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Abstract—Solving Stochastic Resource-Constrained Multi-
Project Scheduling Problems (SRCMPSP) is an upcoming topic.
Numerous variants, smaller batch sizes and shorter product
life cycles lead to more uncertainty. In Production Planning
and Control (PPC), stochastic scheduling approaches are coming
into focus. The schedule thus is determined during production
without following a baseline schedule. In our research project
Hybrid PPC, we develop robust heuristics for stochastic project
scheduling. The purpose of the approach is a central, simulation-
based generation of a decentralized control system. As part of the
research, we investigate benchmarking of SRCMPSP, evaluation
strategies, as well as heuristic and solution robustness.

Keywords—stochastic processes; scheduling algorithms; bench-
mark testing.

I. INTRODUCTION

Mechanical and systems engineering is increasingly becom-
ing a project business (large number of variants, batch size
one) [1]. The main driver is the increasing individualization.
This is accompanied by more fuzzy data (e.g., through
reduced time for work preparation). Thus, Production Planning
and Control (PPC) in project manufacturing is facing new
challenges. This applies in particular to complex assembly
processes that are characterized by human work. Stochastically
influenced process times are inherent in the process due to
the fluctuating individual performance of humans and will,
therefore, continue to exist in the future. There is also a
low level of interaction and data availability between PPC
in this domain. Representative examples of the characteristics
mentioned above are the final assembly of customer-specific
machine tools, printing machines or photovoltaic systems,
in which several complex projects with individual objectives
compete for resources. From a scientific point of view, project
planning and control problems under uncertainties belong to
the problem class of Stochastic Resource-Constrained Multi-
Project Scheduling Problems (SRCMPSP). A solution strategy
for this problem is stochastic scheduling without a baseline
schedule, which is largely a novelty in the area of project
scheduling. In our research project Hybrid PPC, we research
heuristics for decentralized scheduling with an evolutionary
simulation based optimization approach.

In this paper, we present the research background in
Section II and the scope of the research project in Section III. In
Section IV, we have a detailed look on the challenge heuristic

Copyright (c) IARIA, 2020. ISBN: 978-1-61208-831-0

and solution robustness and show our first steps regarding
modelling. The paper concludes with a short summary in
Section V.

II. RESEARCH BACKGROUND

Current PPC developments for mastering the challenges in a
dynamic production environment are promising. In particular,
the comprehensive decentralization of production control
can enable the compensation of stochastic influences and
process uncertainties while simultaneously improving logistic
objective values [2]. So-called Cyber-Physical Production
Systems (CPPS) are prerequisite in many approaches (e.g.,
adaptive scheduling approach [3], static scheduling policy
[4]). However, the permanent automatic data acquisition and
availability required for such systems is currently only partially
feasible and will remain subject of research and development
for the next few years [5]. The technical implementation [6]
and acceptance of a continuous digital recording of human
work is also unclear [7].

However, in order to use the advantages of new approaches
in decentralized control, strategies are required that can be
implemented with low data availability and interaction.

From a conceptual point of view, there are various approaches
for such a decentralized control. For process control, mainly
automatically generated heuristics [8] in form of Composite
Dispatching Rules (CDR) are used and applied in various
PPC concepts. Simply stated, CDRs are attributes calculated
according to a rule from the information on the product,
process, resource and system. While automatically generated
CDRs are widely used in job-shop scheduling [8], applications
of automatically generated CDRs for the solution of the
Resource-Constrained Project Scheduling Problem (RCPSP)
[9] and especially for the solution with a decentralized control
for SRCMPSP are rather rare in literature. We can only
guess the reasons for this. While the job-shop environment
is traditionally stochastic, the RCPSP environment is also
increasingly stochastic. Classical solutions for RCPSP by
generating a baseline schedule are no longer effective and
the interest in scheduling without a baseline schedule increases.
One possibility for efficient scheduling without a baseline
schedule are those CDRs. In addition, the SRCMPSP is more
complex (e.g., more complex precedence constraints, larger
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Figure 1. Proposed Hybrid PPC approach

problem size with up to 10 projects with up to 1000 jobs and
up to 50 different resources) than the job-shop problem, which
leads to increased requirements for PPC strategies.

III. RESEARCH PROJECT HYBRID PPC

In order to distinguish our research from existing research
in the field of decentralized control strategies due to lower
data availability and interaction, we focus on the development
of a method for the configuration of a CDR, which is valid
for a limited period. We name this heuristic robustness. This
CDR should be able to compensate process uncertainties
autonomously.

In our research project Hybrid PPC we address different
challenges and goals of the mentioned stochastic project
scheduling problem (extract). We strive for the following goals:

« Best possible compensation of disturbance variables and
stochastically influenced process parameters

o Multi-objective optimization: Differentiated optimization
of project-specific and production system objectives

o Use of practical and easy to collect information in the
production system as data basis for CDRs

To reach those goals, the following challenges arise:

« Benchmarking SRCMPSP
o Heuristic Robustness: Defining Evaluation strategies
« Investigation and applications of computational fast algo-
rithms for generating CDRs
As mentioned, the two core components of the proposed Hy-
brid PPC approach is the central, simulation based configuration
[10] and the decentralized control with CDRs (see Figure 1).
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The input for generating the CDRs is therefore a production
scenario with stochastic variables, e.g., processing times, and
a predefined time horizon. Based on this scenario, the central
stochastic simulation starts with firstly randomly generated
CDRs. Both the representation of the CDR (requirements
low computation effort) and the selection of attributes (local
attributes) are part of our research. In order to take advantages
of different representation types, we see potential in the
combination of rule-based and parameter-based representation
and additional in the development of specific scheduling
policies (e.g., while queue length < x, then FIFO). For
improving the CDRs, evolutionary algorithms are conceivable.

Further, we want to use machine learning to generate initial
solutions of CDRs (reduce computational effort) and these
specific scheduling policies. Therefore, we want to derive
the input parameters for the generation of the CDR based
on similar model parameters. Methods of supervised learning
are of particular interest here. Central configuration results
in the CDR with the best statistical objective value of the
different stochastic scenarios. These CDRs are transferred to the
production resources and are used decentralized for scheduling.
The specification of the size of the project pool / period length
in correlation to heuristic robustness is also part of our research.
This process is comparable to the transfer of the production
schedule to production. Various options are conceivable for
technical implementation. The minimum feedback quality refers
to the completion of an order so that the work in process
can be estimated. The success of the project is measured by
whether the considered objective values are improved compared
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to achieved objective values of current used strategies (e.g.,
priority rules, list scheduling).

IV. ADDRESSED CHALLENGE ROBUSTNESS AND FIRST
STEPS

A. Challenges of Robustness

In our research project, we define the robustness of heuristics
to solve SRCMPSP as the capability to compensate disturbances
and data uncertainty. The compensation of the disturbance
correlates with the objective fulfilment. Therefore, we consider
statistic values of the objective functions, so that one can also
speak of solution robustness here. A low standard deviation is
an indicator of high robustness.

The individual project objectives are usually in conflict
with the objectives of the shop floor (see Figure 2). The
first challenge is to choose the appropriate statistic for the
objective functions. Usually only mean and standard deviation
are considered. We also investigate other statistic parameters
(e.g., range, median) if they are suitable for optimizing the
objective values.

The second challenge is to find an evaluation strategy for
these objectives. One concept to find a compromise could
be pareto dominance [11]. However, this results in a high
evaluation effort and reducing computational effort is also
necessary. As an example, 10 projects with 5 objectives each
means a total of 50 objective functions.

Looking on a first experiment based on previous work [12],
we can underline the complexity of defining heuristic and
solution robustness. For the experiment, we chose representative
models of the Multi-Project Scheduling Problem Library
(MPSPLIB) [13] and some industrial examples (complex
printing machines). The objective function was Total Project
Delay (TPD, sum of delay of all projects). Comparing mean
and standard deviation of objective function values for different
optimization strategies (single, pareto ranking) shows the effects
in Table I. While a single optimization leads to good results
for the considered objective and to bad results for the not
considered objective, the pareto optimization leads to a good
compromise (see Figure 3). The ratio of improvement to
deterioration between the strategies is very different.

Concluding, how standard deviation and mean value correlate
in the solution space cannot be determined trivially. Thus,
the effects of achieving better results in one objective value
on another objective value cannot be determined and are
model-dependent. However, it is necessary to define additional
measurements for heuristic and solution robustness according
to schedule robustness [14].

B. Model description

As mentioned earlier, our problem class is a SCRMPSP.
We base the description on Kolisch instances [15], which we
extend by multi-objectives, setup times (based on job types),
stochastically distributed job duration and resource capacity.
To describe stochastics, we use examples from literature and
practice. For example, the assembly time of assemblies for the
interior fittings of ships is logarithmically normally distributed.
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Figure 2. Shop floor objectives vs. project objectives
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Figure 3. Result of pareto optimization (example)

The coefficient of variation is up to 0.9, which means a high
uncertainty. The final problem description contains a production
system with global resources and projects. Those projects
comprise a list of jobs, an objective and project-local resources.
Each of the jobs has a job type, a number of modes and a list
of successors. A mode determines the duration and required
resources of the job. A resource has a maximum capacity. Both
duration of a mode and capacity of a resource can either be
concrete, or stochastically distributed for some distribution.

C. Reproducible benchmark library

One of the challenges mentioned earlier is to benchmark an
SRCMPSP and the comparison of different solution approaches
for that problem. Our vision is to provide a benchmark
architecture similar to the MPSPLIB [13]. However, the
question remains: how to provide a suitable input to other
participants solving a given problem instance? One can
either provide stochastic distribution information, or provide
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TABLE I. MEAN AND STANDARD DEVIATION OF TPD.

Optimization strategy '

Model

Mean TPD Std TPD Pareto TPD

Mean Std Mean Std Mean Std
j30_a2_nr1 41.3 9.1 47.1 6.4 42.9 8.47
j30_a2_nr2 54.8 15.3 57.3 11.6 54.9 12.10
PM_1 78.71 6.49 86.58 3.68 74.73 7.95
PM_2 57.84 4.93 69.03 1.97 64.95 3.93
PM_3 65.29 8.18 84.9 3.11 68.18 5.72

! Considering different objective strategies: mean, standard deviation (std)
and pareto-optimization (mean and standard deviation) of TPD (time units),
evaluation of mean and std for each strategy

“scenarios”, i.e., a finite number of concrete values for all
stochastically distributed values. The former is more concise,
but not necessarily comparable whereas the latter is comparable,
but more verbose.

D. Current status

We began to implement a process for generating problem
instances of our problem class (see Figure 4). For this, an
existing problem generator (ProGen) [15] is used to generate
a base problem. This description is parsed into and together
with the missing information like stochastic distributions, the
problem is extended to be fully compliant with the problem
class of SRCMPSP. The current process ends with persisting
that description. Next steps are a) to find ways to compute
one solution for the now extended problem, and b) to find
strategies to generate heuristics, as described earlier.

Kolisch Base ] Extended
instance Parser model Extension model

Extension
config

Figure 4. Extension process

ProGen

V. CONCLUSION

In this paper, the research project Hybrid PPC was presented.

The project takes up the PPC problem in customer-oriented
project manual manufacturing and deals with fundamental
questions of both scientific and practical relevance. The
approach is the central configuration of a decentralized control
system based on various algorithms. Therefore, we have
developed a complex model of the SRCMPSP. We are currently
developing an evaluation model by examining various statistical
parameters of the objective function values to describe and
investigate solution and heuristic robustness. Our next step is
the development of a scheduler with the requirement of short
computation time. In parallel, we investigate possibilities to
reuse the simulation data with the aim to save computation
effort. Machine Learning algorithms are promising to find
correlations between models, solution approaches and objective
function values based on large data sets.
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