the embedded computer
were synchronized beforehand to avoid timing issues.

In the current absence of additional sensors allowing for
precise location, we visually confirm that the miniature car
follows the same trajectory as its cyber-twin.

B. Real hardware in real world condition

The purpose of this specific experiment is to demonstrate
that the same software can be used in real conditions with
real sensor data. Since the physical car is at a smaller scale,
a robotic platform will act as the leading bus and will be
user-controlled. This robot also uses ROS, which facilitated its
implementation. The distance setpoint and the ArUco marker
width were edited to take into account the scale difference.

Figure 5. Miniature car in real-world test condition.

An overview of the experimental apparatus can be seen
in Figure 5. Visual observation confirms that the car follows
the robot from a safe distance, without significant change in
behaviour compared to Subsection IV-A.

The latency increase in real-world conditions is likely to
be caused by the increased complexity of the video stream.
The execution time of image processing algorithms with
an adaptive number of iterations, such as the one used for
detecting ArUco markers, can be shorter if the input image is
sharp and contains little noise. Thus, adding noise to simulated
observations is not only needed for ensuring that the sensor
processing algorithm will be robust in non-ideal condition, but
it can also be a source of discrepancy in the behaviour of the
same algorithm given different sensor data.

V. CONCLUSION AND FUTURE WORK

This paper has presented a use case of HIL for autonomous
vehicle implementation at a smaller scale. It has proven
the effectiveness of the chosen combination of simulation,
software and hardware. The global architecture proved to yield
similar dynamics behaviour when sensory information comes
from a simulated or a real-world environment, but a difference

in computation time has been observed. The specific scope of
use will dictate whether this delay discrepancy is acceptable.

Throughout the development of our preliminary platform,
we learned the importance of choosing algorithms that take
a fixed amount of time to execute, regardless of the input
complexity. One of the most challenging tasks was to mea-
sure delays at every step of the computation graph without
interfering significantly with the normal execution of the code.

Future work will focus on quantifying the dynamical dif-
ferences between the simulated car and its real counterpart
by adding additional sensors, either on the car or in the
test environment, to get ”ground truth” measurements. We
will also investigate how ROS2, the new version of the ROS
middleware, performs to further lower latency. A simple yet ef-
fective implementation would be to use additional fixed ArUco
markers to estimate the car’s position with good accuracy [16].
The next step towards a practical solution could be to use
more advanced computer vision algorithms that do not require
modification on the vehicle that needs to be followed.

These incremental improvements will ultimately lead to
using a real autonomous vehicle platform that will be used
as a testbed for developing novel MR architectures. It would
be possible to overlay virtual obstacles on top of the real-world
camera feed to improve the control algorithm’s performance
and lower development time.

ACKNOWLEDGMENT

This work is carried out as part of our studies at the Univer-
sité de technologie de Belfort-Montbéliard, in the context of
the SURATRAM Project. The SURATRAM project is made
possible thank to the support of Région Bourgogne-Franche-
Comté.

REFERENCES

[1] F. Gechter, J.-M. Contet, S. Galland, O. Lamotte, and A. Koukam,
“Virtual intelligent vehicle urban simulator: Application to vehicle
platoon evaluation,” Simul. Model. Pract. Theory, vol. 24, pp. 103–114,
2012.

[2] J. A. Ledin, “Hardware-in-the-loop simulation,” in Embedded Systems
Programming, vol. 12, 1999, pp. 42–60.

[3] W. Huang, K. Wang, Y. Lv, and F. Zhu, “Autonomous vehicles testing
methods review,” in 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), 2016, pp. 163–168.

[4] J. E. Stellet, M. R. Zofka, J. Schumacher, T. Schamm, F. Niewels, and
J. M. Zöllner, “Testing of advanced driver assistance towards automated
driving: A survey and taxonomy on existing approaches and open
questions,” in 2015 IEEE 18th International Conference on Intelligent
Transportation Systems, 2015, pp. 1455–1462.

[5] O. Gietelink, “Design and validation of advanced driver assistance
systems,” in TRAIL Research School, 2007.

[6] A. R. Plummer, “Model-in-the-loop testing,” Proceedings of the Institu-
tion of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, vol. 220, no. 3, pp. 183–199, 2006.

[7] M. R. Zofka, M. Essinger, T. Fleck, R. Kohlhaas, and J. M. Zöllner,
“The sleepwalker framework: Verification and validation of autonomous
vehicles by mixed reality lidar stimulation,” in 2018 IEEE International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), 2018, pp. 151–157.

[8] F. Gechter, B. Dafflon, P. Gruer, and A. Koukam, “Towards a hybrid
real/virtual simulation of autonomous vehicles for critical scenarios,” in
In The Sixth International Conference on Advances in System Simulation
(SIMUL 2014), 10 2014, pp. 14–17.

62Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

[9] M. R. Zofka et al., “Traffic participants in the loop: A mixed reality-
based interaction testbed for the verification and validation of au-
tonomous vehicles,” in 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), 2018, pp. 3583–3590.

[10] I. Y. Chen, B. MacDonald, and B. Wunsche, “Mixed reality simulation
for mobile robots,” in 2009 IEEE International Conference on Robotics
and Automation, 2009, pp. 232–237.

[11] C. Koehler, A. Mayer, and A. Herkersdorf, “Determining the fidelity
of hardware-in-the-loop simulation coupling systems,” in 2008 IEEE
International Behavioral Modeling and Simulation Workshop, 2008, pp.
13–18.

[12] N. Seegmiller, F. Rogers-Marcovitz, G. Miller, and A. Kelly, “Vehicle
model identification by integrated prediction error minimization,” in The
International Journal of Robotics Research, vol. 32, 07 2013, pp. 912–
931.

[13] I. Chen, B. A. MacDonald, and B. Wünsche, “A flexible mixed reality
simulation framework for software development in robotics,” in Journal
Of Software Engineering In Robotics, vol. 2, 2011, pp. 40–54.

[14] M. Wu, S.-L. Dai, and C. Yang, “Mixed reality enhanced user interactive
path planning for omnidirectional mobile robot,” Applied Sciences,
vol. 10, p. 1135, 2020.

[15] M. Broy, “Challenges in automotive software engineering,” in Proceed-
ings of the 28th International Conference on Software Engineering, ser.
ICSE ’06. New York, NY, USA: Association for Computing Machinery,
2006, pp. 33–42.

[16] J. Bacik, F. Durovsky, P. Fedor, and D. Perdukova, “Autonomous flying
with quadrocopter using fuzzy control and aruco markers,” in Intelligent
Service Robotics, vol. 10, 2017, pp. 185–194.

63Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation

