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Abstract—Recurrent Neural Networks (RNN) have been used in
multiple tasks such as speech recognition, music composition
and protein homology detection. In particular, they have shown
superior performance in predicting structure in time series data.
To our knowledge, RNN have not been used on DNA methylation
data. Methylation patterns on chromosomal DNA represent an
important form of epigenetic imprinting, a form of epigenetics
that results in heritable gene expression and phenotype changes.
DNA methylation is one of the mechanisms that a cell uses
to fine-tune the expression levels of its individual genes, and
it has been shown to affect very specific areas around specific
genes. The methylation state of the human chromosomal DNA
can be readily assessed with microarray technology, allowing the
determination of the methylation status of thousands of positions
along the individual chromosomes of the genome. With RNN
analysis, we show that these methylation patterns have substantial
structure, when relatively large stretches of chromosomes are
tested. Furthermore, we show that each chromosome appears to
have its own distinctive sequential methylation structure, but that
this structure breaks down, to some extent, when normal cells
develop into a tumour.

Keywords–Recurrent neural networks; Nash-Sutcliffe efficiency;
Epigenetics.

I. INTRODUCTION

A. Biological background to the research problem

Methylation of cytosine residues in DNA represents an
important form of epigenetic modification [1]. Although an
organism’s form and function is based on its genome, char-
acterized by a specific DNA sequence, the epigenetic state
of the genome adds an important regulatory component to
how specific genes in the genome are expressed and together
define an organisms’ phenotype, and it is a heritable trait [2].
Epigenetic modifications are not encoded by the nucleotide
sequence of the genome [3], but by small modifications in
the form of methyl groups or hydroxymethyl groups that are
attached either to cytosine residues that are part of so-called
CpG stretches (‘CpG islands’) within the DNA sequence, or
to proteins that are bound to the DNA, together forming the
biologically active form of DNA called chromatin [4]. The
epigenetic state of the chromatin has a considerable plasticity,
allowing a cell to adapt to new environmental challenges and
demands. DNA methylation can for instance regulate gene
expression by recruiting proteins involved in gene repression or
by inhibiting the binding of one or more transcription factors
to DNA [5]. The epigenetic state, however, is also prone to
malfunctions that can result in diseases. Cancer cells represent

an important cellular malfunction where among others the
methylation state of the chromosomal DNA is affected [6].

A popular technique for determining the methylation status
across the genome uses microarray-based Illumina Infinium
methylation assays [7]. DNA is denatured (i.e., converted
to single strands) and treated with sodium bisulfite, which
deaminates the normal, unmethylated cytosine residues and
effectively converts them to uracil, while methylated cytosine
residues are resistant to this treatment [8]. To estimate the
methylation status at a specific CpG site of a chromosome, the
Illumina Infinium assay utilizes a pair of DNA probes that can
distinguish between sequences with the native cytosine and the
converted uracil. Illumina’s primer-extension assay measures
the intensities of methylated and unmethylated forms (alleles)
of individual sites of the genome and the methylation level
is calculated based on the signals of this pair of probes. It is
convenient to express the methylation level as a value ranging
from 0 to 1, referred to as the beta value, and which can be
interpreted as the percentage of methylation [9]. Beta values
are typically low, as illustrated by the histogram shown in Fig.
1. This histogram is taken from [9] and represents a typical
sample measured by the Illumina Infinium HumanMethyla-
tion27 BeadChip, which interrogates 27,578 CpG sites where
methylation primarily occurs [10].

Figure 1. A histogram of beta values (from [9]).

B. Goal and organization of this paper
The methylation levels along a given chromosome have

similarities to a time series, where the role of time is substi-
tuted by the location of the probes with respect to the DNA.
However, whereas time series data are often equidistant, the
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measurement of methylation sites across a chromosome relies
on assays using probes that are designed based on very specific
local DNA sequence characteristics (is there a gene? is there
a CpG island close to the gene?), resulting in a much more
irregular distribution of measured points. The research question
we consider here is whether there is still some structure in
the sequence of beta values that correspond to probes of
which the methylation level is consecutively measured along
a given chromosome. Given the fact that the probes are not
equidistantly located and that methylation levels arise as the
result of complex biological processes, it is not clear whether
one should expect some predictable structure to begin with.
Fig. 2 shows the beta values of 500 consecutive probes that
were collected from a randomly chosen chromosome of some
patient that was arbitrarily selected from our data set. The
apparently erratic pattern in the figure makes it clear that
the human eye alone is not advanced enough to answer our
research question. We will, therefore, rely on recurrent neural
networks in investigating this research topic. More concretely,
we set out to analyze whether recurrent neural networks detect
structure among a stretch of consecutive methylation sites and
use it to predict the next beta value adjacent to that stretch. If
so, this would show that structure is present.

Figure 2. Sample of beta values corresponding to 500 consecutive probes
from a randomly chosen chromosome and patient.

RNNs have previously been applied to DNA modification
data with various objectives. In [11], the authors built a model
combining DNA sequence together with DNA methylation in
order to predict missing values in methylation data. The CpG
module of the joint model uses a RNN in order to account
for correlations between neighbouring CpG sites within and
across different cells. Another study from [12] aimed at
predicting DNA modifications such as DNA methylation based
on training a RNN on raw electric data. In this work we
considered DNA methylation events as a time series, where
we tested whether methylation events of a position in the DNA
are associated to methylation events in its neighbourhood.

The paper is organized as follows. In Section II we
provide a brief introduction to recurrent neural networks, and
we explain how examples, to be fed into the network, are
typically constructed from a sequence of observations. Section
III describes the experimental details, which include: 1. the
description of the data set, 2. the set of recurrent neural
network architectures that are tried on the data set, 3. the
construction of training, validation and test sets from the data
set, and 4. the performance measures that are used in evaluating
the different recurrent neural network architectures. Results
are described in Section IV. We first show how a suitable

architecture is chosen from the set of considered architectures,
and this architecture is then used when addressing the research
question. In addition to an RNN performance analysis, we have
conducted some additional analyses that are interesting from
a biological perspective. Section V concludes the paper.

II. METHODS

A. Background on recurrent neural networks
We employ artificial neural networks, more specifically

RNNs, to detect structure, if any, in vectors of beta values rep-
resenting consecutively measured probes. RNNs have shown to
achieve state-of-the-art results in many applications with time
series or sequential data [13], and enjoy several nice properties
such as strong prediction performance as well as the ability to
capture long-term temporal dependencies [14]. The distinctive
feature of an RNN is that the output of the hidden layer is
not only a function of the input at the current iteration, such
as in feedforward neural networks, but also of the output of
the previous iteration. In fact, since the hidden layer in RNNs
takes the output of a previous iteration into account, it takes
the output of all previous iterations into account, since the
output at iteration n depends on the output at iteration n− 1,
which in turn depends on the output at iteration n − 2, etc.
The importance of this feedback loop is that it assigns RNNs
a ’memory’. This makes RNNs ideally suited to be used in
applications where all information contained in a sequence of
values is of potential use to predict the value that comes next.
For further details on recurrent neural networks, we refer to
[15].

B. Construction of examples
The purpose of a recurrent neural network is often, as in

our work here, to find structure in a data set D that consists
of an ordered sequence of values a1, . . . , an. A recurrent
neural network will learn this structure from given examples. A
common procedure to extract examples from D is to consider
a subsequence containing a predefined number of values as
input, after which this subsequence is shifted by one position to
be used as corresponding output. This algorithm is performed
over all possible subsequences to obtain the complete set
of examples. The predefined number of consecutive values
that is used as input is referred to as the window size
w. For example, if w = 3, then the first three examples
(x1,y1), (x2,y2), (x3,y3) extracted from D are given by

x1 = (a1, a2, a3)

y1 = (a2, a3, a4)

x2 = (a4, a5, a6)

y2 = (a5, a6, a7)

x3 = (a7, a8, a9)

y3 = (a8, a9, a10)

Notice that the examples depend on the window size and that,
by construction, the number of input neurons and the number
of output neurons both equal the window size.

III. EXPERIMENTAL DETAILS

A. Data set
The data set we consider is collected from the Cancer

Genome Atlas [16]. More specifically, the data set was pro-
duced in the project named TCGA-BRCA [17], which studies
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Breast Invasive Carcinoma, and we downloaded it using the
TCGAbiolinks R package [18] (version 2.8.4). We selected
the samples mapped to the GRCh38 reference genome that
had been assessed with the Illumina Human Methylation 450k
platform.

For our purpose, it is especially relevant that this data
set contains beta values for 24 chromosomes (22 non sex
chromosomes plus X and Y chromosome) for 1095 patients in
2 conditions (normal and tumor). However, we do not consider
the Y chromosome, since the data set contains only a very few
beta values for this chromosome. Furthermore, due to missing
data, it turns out that only for 96 patients data is available for
normal tissue condition, whereas there is data for 782 patient
tumors. To limit computation time, we consider the 96 patients
in normal condition and the first 96 patients in tumor condition.
Some additional experimental analysis has shown us that this
number of patients is large enough to obtain stable results (see
also Section IV-B). Thus the data set to be analyzed consists
of beta values for 23 chromosomes in 96 patients in normal
condition and 96 patients in tumor condition. On average,
the data set contains about 17 000 measured beta values per
chromosome.

B. Set of RNN architectures
The parameters of a RNN that need to be given a value by

the user are the number of iterations (also called epochs), the
window size w and the number of hidden neurons nh.

The number of epochs should be chosen low enough
to limit computation time, but also large enough to ensure
convergence of the weights of the RNN. We have performed
a concise preliminary analysis on several sets of examples,
running a RNN for 150 epochs and computing the error
between real output values and values generated at the output
neurons. The analysis showed that 40 epochs is sufficient to
reach convergence, as all graphs are very similar to the one
shown in Fig. 3, which represents the error over the 150 epochs
corresponding to one of these experiments. Consequently, all
RNNs are run for 40 epochs.

We consider RNNs with the following window sizes:

W = {10, 30, 50, 70, 90}

To determine suitable choices of numbers of hidden neu-
rons, we can rely on some heuristics. One heuristic is to choose
nh as 2/3 of the sum of the number of input neurons and the
number of output neurons [19]. Since the number of input
neurons equals the number of output neurons, which in turn
equals the window size, we try as number of hidden neurons
at least

nh1 = round(2/3× 2× w)

where round refers to rounding to the nearest integer. We also
try several values that are close to the above value nh1

, namely:

nh2
= round(0.9× nh1

)

nh3
= round(0.8× nh1

)

nh4 = round(1.1× nh1)

nh5
= round(1.2× nh1

)

Finally, we also try nh as 2/3 of the number of input neurons,
since some authors claim that the number of hidden neurons

Figure 3. Evolution of the error of a RNN over 150 epochs on some set of
examples

should be between the size of the input layer and the size of the
output layer [20], and this heuristic restriction is not fulfilled
by any of the number of hidden neurons already chosen (they
are all larger than the size of the input layer, and thus also
larger than the size of the output layer). We denote this value
by nh6

:

nh6 = round(2/3× w)

This gives the following set of numbers of hidden neurons that
we will consider:

Nh = {nh1
, nh2

, nh3
, nh4

, nh5
, nh6
}

Thus, in total we consider |W | × |Nh| = 5 × 6 = 30
different RNN architectures (the notation |A| for a finite set A
refers to the number of its elements).

C. Training, validation and test sets
For each combination of patient, condition and chromo-

some, we train a separate RNN. A first motivation for this is
that the beta values on a specific chromosome of a particular
patient in a given condition can have its own characteristics;
that is, the distribution of these beta values can be significantly
different from the other distributions. Secondly, obtaining
different RNNs allows to compare results with respect to the
patients, the chromosome and the condition. Finally, since the
number of given beta values per chromosome is very large (as
mentioned above, there are on average some 17 000 measured
beta values for each individual chromosome), each RNN will
still have enough examples to learn from.

The beta values for each triplet of the form (patient,
chromosome, condition) are converted into examples according
to the method described in Section II-B. Each set of examples
is then split into a training set, a validation set and a test set,
as follows: the first 60% of the examples are used as training
examples, the next 20% as validation examples, and the last
20% as test examples. The training set is used to train the
selected RNN architectures described in Section III-B for each
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(patient, chromosome, condition) triplet, the validation set is
used to select the best RNN architecture, and the test set allows
to evaluate the performance of the selected architecture on the
task of detecting structure in the sequences of beta values.

D. Performance measures to evaluate RNNs

To evaluate the performance of an architecture on a given
test set containing the examples (x1,y1), . . . , (xm,ym), where
xi and yi refer to input vectors and output vectors, re-
spectively, we will use several performance measures. These
measures all evaluate performance in terms of the differ-
ence between the real outputs y1, . . . ,ym, and the outputs
ŷ1, . . . , ŷm, generated by the considered RNN. We will use
the notation yk(i) to refer to the ith component of yk. By
construction it holds that yk(i) = xk(i + 1) for 1 ≤ i < w
(see Section II-B). Therefore, all output components, except
for the last one (given by yk(w)), are also components
of the input vector. The consequence is that evaluation in
terms of the difference between all true and estimated out-
put values might result in a biased view on performance,
so we also evaluate performance by restricting to the last
output component. For each considered performance measure
P we therefore have a first version that evaluates performance
by comparing y1(1), . . . ,y1(w), . . . ,ym(1), . . . ,ym(w) to
ŷ1(1), . . . , ŷ1(w), . . . , ŷm(1), . . . , ŷm(w), and we denote this
instance of the performance measure by Pa. But we also con-
sider a second version Pb where the values y1(w), . . . ,ym(w)
are compared to the estimated values ŷ1(w), . . . , ŷm(w).

We use the following performance measures: Root Mean
Square Error (RMSE), Nash-Sutcliffe efficiency (NSE) and
Index of Agreement (IA). All measures P are described below
in their Pa version; the Pb counterpart is simply obtained by
restricting the output values to the one corresponding to the
last component.

The RMSE is given by

RMSEa =

√√√√ m∑
k=1

w∑
i=1

(yk(i)− ŷk(i))2

mw

It is clear that the lower the RMSE, the better the network.

The NSE, proposed in [21], is given by

NSEa = 1−

∑m
k=1

∑w
i=1

(
yk(i)− ŷk(i)

)2
∑m

k=1

∑w
i=1

(
yk(i)− y

)2
where y refers to the average of all yk(i) values. The NSE
lies between -∞ and 1.0, where 1 denotes perfect fit. An NSE
lower than zero indicates that the simple average y is a better
predictor than the obtained approximations ŷk(i).

The IA was proposed in [22], and is defined as:

IAa = 1−

∑m
k=1

∑w
i=1

(
yk(i)− ŷk(i)

)2
∑m

k=1

∑w
i=1

(
|ŷk(i)− y|+ |yk(i)− y|

)2
The range of the IA is [0, 1]. The higher the value, the better
the model, with 1 denoting perfect fit.

IV. RESULTS

A. Application to a small subset of patients
Since each triplet (patient, chromosome, condition) is asso-

ciated with a different data set, there are in total 96×23×2 =
4416 individual data sets. Ideally, each of these data sets
is modeled by the RNN architecture that is most suitable
to this specific data structure. To find the best architecture
among the selected set of 30 architectures (cf. Section III-B)
would require the training of 4416 × 30 = 132 480 RNNs,
a prohibitive task in terms of computation time. Therefore,
we select the first five patients in normal condition and the
first five patients in tumor condition, and train each of the
considered architectures only on these patients. In Section
IV-B we analyze the performance of the trained networks on
the validation sets related to this subsample of patients, and
check if there exists one specific architecture that is suitable for
the whole subsample. It is then hypothesized that this single
architecture will also perform well for all 96 patients in both
conditions. The application of this architecture to all patients
is performed in Section IV-C. To compare architectures on the
subsample of validation sets, in order to find a single suitable
one, we only use RMSEa, described in Section III-D. The
complete set of performance measures will be used in Section
IV-C, where we evaluate the architecture that is presumably
suitable for all patients.

B. Choice of a suitable recurrent neural network architecture
As outlined in the previous section, we trained the 30

selected RNN architectures on each of the 23 chromosomes on
a patient subsample consisting of five normal and five tumor
conditions. This implies that each architecture is trained on
23× 5× 2 = 230 individual data sets (23 chromosomes, five
patients, two conditions). One possible way to compare the
performance of the different architectures, is to plot the lowest,
the highest and the average RMSEa, over the selected ten
different patient conditions and over the chromosomes, and
this for each architecture. The result is shown in Fig. 4, where
the X-axis denotes the architectures; for example, 50 5 refers
to the architecture with w = 50 and nh = nh5 . The following
observations can be drawn:

• Low window sizes, up to and including 50, perform
better than higher window sizes, at least in terms of
the average and the highest RMSE (the lowest RMSE
is more or less the same for all architectures).

• For all window sizes that are 50 or smaller, the choice
of the number of hidden neurons has no effect on the
performance.

Another way to evaluate the different architectures is to
record the number of times that a given architecture performs
best, i.e. the number of times that it has lowest RMSE, and that
a given architecture performs worst, i.e. that it has the highest
RMSE, and this over all (patient, chromosome, condition)
triplets from the subsample. Experiments in this respect show
that the first architecture, with w = 10 and nh = nh1

= 7,
performs best in most cases.

Based on these findings, we decide to use the architecture
(w = 10, nh = 7) as the overall best architecture. We will use
this architecture in the next section to analyze the complete
data set. Since the best architecture happens to be the one with
smallest window size among the selected set of window sizes
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Figure 4. Lowest, highest and average RMSE over the selected patients and
over the chromosomes, and this for each architecture

W (which has as smallest element ten), one might wonder
if even smaller window sizes perform better. Therefore, we
also tried window size five, with varying numbers of hidden
neurons, and performed several experiments. However, the ob-
tained results were very similar to the results for window size
ten. Therefore, we restrict attention to the (w = 10, nh = 7)
architecture, the results of which are outlined in the next
section.

Although our subsample of ten patients is small, we applied
the (w = 10, nh = 7) architecture on the associated subsample
of test sets to obtain some preliminary results. However, since
this architecture was also applied to the much larger set of 96
patients, and since the results on the corresponding test sets
turned out to be very similar to those obtained on the small
subsample, we discuss the results only for the large set of
96 patients (cf. next section). The fact that the results for the
small subsample and for the large set are similar indicate that
the set of 96 patients is large enough to safely assume that the
obtained outcomes are significant.

C. Application to all patients
We now evaluate the (w = 10, nh = 7) architecture

on the set of 96 patients in tumor condition and in normal
condition. Evaluation is done by training this architecture on
each of the 96 × 23 × 2 = 4416 corresponding training
sets, and then measuring the performance on the associated
test sets using the measures described in Section III-D. As a
benchmark, performance is also evaluated with respect to a
random permutation of the training sets.

The results are shown in Figs. 5-10. Each figure contains
one of the two versions of each of the performance measures
P (the version being Pa or Pb, cf. Section III-D). Furthermore,
each figure contains two histograms of values of P : one that
relates to performance on the test sets after training has been
performed on the original training sets, and one where training
has been done on a random permutation of the training sets.
The figures indicate the following:

• There is a substantial difference between the results
related to the permutated training sets and the non-
permutated ones. The important implication is that the
beta values along a chromosome are non randomly
distributed. There is structure in a given sequence
of consecutively measured beta values, and recurrent
neural networks are able to detect this structure, at
least to some extent.

Figure 5. RMSEa

Figure 6. RMSEb

Figure 7. NSEa

Figure 8. NSEb
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Figure 9. IAa

Figure 10. IAb

• There do not exist theoretically derived thresholds on
the values of each of the performance measures to
demarcate good and bad models. However, it seems
justified to conclude that the values of the performance
measures related to the non permutated training sets
are acceptable or even very good. Especially the IA
attains very high values, with most values higher than
0.8.

• As expected, the Pb version of the performance mea-
sures (which takes only the last output component
into account) has worse values than its Pa counterpart
(taking all output components into account). However,
the histograms of both versions are not substantially
different (roughly speaking, the histograms of Pb

appear to be shifted to the right over only a small
distance), implying that the recurrent neural network
performs still reasonably well when evaluation is
limited to the last output component, i.e. the only
component that is truly predicted.

V. CONCLUSION

In this paper, we have shown the applicability of recur-
rent neural network analysis for the detection of structure
in sequences of measured methylation levels along human
chromosomes. The considered task is inherently challenging,
due to the fact that a specific methylation value is the result
of complex biological processes and because probes where
measurements are collected are not equidistantly located. Nev-
ertheless, our work demonstrates that structure is present in
sequences of methylation levels, and that recurrent neural
networks are able to detect this structure. The obtained results
are relevant to both the machine learning and the biological
community.
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