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Abstract—This work researches the impact of including a
wider range of participants in the strategy-making process on
the performance of organizations, which operate in either mod-
erately or highly complex environments. Agent-based simulation
demonstrates that the increased number of ideas generated from
larger and diverse crowds and subsequent preference aggregation
lead to the rapid discovery of higher peaks in the organization’s
performance landscape. However, this is not the case when the
expansion in the number of participants is small. The results
confirm the most frequently mentioned benefit in the Open
Strategy literature: the discovery of better-performing strategies.

Keywords-Open Strategy; minisum approval voting; strat-
egy as a practice; NK model; agent-based modeling.

I. INTRODUCTION

This paper shows that aggregating ideas from a diverse
pool of participants using a specific aggregation mechanism
leads to the rapid discovery of high-performing strategies.
Including a wider range of participants in strategy-making
is in line with a recent approach to strategy development,
called Open Strategy (OS): OS is inclusive vs. restricted
to the organizational elite, transparent vs. intransparent, and
enabled by social information systems vs. merely supported
by traditional IT [1]. Due to advances in (social) technology,
changing societal norms, and several benefits, the interest in
Open Strategy (OS) is on the rise [2][3].

Benefits of OS identified in empirical and conceptual
research are the generation of better-performing strategies,
increased buy-in and commitment, increased employee moti-
vation, and improvements in an organization’s reputation [4].
Tapping into the knowledge and intuition of nontraditional par-
ticipants in the strategy process such as external stakeholders
and access to a broader range of ideas are mentioned as reasons
for the generation of better-performing strategies. The theory
of the Wisdom of the Crowd poses similar reasoning [5].

In general, there is a lack of experimental evidence on when
and how these claims might materialize, marked by calls for
more longitudinal studies [3]. The goal of this work is to
address this lack of evidence by evaluating with which number
of participants and under which level of environmental com-
plexity OS’s most frequently mentioned benefit, the generation
of better-performing strategies, eventuates. The results may

contribute to a normative understanding of the OS approach
and help guide academics and decision-makers towards better
OS design.

This research turns to computational experimentation with
an agent-based model for the following reasons [6]:

(a) Using empirical methods, it is impossible to disentangle
the effects caused by the considered independent vari-
ables from the effects of other influences (the environ-
ment, competitors, the market, etc.) based on obtainable
data such as from surveys and experiments, especially
for strategic decision making. Additionally, on this topic,
it is almost impossible to carry out longitudinal studies.

(b) Formal models frequently employed in economics would
not be mathematically tractable due to their complexity.

Agent-based simulation, the form of the simulation method
employed herein, fits the research’s objective: The firm and
its stakeholders that participate in strategy-making are the
agents. They are heterogeneous, boundedly rational, and act
autonomously in an explicit space of local interactions. As
summarized in [7], these characteristics of the model define
an agent-based model [8]. The individual search processes,
individual decision-making, and individual learning result in
the macrobehavior of the firm, incrementally finding better-
performing strategies.

This work makes use of the strategy as a practice perspec-
tive. In contrast to the planning and process view on strategy-
making, the focus of strategy as a practice is on how the
participants in strategy development act and interact with each
other and with the organization [9]. To make sure we model
aspects relevant to a realistic OS setting, we turn to the strategy
as a practice perspective adapted to OS [10].

The paper continues with a review of the literature in
Section II and a description of the model in Section III,
discusses the simulation setup and the results in Section IV,
and ends with the conclusion and future work in Section V.

II. LITERATURE REVIEW

When implementing OS, organizations might opt for in-
cluding both internal and external participants, or for limiting
the inclusion scope to internal stakeholders only. Malhotra,
Majchrzak, and Niemiec [11] employ an action research

42Copyright (c) IARIA, 2020.     ISBN:  978-1-61208-831-0

SIMUL 2020 : The Twelfth International Conference on Advances in System Simulation



approach and describe OS as an online collaboration process in
which mainly external stakeholders are involved. They identify
the risks of contentious conflict and self-promotion. Careful
risk-mitigating actions led to a successful conclusion of the
process. The company Siemens opted for directing inclusion
internally by opening up strategy-making to all employees
[12]. The case study shows that different forms of participa-
tion, i.e., commenting, evaluating, or merely submitting ideas,
generate divergent effects on employees’ engagement with the
company, with the first two making a positive contribution, but
not the latter.

Other lines of research, e.g., [13], elaborate on the impact
of the organization’s characteristics on the implementation of
OS. The double case study in [13] illustrates how a centralized
organization tends to limit inclusion and transparency vs. a
more decentralized organization.

Other research investigates OS across time, i.e, during dif-
ferent phases. Research suggests that during the exploration of
new products or markets, OS is more attractive than during the
later phases in a product cycle [14]. In addition, [15] and [16]
highlight that also within the strategy process temporal effects
exist: Organizations might do better by opening up strategy-
making during the generation of ideas for new strategies than
during the subsequent selection of new strategies.

There are social network connections among stakeholders
and between the organization and its stakeholders. Four themes
related to the intersection between network research and OS
are identified in [17], leading to the following advantages of
the network perspective when studying OS: First, it is possible
to move toward a more relational understanding. Second, the
availability of data in IT-based initiatives in OS provides
opportunities to apply quantitative methods. Third, it could
enable multilevel research. Finally, network analysis can be
highly appropriate for studying the outcomes of increased
openness.

While OS is associated with a wide range of beneficial out-
comes, trade-offs exist [18]. E.g., the possibility of obtaining
better-performing strategies is reported as a benefit in [11],
while there is a risk of loss of commitment among participants
when expectations about the impact of contributions remain
unmet [19]. Long term studies on how better-performing
strategies emerge are, however, still missing.

III. MODEL DESCRIPTION

The purpose of the model is to investigate how the number
of participants and the level of complexity of the environment
affects an organization’s performance in an OS approach.

The strategy-making process is simulated in the Open
Strategy as a Practice framework introduced in [10]. The
three main components of the framework are a) the practi-
tioners representing the people making strategy, b) the praxis
component standing for what happens in an iterative process
with the episodes taking place in a certain organizational
context, and finally c) the set of practices representing the tools
and mechanisms used to develop a strategy. When strategy-
making is open, the set of practitioners includes stakeholders

along with the firm’s upper echelon, some types of voting
mechanisms are typically part of the practices, and the praxis is
transparent by including feedback to the stakeholders involved.

The model features a single firm that seeks and implements
high-performing strategies in an iterative manner. The firm
may or may not choose to include stakeholders in the strategy-
making process. It operates in a static, complex environment.

The firm is represented by its upper management and it
is always included in the simulation as P1 in the set of
practitioners {Pj : j ∈ {1, .., S}} where S is the total
number of practitioners. In an OS setting, strategy-making
also includes S − 1 ≥ 1 stakeholders from inside or outside
the firm such as employees and customers. While this work
studies the performance of strategies for the firm that are being
discovered and implemented, all practitioners are assumed
to gain a personal utility from these strategies and want to
maximize their utility.

The praxis is modeled as a cyclic process in the order of
months, where each episode t ∈ {1, .., T} consists of phases
as in [10]. Hautz [16] and references therein propose that
in a strategy-making process, first comes generating a range
of strategy ideas, next comes selecting the most appropriate
one, followed by implementation. Mack and Szulanski [13]
present case illustrations showing that a similar framework
can describe reality. As in [4], we distinguish the following
four phases in an episode: 1) preparation phase, 2) genera-
tion phase, 3) selection phase, and 4) implementation phase.
Strategies are modeled as bitstrings s ∈ {0, 1}N consisting
of N binary decisions si, i ∈ {1, .., N}. Parameter K
signifies the number of interactions between decisions and
can be considered as a proxy for how tightly departments
within an organization are interwoven, thereby also shaping
the complexity of the task environment [20].

In condensed form, the sequence of events is as follows
(see Figure 1): The simulation runs for T episodes with
the number of stakeholders S and the number of decision
interactions K as independent variables. In each episode, 1)
the simulation’s environment is set up in the preparation phase,
2) the practitioners come up with ideas for a new strategy,
and a preference aggregation mechanism distills these ideas
to a shortlist in the generation phase, 3) the practitioners
vote for the new strategy in the selection phase, and 4) the
performance for the firm of the new strategy is recorded as
the dependent variable depending on independent variables S
and K, and choices made in the OS process such as the type of
the aggregation mechanism used, in the implementation phase.
The subsections below describe the four phases and the model
in more detail.

A. Preparation Phase

The firm starts with a random current strategy scur. The
simulator (the simulation software is written in Python 3.7)
also generates the practitioners’ utilities of the strategies
the firm might implement. Strategies are mapped to per-
formances for practitioners Pj in performance landscapes
Fj : {0, 1}N → [0, 1] defined by the NK model [21]. I.e.,
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Fig. 1. Flow diagram of one simulation.

the strategies related to higher numerical values correspond
to high-performing variants in the space of possibilities, and
vice versa. A higher K ∈ {0, N − 1} leads to rugged, highly
nonlinear performance landscapes with more local peaks,
whereas a lower K gives rise to a smoother search space,
see also [22].

As all practitioners including the firm are assumed to be
correlated in their preferences toward strategies, the simula-
tion generates random performance landscapes Fj(s) with a
pairwise correlation coefficient ρ in line with [23] (with a
random interaction matrix). To account for the diversity in the
pairwise correlations, the algorithm in [23] is extended to use
a perturbed correlation matrix [24].

Evaluating strategies is not without error: Assuming limited
cognitive capacity [25], practitioners’ views of their landscapes
are somewhat obfuscated. Hence, every time a practitioner Pj
evaluates a strategy s, the model adds a random error term ε
from a Gaussian with mean 0 and standard deviation Ej :

Fj(s)
′ = Fj(s) + ε,

ε ∼ N (0, Ej).
(1)

We assume practitioners are diverse in their cognitive ca-
pacities. Consequently, at the start of a simulation, we draw
random variables Dj , j ∈ {1, .., S} from a Gaussian with
mean 0 and standard deviation E and then take the absolute
value of them to obtain the individualized Ej :

Ej = |Dj |,
Dj ∼ N (0, E).

(2)

This phase takes place in episode t = 1 only, otherwise, the
episode starts off with the generation phase directly.

B. Generation Phase

This phase generates a shortlist of L candidates; strategies
that can be taken into consideration in the selection phase
when practitioners vote for the firm’s strategy in t + 1. As
the firm has a limited capacity for change in each episode,
appropriate candidates s for t+ 1 do not differ in more than
C decisions from scur, i.e., they have a Hamming distance
dH(s, scur) of C decisions maximum, assuming N > C.

As the first step in this phase, each practitioner enters one
idea from the set of appropriate candidates for the firm’s
new strategy in t + 1 on a list of ideas. Entering ideas is
modeled as follows: Practitioners observe the firm’s current

strategy scur. Assuming limited cognitive capacity [25], each
practitioner imagines a personal random subset of only Q
strategies out of the set of appropriate candidates. They rank
these Q strategies by evaluating them one by one in their
performance landscapes. Every practitioner then enters their
preferred strategy on the list of S ideas. Duplicates may occur.

As the second and last step in this phase, the preference
aggregation mechanism minisum approval voting [26] distills
these ideas into a shortlist of L candidates for the selection
phase in this episode t. Let s be an appropriate candidate for
the firm’s strategy in t+ 1 and let sj be Pj’s idea. Then, the
minisum score for s equals

∑S
j=1 dH(s, sj), the sum of the

Hamming distances between s and all sj . The candidates are
ranked by score (candidates with the same score are ranked in
random order) and the L lowest-ranked candidates win. As this
algorithm takes the sum of distances, discontent from single
practitioners with particular candidates may not influence the
ranking. Therefore, minisum approval voting is a utilitarian
preference aggregation mechanism.

C. Selection Phase

The shortlist of L candidates is extended by scur. The
practitioners evaluate the L + 1 candidates and communicate
their rankings to the Borda count voting rule from the set
of practices [26]. Every time a practitioner ranks a candidate
first, the candidate adds L scores to its total count. Every
practitioner’s second ranking rewards a candidate with L− 1
scores, etc., with a last ranking giving zero scores. The
winning candidate snew is the candidate with the highest total
count. If there are multiple candidates with the maximum total
count, the simulation picks one at random.

D. Implementation Phase

The firm communicates snew to its stakeholders and im-
plements the strategy, thereby ending episode t. The model
evaluates snew in the firm’s landscape and stores the result,
relating time step t to performance F1(s(t)) as the dependent
variable. If t < T , the simulation, skipping over the prepara-
tion phase, continues with the generation phase in t+ 1. The
winning candidate snew now has become scur in t+ 1.

IV. RESULTS

The previous section presented features of the model that
are relevant when considering the impact of multiple practi-
tioners on strategy-making. The subsections below define the
simulation setup and discuss the results.

A. Simulation Setup

Table I shows the variables used in the model. Starting
with the control variables, we set N = 10 giving sufficient
combinatorial richness while not putting too much demand on
computational resources. The pairwise correlation coefficient
ρ is set to the moderate positive value of 0.5. C, the maximum
Hamming distance with the current strategy that makes a
strategy a viable candidate, equals 2; while constraining the
strategy updates in subsequent episodes to only 2 decisions, it
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still leaves plenty of choices for practitioners to imagine ideas
as the set of appropriate candidates scales with the sum of
Binomial coefficients

(
N
k

)
, with k ∈ {1, .., Q}. The number

of ideas per practitioner Q is set to 2 due to the assumption
of limited cognitive capacity [25]. The size L of the shortlist
of candidates for selection is set to 3 as to not overburden
voters in the selection phase. With E = 1

16 , the evaluation
error Ej will average out to a small E

√
2√
π
≈ 0.05 as the mean

of the folded normal distribution with standard deviation E.
The number of episodes T in a simulation is set to 100 as in
all cases the results stabilize at this value.

The independent variables are K and S. The number of
decision interactions K is varied to a moderate setting, i.e., 4
and a high setting, i.e., 7 for contrast. The number of practi-
tioners S equals either 1, when strategy-making is exclusive
for the firm as in a traditional Closed Strategy setting, and 10
or 100 when stakeholders are introduced in an OS setting.

The dependent variable F1(s(t)), the performance for the
firm at time t, is recorded at the end of every episode from
t = 1 to T with F1 normalized to [0, 1]. To mitigate random
effects, it was found sufficient to average the scenarios over
4000 simulation repetitions [27]. Confidence intervals over
F1(s(t)) are calculated at 95%.

B. Simulation Results and Discussion

Figure 2 shows the performance of the firm F1(s(t)) over
one hundred episodes at the moderate level of interactions
K = 4. Included are results for S = 1, when strategy-
making is restricted to the firm as the only practitioner
involved in strategy development. When S = 10 or S = 100,
strategy-making is opened up to include an additional nine,
respectively, 99 practitioners, which are stakeholders of the
firm. In t = 1, just one episode after starting with a random
strategy, Figure 2 shows already a significant difference be-
tween performance at S = 1 or S = 10 on the one hand and
S = 100 on the other. At t = 5, also the OS setting with ten
practitioners starts outperforming the closed strategy-making.
Over the entire range of episodes, S = 100 outperforms both
S = 10 and S = 1.

Fig. 2. Graph of performance for the firm over episodes at K = 4.

Figure 3 illustrates that when K = 7, the additional
ruggedness of the landscapes produces lower performances for
all values of S as it is more difficult to find peaks with high
performing strategies for the firm. Still, S = 100 outperforms
both S = 1 and S = 10. In contrast to K = 4, with K = 7,
the OS setting with ten practitioners does not significantly
outperform the Closed Strategy setting.

Fig. 3. Graph of performance for the firm over episodes at K = 7.

The results demonstrate that in our model the performance
improves or is at least the same when opening up strategy-
making for both K = 4 and K = 7, already in the initial
episodes. This finding confirms the most frequently mentioned
benefit of an OS approach: the discovery of better-performing
strategies [4]. In a Closed Strategy setting, the firm has access
to fewer ideas; access to a larger, diverse pool of ideas helps
in exploring the landscape faster. In a sense, an OS approach
gives a wider view, without needing to resort to uncertain big
jumps in the searching process as in [20].

The result that with higher K the advantage of an OS
approach for S = 10 seems to disappear can be explained
as follows: The theory of the Wisdom of the Crowd states
that in many discovery processes a group outperforms the
individual, even if the single person is an expert [5]. Wisdom
of the Crowd is especially effective when individual judgments
cluster around the correct central value [28]. However, even
when judgments among a wide group average to the central
value, querying a small subset of the group can have a
detrimental effect on the discovery of the correct value [29].
In our model, while the practitioners’ performance landscapes
are correlated, there is nothing that guarantees that the ”central
value” in the set of landscapes is the firm’s landscape. Our
findings suggest that when a landscape is very rugged, a small
bias can have large effects, countering the advantage of the
added number and diversity of ideas that an OS approach can
bring. Sensitivity analysis with variations in ρ confirms the
expectation that in ceteris paribus, a higher correlation among
practitioners leads to higher performance.
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TABLE I
VARIABLES

Classification Symbol Value/Range Description

Control N 10 The number of binary decisions in a strategy s.
ρ 0.5 The average correlation coefficient between practitioners’ performance landscapes.
C 2 Maximum Hamming distance from the current strategy that makes a strategy an appropriate candidate.
Q 2 The number of strategies practitioners can imagine in the generation phase.
L 3 The size of the shortlist of candidates for the next episode’s strategy.
Ej 0.05 Standard deviation of practitioner’s Pj evaluation error.
E 0.0625 Standard deviation of each Ej .
T 100 The number of episodes per simulation.

Independent K {4, 7} The number of interactions between decisions.
S {1, 10, 100} The number of practitioners.

Dependent F1(s(t)) [0, 1] Performance for the firm of strategy s at episode t.

V. CONCLUSION AND FUTURE WORK

The results suggest that the often stated benefit of an OS
approach, namely, the discovery of better-performing strategies
[4], can indeed be obtained through preference aggregation
of a diverse group of practitioners with minisum approval
voting, even if voters’ preferences are not 100% aligned with
the firm’s preference. Moreover, the results indicate that a
larger group of practitioners (S = 100) outperforms a smaller
group (S = 10) in organizations operating in both moderately
(K = 4) and highly (K = 7) complex environments. With
K = 7, when it is more difficult to navigate the firm’s
landscape, the advantage of OS, at least with a smaller
number of participants, disappears due to the drawback of
practitioners’ preferences that are on average not necessarily
100% aligned with the firm’s preference.

A limitation of our methodology is that external validation
is hard, as data is difficult to obtain by empirical methods [30].
To focus on the core aspects of the research question, much
complexity, such as communication between stakeholders, the
effects of memory, and network effects, was eliminated that
might capture critical aspects of reality. Additionally, this
paper would benefit from sensitivity analysis over the control
variables.

Future work can extend the model by including network
effects among practitioners, strategic voting, and the conse-
quences of voter dissatisfaction. Simulations could consider
the effects of restricting the opening of strategy-making to
specific phases in the strategy process or investigate the impact
of temporal opening up depending on exploratory or ex-
ploitative demands in organizations’ life cycles. Furthermore,
egalitarian vs. utilitarian preference aggregation mechanisms
[31] can be evaluated for their impact on the drawback of loss
of commitment by dissatisfied practitioners [18]. Additional
research can also investigate the apparent dilemma between the
posed benefits of a broader range of ideas [32] (high diversity
in preferences) and the requirement of low bias (low diversity)
observed in this research.
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