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Abstract—This paper presents a work-in-progress contribution
that involves a collaboration with Philips, where the goal is to
predict the remaining useful lifetime for cold forming production
tooling. As the data set is complex, with many outliers and
missing data points, we plan to integrate multiple techniques
to reliably predict the time until maintenance is required, at
least including machine learning methods, bootstrapping and
change point detection techniques. The latter two methods are
seldomly employed in the domain of remaining useful lifetime
prediction, although they deliver very useful additional informa-
tion compared to mainstream prediction techniques. Despite the
fact that times of failure are currently lacking, we were able to
perform a useful preliminary data analysis, which resulted in the
extraction of several features to be used later as input variables
for RUL prediction, and we obtained an interesting unsupervised
clustering of a set of selected production runs.

Keywords–Remaining useful lifetime; Bootstrapping; Change
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I. INTRODUCTION

This paper presents a work-in-progress contribution that is
part of the ambitious Prophesy project on predictive mainte-
nance [1]. Predictive Maintenance (PdM) refers to the data-
driven process of predicting when operational equipment may
fail and deploying preventive maintenance to avoid any down-
time [2]. The idea is that maintenance should be performed
as far in the future as possible, in order to minimize costs,
ideally just before serious failure occurs. The predicted output
variable by a PdM algorithm is the Remaining Useful Lifetime
(RUL) [3], which indicates how long the machine is expected
to continue to run without failure. This variable is expressed in
units that depend on the application at hand, e.g., the number
of cycles that a turbofan engine is expected to run before it
breaks down [4].

The goal of the project entails a collaboration with two
major industrial companies, namely Jaguar Land Rover and
Philips, whose maintenance costs consume a considerable
amount of all expenses. In this paper, we describe the Philips
use case, involving a very complex data set containing many
variables, measured continuously over time, with a lot of
missing data points and outliers. Currently, we are focusing on
measured force-signals at different angles during the forming
process of the involved metal part [5]. The main purpose
is to predict the remaining number of die hits (which are
accompanied by the generation of a force-signal) that the
considered tool is able to produce before breakdown.

Unfortunately, for the considered tool no times of fail-

ure are currently available. Nevertheless, the unlabelled large
amount of data that has already been collected is suitable for
an unsupervised cluster analysis. Furthermore, collaboration
with engineers from Philips allowed a useful feature extraction,
where the features can later be used as input variables in a
supervised RUL prediction method.

The paper is organized as follows. Section II gives some
background on the use case, while Section III describes how
the (currently unlabelled) data set has been collected. Section
IV explains how feature extraction has been performed, despite
the fact that times of failure are currently unavailable. Unsu-
pervised cluster analysis of 13 selected production runs has
been applied for each of the features, as outlined in Section
V. Finally, Sections VI and VII describe two interesting future
research lines for this particular use case, but also for RUL
prediction in general.

II. DESCRIPTION OF THE USE CASE

Philips Consumer Lifestyle in Drachten develops a wide
range of innovative products like rotary shavers, beard trim-
mers, hairdryers, epilators, vacuum cleaners, SENSEO cof-
feemakers and Wake-up Lights. Philips Drachten employs
2000 people, amongst which 600 developers with 35 different
nationalities. Philips Drachten is also world leader in mass
production of rotary shaving devices, occupying over 50%
market-share of a e1 billion market.

Multiple production lines take care of cold forming metal
parts. Each production line creates a product mix. On these
production lines over 50 individual metal products are created.
In total, there are over 300 individual dies. The project goal is
dedicated to a single production line and a single die set. When
this goal will be accomplished, the developed model will be
expanded to cover more production lines and more dies.

Tooling maintenance is performed in the tool workshop.
A production run for the tool maintenance is triggered by
production for the following reasons:
• Production run finished.
• Pre-defined lifetime threshold reached.
• Product quality issue or tool malfunction.
About 600 production runs are triggered yearly. The ac-

curacy and the diversity of the wear parts, together with
the interactions between these parts during processing, is
a big challenge for maintenance. Therefore, the quality of
work is strongly dependent on the skills and craftsmanship
of the maintenance engineers. In many cases, highly skilled,
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Figure 1. Global overview of the use case.

Figure 2. Some technical details of the use case.

second-line support is needed in case of non-standard problem
solving. Breakdowns come with high maintenance costs, which
explains the need to investigate modern technologies that
enable the shift from breakdown maintenance to predictive
maintenance.

The Philips predictive maintenance use case is defined
around the cold forming tooling for high precision metal parts.
Although the cold forming tool consists of a high number of
parts, for the sake of clarity in this use case, two wear parts
are considered: one cutting punch and one die-plate. Figure 1
gives a global overview of the use case, while Figure 2 displays
some more technical details.

III. DATA COLLECTION

The data set includes the force-signal as registered during
the cold-forming operation, and is collected from several
sources. To enable data extraction from existing machines,
modifications to the machine control systems have been made
and additional measurements have been programmed in the
in-line measuring machines and a Brankamp X7 process
monitoring system [6].

Figure 3 shows such a Brankamp X7 system, as well as
some possible process curves. The X7 system allows up to 24
channels for an extended process monitoring. The HMI part of
the system runs on a Windows Operation System, so that an
easy connection to other Prophesy parts is possible. Further-
more, the X7 Cockpit provides a switchable mask design with
flexible arrangement of the monitoring channels (according
to the machine configuration). Binary input signals can be
monitored with up to three monitoring windows to ensure the

Figure 3. Brankamp X7 process monitoring system.

earliest possible fault detection. The failure distribution shows
machine downtimes and the frequency of process failures for
a quick and easy failure analysis.

During one stroke of the cold forming press, the cutting
force, as measured by a sensor manufactured by United
Electric Controls, is stored at 500 measurement points. These
500 measurement points correspond to force-signals at angles
ranging from 50 degrees to 110 degrees in steps of 0.12
degrees. At a normal production rate, 1 stroke is stored
every 60 seconds, in CSV format, and then pushed to the
Philips Manufacturing Execution System, from where it can
be downloaded by the Prophesy partners in order to perform
data analysis.

IV. FEATURE EXTRACTION

A careful analysis that was performed together with en-
gineers from Philips showed that only 13 production runs
that were obtained during the Prophesy project, are eligible
to be used as training data. As there are 500 input variables
(cf. Section III), it is necessary to perform a dimensionality
reduction [7]. Five features were extracted:

1) Variable 1: the 90% percentile force at angle 71.72
degrees. The 90% percentile is taken over windows
consisting of 251 time points, as follows: for a given
time point, consider the set of forces at 71.72 degrees
together with those at the 125 time points to the left
and together with those at the 125 time points to
the right. From this set the 90% percentile is taken.
The reason to consider the 90% percentile is that
the maximum force is more interesting than, e.g., the
average force, from a mechanical point of view, but
because of the presence of outliers the 90% percentile
force was taken as a more robust alternative to the
maximum force. For time points at the beginning or
at the end of a production run, for which less than
125 time points are available to either the left or the
right, additional time points from the other side are
taken in computing the 90% percentile force.

2) Variable 2: the Area Under the Curve (AUC) [8] of
the forces between 70 and 75 degrees.

3) Variable 3: the 90% percentile force at 79 degrees,
where the 90% percentile is computed as for variable
1.

4) Variable 4: the AUC of the forces between 78 and 80
degrees.
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The features were extracted by analyzing the time series of
the forces for the considered production runs, and discussing
with engineers from Philips the mechanical meaning and
relevance of the observed patterns.

V. CLUSTER ANALYSIS OF THE PRODUCTION RUNS

An important disadvantage of the current data set is that no
production runs end in failure, implying that RULs are missing.
Consequently, supervised machine learning cannot be applied,
and the best we can currently do is performing an unsupervised
analysis [9]. Cluster analysis [10], and in particular k-means
[11], is a typical unsupervised tool to gain some insight into
the structure of an unlabelled data set.

The k-means algorithm is applied to the 13 time series that
correspond to the production runs, using the Euclidean distance
measure. Clustering is repeated for each of the four feature
variables. However, because the production runs do not all have
the same number of time points, we truncate all production
runs at 1640 time points, which is the number of time points of
the shortest production run. Unfortunately, the optimal number
of clusters is unknown. Therefore, we applied three validation
measures that try to detect the optimal number of clusters,
using the clValid package from the statistical software R:
connectivity, the Dunn index and the Silhouette index [12].
The result is shown in Table I.

Table I. Optimal number of clusters according to three selected cluster
validation measures.

Connectivity Dunn Silhouette
Variable 1 2 9 2
Variable 2 2 10 2
Variable 3 2 2 2
Variable 4 2 2 2

Although the measures do not agree on the optimal number
of clusters for all variables, it is clear that two clusters is
overall the best choice. Table II shows the cluster index for
each production run for each of the variables, where clustering
is performed with two clusters.
Table II. Clustering of the production runs for each of the feature variables.

Variable 1 Variable 2 Variable 3 Variable 4
Production run 1 1 1 1 1
Production run 2 1 1 1 1
Production run 3 1 1 1 1
Production run 4 1 1 1 1
Production run 5 1 1 2 2
Production run 6 1 1 2 2
Production run 7 1 1 2 2
Production run 8 1 1 2 2
Production run 9 2 2 2 2
Production run 10 2 1 2 2
Production run 11 2 1 2 2
Production run 12 2 1 2 2
Production run 13 2 1 2 2

It is seen that the clustering is not the same for each of
the variables. However, for variables 3 and 4 the clustering is
exactly the same; these variables group the first four production
runs together, while the other production runs belong to the
other cluster. Variable 1, on the other hand, considers the first
eight production runs as similar, while the other production
runs are clustered in another group. Finally, variable 2 seems
not to result in a meaningful clustering: all production runs
are clustered together, except production run 9.

We can integrate the different clusterings into one summary
clustering as follows. Each clustering can be represented as a

Figure 4. Average clustering matrix, with values 0.2 rounded to 0, and
values 0.8 rounded to 1.

matrix M with elements M [i, j] defined as follows: M [i, j] =
0 if production run i and j belong to the same cluster, and
M [i, j] = 1 otherwise. The four resulting matrices can then
be averaged over the number of variables, i.e., each M [i, j]
is divided by four. The matrix elements then take values in
{0, 0.2, 0.4, 0.6, 0.8, 1}. For ease of interpretation we round
the value 0.2 to 0 and the value 0.8 to 1. The matrix that is
obtained in this way, as produced by R, is shown in Figure 4.
This matrix provides the following information:
• Production runs 1 to 4 are similar.
• Production runs 5 to 8 are similar.
• Production runs 9, 10, 11 and 13 are similar.
• Production runs 10 to 13 are similar.
The last two observations could also be rephrased as saying

that production runs 9 to 13 are similar, with the note that there
is some dissimilarity between production runs 9 and 12.

Currently we started discussing if the results of this cluster
analysis may be used in future RUL prediction. This requires to
analyze whether production runs 1 to 4, production runs 5 to 8,
and production runs 9 to 13 share certain properties that might
be related to the ’health’ of the involved mechanical parts. If
so, this knowledge can be used in a later stage, together with
times of failure when they become available, to predict the
RUL.

VI. FUTURE WORK: BOOTSTRAPPING AND PREDICTION
INTERVAL

Applications on RUL prediction often restrict to returning
a single RUL value. However, it is very useful to have an
indication of the reliability of this prediction, for example
in terms of a prediction interval. Although many machine
learning techniques, e.g., artificial neural networks, only return
a predicted value, it is easy to obtain a prediction interval by
means of bootstrapping [13]. By randomly sampling from the
training set and training a model on each sample, one obtains a
set of models, each having a slightly different view on the data
set. Consequently, averaging the predictions of all these models
results in a robust prediction, and the set of predictions itself
can be considered as a range of possible RUL values that vary
with certain peculiarities in the data set. From the set of predic-
tions, which represent a histogram of values, it is very simple
to obtain a 95% prediction interval. Noteworthy advantages of
bootstrapping are its simplicity in terms of implementation,
and the observation that it is asymptotically more accurate
than the standard intervals obtained using sample variance and
assumptions of normality [14]. Prediction intervals offer more
decision-making power to industrial partners. For example,
very conservative engineers will be inclined not to rely on
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the predicted value, but on the left endpoint of the prediction
interval when scheduling maintenance.

Even if prediction intervals are taken into account, it is
often neglected to evaluate them. That is, evaluation of a
prediction model is often restricted to the predicted values.
However, validation measures have been developed to evalu-
ate prediction intervals. For example, the interval score [15]
rewards narrow intervals, while at the same time penalizing
lack of coverage. It is defined as(

u(x)− l(x)
)
+

2

α

(
l(x)− ν(x)

)
1{ν(x)<l(x)} +

2

α

(
ν(x)− u(x)

)
1{ν(x)>u(x)}

for a (1−α)% prediction interval [l(x), u(x)], where 1{expr}
refers to the indicator function, being 1 if expression expr
holds and 0 otherwise. In our view, implementations related to
RUL prediction should always produce a prediction interval,
and these prediction intervals should be taken into account
when performance is evaluated by comparing to the results
of other models. We will do so in our future research on the
Philips use case.

VII. FUTURE WORK: CHANGE POINT DETECTION

Change point detection refers to identifying when certain
properties of a probability distribution, in particular the mean
and the variance, of a time series change [16]. As far as
we know, change point detection methods are rarely used in
RUL prediction. This is unjustified, as such methods are com-
plementary to traditional RUL prediction methods: whereas
most RUL methods, e.g., artificial neural networks, implicitly
assume continuity in the time series, change point detection
is able to handle sudden discontinuities or trends. In this
way, it might prove useful to combine traditional machine
learning techniques with change point detection methods in
RUL prediction. For example, as long as no change point
is detected, engineers might rely on the midpoint value of
the prediction interval for maintenance. However, whenever
a change point is notified, indicating a change in regime
(possibly due to the failure of a non critical part of the involved
tool), engineers might react properly by relying on the left
endpoint of the prediction interval instead, thereby discounting
the danger of a premature failure.

We experimented with the package ’changepoint’ in R [17].
For example, Figure 5 shows the forces during a selected
production run at angle 71 degrees, together with the jumps
in an otherwise constant mean trend. One changepoint (jump)
was detected, as seen from the figure.

Change points deliver additional information compared to
mainstream RUL predictors. For our case study, we envisage
developing a measure that takes into account the number of
angles at which a change point arises: if a change point occurs
at a high number of angles at the same time, this indicates a
more serious warning compared to a change point occurring
at only one or a small number of angles at the same time. In
the first case, a more conservative RUL should be predicted
than in the second case.

VIII. CONCLUSION

In this work-in-progress contribution we have described a
use case from a cold forming production tooling process that
involves collaboration with Philips in the context of a major

Figure 5. Change point detection for the mean during a certain production
run for forces measured at angle 71 degrees.

EU project named Prophesy. The purpose is to predict the
remaining useful lifetime of certain tools that come with high
maintenance costs. Our plan is to combine several techniques
in order to fulfill this goal:
• Machine learning techniques, in particular artificial

neural networks, to produce the RUL.
• Bootstrapping, to obtain a prediction interval for the

predicted RUL.
• Change point detection, to ensure that not only gradual

changes in performance of the tool are detected, but
that also more abrupt changes are identified.

An important challenge will be to integrate all these methods
into a reliable and efficient RUL prediction mechanism.

Bootstrapping and change point detection are often ne-
glected in RUL prediction, although these techniques create
additional relevant information on the predicted RUL. Perhaps
these methods just need to find their way in the domain of
RUL prediction. Our work might be an incentive for other
researchers in RUL prediction to consider the use of these
techniques.
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