SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

On the Calibration, Verification and Validation of an Agent-Based Model of the HPC
Input/Output System

Diego Encinas, Marcelo Naiouf,
Armando De Giusti

Informatics Research Institute LIDI
CIC’s Associated Research Center
Universidad Nacional de La Plata

50 y 120, La Plata, 1900, Argentina

Email: {dencinas, mnaiouf,

degiusti}@lidi.info.unlp.edu.ar

Abstract—High Performance Computing (HPC) applications can
spend a significant portion of their execution time making In-
put/Output (I/0) operations into files. Improving I/O performance
becomes more important for the HPC community as parallel
applications produce more data and use more compute resources.
One of the methods used to evaluate and understand the I/0
performance behavior of such applications in new I/O system
or different configurations is using modeling and simulation
techniques. In this paper, we present a simulation model of the
HPC 1/0O system by using Agent-Based Modelling and Simulation
(ABMS) based on the functionality of the I/0 Software Stack. Our
proposal is modeled using the concept of white box so that the
specific behavior of each of the modules or layers in the system
can be observed. The I/O software stack layers are analyzed
using code instrumentation for the features corresponding to I/0
operations and calibration of the initial model. The verification
and validation of an initial implementation has shown a similar
behavior between the measured and simulated values for the
Interleaved or Random (IOR) benchmark by using different file
sizes.

Keywords—Agent-Based Modelling and Simulation (ABMS);
HPC-I/0 System; Parallel File System.

I. INTRODUCTION

Many scientific applications benefit considerably from the
rapid advance of processor architectures used in the modern
High Performance Computing (HPC) systems. However, they
can spend a significant portion of their execution time making
Input/Output (I/O) operations into files. Inefficient I/O is one
of the main bottleneck for scientific applications in a large-
scale HPC environment.

In the HPC field, the I/O strategy recommended is the
parallel I/O that is a technique used to access data in one
or more storage devices simultaneously from different appli-
cation processes so as to maximize bandwidth and speed up
operations. For its implementation, a parallel file system is
required; otherwise the file system would probably process the
I/O requests it receives sequentially, and no specific advantages
in relation to parallel I/O would be gained.

Generally, evaluating the performance offered by a HPC
I/O system with different configurations and the same appli-

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

Sandra Mendez

Computer Sciences Department

Barcelona Supercomputing Center (BSC) and Operating Systems Department
Barcelona, 08034, Spain

Email: sandra.mendez@bsc.es

Dolores Rexachs
and Emilio Luque

Computer Architecture

Universitat Autonoma de Barcelona
Bellaterra, 08193, Spain
Email: {dolores.rexachs,
emilio.luque}@uab.es

cation allows selecting the best settings. However, analyzing
application performance can also be a useful before configur-
ing the hardware.

One of the methods used to predict different application
configurations behavior in a computer system is using model-
ing and simulation techniques. That is, analyzing and designing
simulation models based on the parallel I/O architecture allows
reducing complexity and fulfilling application requirements
in HPC by identifying and evaluating the factors that affect
performance.

There are several research efforts in HPC I/O system simu-
lators focusing on storage architecture and some layers of the
I/O software stack. The Simulator Framework for Computer
Architectures and Storage Networks (SIMCAN)[1] is oriented
to optimizing communications and I/O algorithms. The Parallel
I/O Simulator of Hierarchical Data (PIOSimHD) [2] was
developed to analyze Message Passing Interface-Input/Output
(MPI-I/O) performance. The Co-design of Exascale Storage
System (CODES) [3] is a framework developed to evaluate the
design of the exascale storage systems. The High-Performance
Simulator for Hybrid Parallel I/O and Storage System (HPIS3)
[4] models application workload.

CODES and HPIS3 are based on Rensselaer’s Optimistic
Simulation System (ROSS) [5], which is a parallel simula-
tion platform. SIMCAN was developed using OMNET++,
and PIOSimHD was programmed in Java. All the tools
mentioned use an event-based simulation paradigm (Discrete
Event Simulation, DES). We propose to develop a simulator
using Agent-Based Modeling and Simulation (ABMS) that
will allow evaluating the performance of the I/O software
stack. The agent paradigm is used in various scientific fields
and is of special interest in Artificial Intelligence (Al), it
allows successfully solving complex problems compared with
other classic techniques [6]. It is a simulation technique that
recreates the functionality of different components in a real
system by modeling entities known as agents. Basically, an
agent is an entity capable of perceiving and acting based on
changes in its environment. It can also interact with other
agents, executing and coordinating its actions, to achieve goals.

14

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

HPC System

readifile, 0, M)

o i i

Network

~
Storage
Server

Network rnnr\nﬂnrhhmﬁﬂﬂ'\'\nﬂﬂnﬂnrﬂrnﬂnﬂ

Storage device \" = = =

Application

HPC Application |

High Level O Libraries |

Serial Libraries] Serial Operations

Parallel Libraries

Middleware 1/0: MPI-IO ‘ ‘ ‘ \

(ROMIO)

| POSIX-I0 |

i

| Global File System (PFS, NFS) |

1/O Software Stack

| Storage Infrastructure |

Figure 1: A typical HPC System and the I/O Software Stack

Generally, both paradigms operate in discrete time, but DES is
used for low to medium abstraction levels. In ABMS, system
behavior is defined at an individual level, and global emergent
behavior appears when the communication and interaction
activities among the agents in an environment start. In fact,
ABMS is easier to modify, since model debugging is usually
done locally rather than globally [7].

An advantage of ABMS is that different types of models
could be created for each part of the system [8][9]. This is
useful since the behaviors of the models differ from each
other as they are related to diverse actions like processing,
communications and storage. Furthermore, the environments
could be both software and hardware. ABMS allows it to
implement different components in a modular and flexible
way, affording the possibility of connecting and disconnecting
different parts of a complex system for a layer-level analysis.

In this paper, we present a model of the HPC-IO system
for an initial simulation using ABMS. Our proposal is modeled
using the concept of white box so that the specific behavior
of each of the modules or layers in the system can be
observed. The I/O software stack layers were analyzed using
code instrumentation for the features corresponding to I/O
operations and calibration of the initial model. The verification
and validation of the proposed model has shown similar I/O
behavior on the real and simulated environment.

The rest of this paper is organized as follows. Section II
briefly describes I/O system in HPC. Section III addresses a
functionality analysis for the development of the initial con-
ceptual model. Section IV describes the proposed model, initial
implementation and validation. Finally, Section V presents our
conclusions and future works.

II. BACKGROUND

The I/O subsystem in the HPC area consists of two
abstraction levels, software and hardware. Usually, the I/O
Software includes parallel file system and high level I/O
libraries and the I/O hardware refers to storage devices and
networks. However modern HPC 1/O system can include more
components increasing the complexity of the I/O system.

Figure 1 illustrates the structure of the I/O software stack.
An I/O operation goes through the software stack from the
user application up until it obtains access to the disk from
where data are read or on which data are written. Since
this parallelism is complex to coordinate and optimize, the

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

implementation of intermediate several layers was designed as
a solution.

A. HPC I/O Strategies

The most common I/O strategies in HPC are the serial or
parallel accesses into files. Serial I/O is carried out by a single
process and it is a non-scalable method because operation time
grows linearly with the volume of data and even more with
the number of processes, since more time will be required to
collect all data in a single process [10].

Parallel I/O usually presents two methods or variations of
them: ”One file per process” and “a single shared file”. In ”one
file per process”, each process reads/writes data on its own file
on disk and no coordination is required among processes. ”One
single shared file” is more convenient to implement Parallel
I/0, where all processes write to the same file on disk, but on
different sections of that file. This method requires a shared
file system that is accessible to all processes.

There are two ways in which multiple processes can access
a shared file: independent access and collective access. In the
first case, each process accesses the data directly from the
file system without communicating or coordinating with the
other processes. In collective access, small and fragmented
accesses are combined into larger ones to the file system that
helps significantly reduce access times. Our aim is to identify
this kind of optimizations to explain the I/O behavior, for this
reason, we propose a white box model.

B. Middleware

MPI is an interface and communications protocol used to
program applications in parallel computers. It is designed to
provide basic virtual topology, synchronization, and commu-
nication functionalities within a set of processes in an abstract
way that is independent from the programming language used
to develop the application.

MPI-IO functions work in similar way to those of MPI:
writing MPI files is similar to sending MPI messages, and
reading MPI files is like receiving MPI messages. MPI-10 also
allows reading and writing files in a normal (blocking) mode,
as well as asynchronously, to allow performing computation
operations while the file on storage device is being read or
written on the background. It also supports the concept of
collective operations: each process can access MPI files on
its own or all together, simultaneously. The second alternative

15

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

offers greater reading and writing optimizations that can be
implemented on several levels. Mostly of MPI distribution
provides MPI-IO functions by using ROMIO [11], which is
an implementation of MPI-IO standard and it is used in MPI
distributions, such as MPICH, MVAPICH, IBM PE and Intel
MPI.

C. Farallel File Systems

A parallel file system is a distributed file system that stripes
the files data into multiple data servers, connected to storage
devices that provide concurrent access to the files through
multiple tasks of a parallel application run on a cluster. The
main advantages offered by a parallel file system include a
global name space, scalability, and the ability to distribute large
files through multiple storage nodes in a cluster environment,
which makes a file system like this very appropriate for I/O
subsystems in HPC. Typically, a parallel file system includes a
metadata server with information about the data found on the
data servers.

Some systems use a specific server for metadata, while
others distribute the functionality of a metadata server through
the data servers. Some examples of parallel file systems for
high performance computing clusters are IBM Spectrum Scale,
Lustre and PVFS2.

PVES offers three interfaces through which PVES files
are accessed: PVFS’ native Application Programming Inter-
face (API), Linux kernel’s interface, and ROMIO interface.
The latter uses MPI to access PVFES files through MPI-10’s
interface.

The underlying complexity of sending requests to all
storage nodes and sorting file contents, among other tasks,
is handled by PVFS. When a program attempts a reading
operation on a file, small sections of the file are read from
several storage devices in parallel. This reduces the load on
any given disk controller and allows handling a larger number
of requests.

D. Benchmarks

To evaluate the performance of parallel file system and
test different I/O libraries of the I/O software stack, exists
different I/O benchmark. Benchmarks are designed to mimic
a specific type of workload in a component or system. One the
most accepted I/O benchmark in HPC is IOR[12]. It supports
several application I/O patterns and allows configuring them,
and it offers access to shared files both independently and col-
lectively. Additionally, IOR offers different execution options
for the same algorithm using various parallel programming
interfaces, including POSIX, MPI-10, HDF5 and NETCDFE.

III. FUNCTIONALITY ANALYSIS

To define an initial model of the I/O system, system
functionality should be fully understood. First, the I/O pattern
type to be analyzed was selected, and then the corresponding
software stack layers for this model were applied. We have
selected the IOR benchmark to evaluate I/O performance in
HPC clusters. The analysis focused on the functionality that
was observed for IOR in the data path.

Due to the heterogeneity of the I/O systems and the
complexity of the software stack, an analysis was started for
MPI-IO layers and the parallel file system. PVFS2 was the

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

file system selected for our tests. At this time, we separated
the different components considering the concepts of a parallel
file system to allow us using the model with other parallel file
systems, such as Lustre in the future.

The IOR benchmark offers the total runtime measurements
for their programs, but they do not go into further detail in
relation to the different abstraction layers of the parallel I/O
system. These layers have to be crossed from the moment
the user application sends an I/O request up until the CPU,
through its operating system, effectively accesses the file on
disk to read or write the data. Therefore, it is important to
identify the layer in the software stack that requires more time
during an I/O operation.

To follow the data path in the software stack, tracers or
monitors can be used, but these operate on different levels of
the I/O system. There is no single tool that allows recording the
1/0 behavior in all levels. For this reason, code instrumentation
has been implemented in both the MPI-IO layer and the
parallel file system layer.

A. Code Instrumentation

One possible way for finding out how the different modules
in the I/O request process (application, middleware and file
systems) work is instrumenting each of them by adding small
sections of code. Thus, it would be possible to establish what
percentage of the total runtime of an I/O operation corresponds
to each of them, which would help knowing which of them is
the most critical one and should be enhanced to dramatically
improve parallel I/O speed.

Additional source code sections are simply a few lines of
code written in C to monitor and measure runtime for some
functions that were identified as critical during the request,
service, and execution process of an I/O operation as it goes
through each of the abstraction levels of the parallel system.
To avoid hindering or interfering with the benchmark result
screen printouts, the additional source code was added so that
each process writes the local times of its own invocations to
the critical functions of the parallel system to a local file on
disk. Figure 2 shows the layers of the I/O system where code
instrumentation was implemented. Left boxes in blue, green
and orange represent the layers on compute nodes. The bigger
orange box depicts the layers on the storage nodes. Small
orange boxes represent the I/O clients, which interact with the
metadata and data servers (storage nodes). We have measured
the times for the different functions called by ROMIO and
PVFS2.

B. Execution Environment

One of the problems found in production systems is that
the file system cannot be modified and instrumented [13].
Therefore, to create the HPC cluster where the entire 1I/O
software stack with the embedded code instrumentation will
be installed, Amazon’s EC2 platform service was used. This
type of platforms offer various types of instances based on
the type of service purchased. In this case, the cluster was
deployed using the free service and, even though these nodes
offer very limited functionality as regards number of CPUs,
memory, storage and network; they proved to be adequate to
create the necessary environment for the tests we needed.

16

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

W-R-O-C-F

—» Computing Nodes

< 4 R - More
S "
£ mPieH’, / mPicH) Computing
} I l 1 Nodes and
\ J 1 ! /O Clients
~ S >
S -
PVFS2 | PVFS2 |

i 1o
Client

PVFS2

Storage
Node

TROVE

D €

Y
J

Storage

Devices

.

Figure 2: Code Instrumentation in the I/O Software Stack. Left boxes represent the layers on compute nodes and bigger orange

box depicts the layers on the storage nodes.

AD_PVFS2 Layer
L. -
L | ADIOI_PVFS2_Init() | ADIOIPVFS2 WriteContig) |
(System Interface Layer
| PVFS_sys_create() ‘ | PVFS_sys_write() | | PVFS_sys_read() | | PVFS_sys_Flush()
pvfs2_msgpairarray_sm() io_datafile_post_msgpairs() Injﬂnﬁlea:;:;lalotofcpnra
T |
\ J
4 Job Layer ¥ N\
[Job Bmi send iiet] 1 Job_flow() | JE T]

Figure 3: Selected functions of the System Interface layer.

Even though the execution environment affects the metrics
obtained, the same configuration was run on a physical envi-
ronment to compare it with that of Amazon. For instance, for
a scenario with 8 computation nodes and I/O with one storage
node, the times measured through code instrumentation in
both environments are not the same, but they follow the same
trend. The differences observed are mainly due to the different
hardware performance in both execution environments.

Through the scenarios used, the critical functions involved
in each layer of the I/O software stack were selected based on
their role and execution time. As way of example, Figure 3
shows the functions selected in the System Interface layer of
the I/O clients.

IV. MODELLING THE I/0 SYSTEM

After analyzing each of the layers, a model of the I/O
system was developed by implementing state machines and
variables that describe each of those states. To that end, state
machines were implemented for each of the layers in the
system, differentiating their operation both on client and server
side. The ultimate goal is using these state machines to design

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

the behavior of each of the agents and its interactions with
other agents and/or its environment.

The model developed is aimed to reproduce the interaction
among the different components and analyzing how the infor-
mation goes through the different modules or layers, with the
possibility of measuring time to approach the real model of
the I/0 system. Therefore, each layer is modeled based on the
execution flow of the functions that are called while processing
certain requests, such as opening, closing, reading and writing
operations. With the description of each function, the different
states of the layers while carrying out those requests were
implemented.

Due to the complexity to describe fully the modeling of the
I/O software stack, we have selected the System Interface layer
to explain in detail the calibration, verification and validation
phases. Similar steps were done for the other layers.

The System Interface layer is a client-side interface that
allows manipulating the objects in the file system. It launches
a number of functions and state machines that process the
operation in small steps.

17

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

[/ .
AD_PVFS2 /

T/_/_%TS sys_| wr-v.te()
AD_| PVFSZ
mmahz@uon \ftreat S4 fat O\

PVFS_write/ *

\ . /ép;m)

s3 /9(
. a
VFS. read/ read
i operation

/o1 /

operauon
read 7 AD_PVFsS2
operation
PVFS_sys_read() —g
et /
PVFS, 07

ti
o'wera " pFs. _sys_create()

System Interface Agent - States Machine
|

PVFS_OPEN Agent - States Machine

$10 ({iening

resolve / in
annbules _open

7\ in cache
’—/af/seamh\ '\ _JoB
5/ attributes | pvfs_sys_getatrr()
OB/

S
get
attribute:

\ /

’>

unanswered

metadata
request
attributes

not in cache attributes

i

ﬁnaliie\

unanswered

create
file

< AD PVFS2

N

wait 11 /opening answer/ $1
finis

for request h / open
opening sent operation” operation
Ny 012

JoB

negative
answer

PVFS_GETATTR Agent - States Machine
pvst_msgairray_sm()Q‘iaKemd
" s5 . s6
Send wait /wait for metadata finish inished
- metadata /" roq st metadata / request operation /" metadata ——>®
request metadat: _response, / sent answer \ tadat: /
\ o5 ; N / meta a;/ oPeration
I — i JoB oy 06 \L_//
33 _JOB
PVFS_RW Agent - States Machine
metadata
io_datafile_post_msgpairs
request filep 72 0 io_datafile_complete_operations()
pvfs_sys_getatrr() unanswered ""ﬂ"swe"’"
.~ attribues equest nd\ wait for L verification
L
/513 /\\ in cache r/w request conﬁrmauon S;ﬁ\ ait 518 transfer not complete
get ieanch operatlc & s transfer 4 "E”Sfe’ full
. attrbutes’ attrlbute}& /it for r/w _/ conﬁgure transm‘sm R e ata pmgress transfer /
013 .~ \ “ confirmatiof request transfer, request \eonfiguratidn answer transfer 7 idatmg
>/ 013 A /g™ positive wal(for ~ 018/ venfyt =
attributes posmve answer Py confrmauon pera iof / .loa
notin cache | - nswered / answer ~__ negative‘answer complele /

Figure 4: State machines for agents in the system interface layer.

In the context of PVFS, state machines execute a specific
function in each of their states. The value returned by this
function determines the state that should be adopted. Complex
requests can be modeled; they are represented as a sequence
of several states. Also, state machines can be nested to model
and simplify common subprocess handling. These machines
are used both in clients and servers.

There are several caches on the client side that are part of
the System Interface layer and try to minimize the number of
requests that the server has to process. The attributes cache
(acache) manages metadata, while the name cache (ncache)
stores the filename of file system objects and their respective
handling number. To prevent caches from storing invalid
information, data are set as invalid after a certain time has
passed or when the server notifies the client that the object
does not exist.

A. Functional Model

As shown in Figure 3, the functions in this layer are:
PVFS_sys_create () to manage the creation of new files
in the system, PVFS_sys_write () to perform writing
operations, PVFS_sys_read () to perform reading opera-
tions, and PVFS_sys_flush () to dump file data to server
storage. Each of these functions has internal variables and state
machines that are run to carry out the relevant operations.

To simplify the model, we considered the following in
relation to parallelism when handling several instances: a)
I/O interfaces: layers MPI-I0, ADIO and AD_PVFS work in
a sequential and blocking manner, since they run functions
that require synchronization; this means that no instruction

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

is served until the instruction being processed is completed.
The calls run on their state machines are blocking; b) PVFS2
parallel file system: The System Interface, Job, Flow, BMI,
Main Loop and Trove layers serve other requests and store
their instructions in a buffer. Therefore, it allows handling
different data flows.

The behavior of each of the agents is described by the
state machine, the state transition table and the corresponding
state variables. Figure 4 shows part of the state machines
developed to model the operation of the System Interface layer,
considering the functions and state machines corresponding to
each of the three initial operations. As it can be seen, it consists
of four agents called System Interface, which is responsible for
decoding the instructions that enter the layer; PVFS_OPEN,
which manages file opening operations; PVES_GETATTR,
which carries out searches in the metadata; and PVFS_RW,
which manages file reading and writing operations.

The agent that manages file opening operations can only
have one of five different states (S8 to S12). It will remain in S8
and configure agent PVFS_GETATTR if it requests metadata.
If the attributes are not found in cache, it will transition to
state S9 to wait for them; otherwise, it will transition to state
S10. If in state S9, it will wait for a response from agent
PVFS_GETATTR or it will complete the opening operation
by communicating with the server, transitioning to state S10.
If the operation cannot be completed, it will transition to state
S12 to end.

While in state S10, it will start file creation through a
request sent to the JOB layer, transitioning to state S11.
Otherwise, it finishes the operation and transitions to state S12.

18

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

File Edit Tools Zoom Tabs Help

Interface | Info Code

ATl | il JCTo
: -
Edit Delete Add

normal speed

COMPUTE NODES

w

us
METADATA SERVERS

MDT_ML

MDTJOB

MDT-FLOW

MDT-BMI

MDT-TROVE

Figure 5: Simulator’s user interface in NetLogo

While in state S11, it waits for a response to its file opening
request and, if it receives one, it transitions to state S12. Once
in state S12, it finishes the operation and sends a response to
agent AD_PVFS.

On the other hand, agent PVFS_RW manages the write or
read requests on client side. In Figure 4, there can be seen in
red the functions selected that were used as the basis for the
development of each state machine. For example, one of the
functions belonging to pvfs2_msgpairarray_sm()[14],
on which the PVFS_RW agent is based, is
io_datafile_post_msgpairs () thatis responsible for
managing the data transmissions involved in the creation of
files in agent System Interface. These communications occur,
in the case of both a reading or writing, between client and
server through the Job and BMI layers.

B. Initial model calibration

To obtain initial values for the functional model, we have
monitored the selected functions for the IOR benchmark in
a HPC cluster deployed in AWS EC2. The I/O system was
configured over on PVFS2 parallel file system and the MPICH
distribution. The cluster was composed by five nodes, where
each one had three roles: compute node (computing and
PVFES2 clients), metadata server and data server (datafiles).
We have selected a simple pattern where file size and transfer
size were updated. IOR was configured as follows:

e 1 GiB === mpirun -np 5 ./ior —-a MPIIO
-b 205m -t 205m -F
e 2 GiB === mpirun -np 5 ./ior —-a MPIIO

-b 410m -t 410m -F

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

For this setting, each process writes/reads to/from its own
file in transfer sizes defined by the -t parameter. Due to
the block size (-b) is equal to the transfer size (-t), only
one operation is done by each process. The interface selected
was MPI-10 for the one file per process (-F) strategy and
independent I/O. The mapping corresponds to one MPI process
per compute node.

This measurement allows us to classify the monitored
metrics in three groups: 1) data access time related with the
data accesses operations such as write, read, and so on, 2)
control time that includes verification and configuration of
the data structures and 3) communication time related with
the interaction between the clients and the metadata and data
Servers.

We have applied linear and exponential regressions for the
time monitored in different functions of PVFS2. For this first
analysis, we have selected as dependent variable the execution
time and as independent variable the file size, request size is
fixed for all the tests. In the case of the system interface layer,
we have selected the following equations to represent the time
of the functions:

PVFS_sys_create () =0.0217 x x
PVFS_sys_write () = 0.8 x (0-7105xz)
PVFS_sys_read () =2.5490 x z + 1.2
io_datafile_post_msgpairs () =0.0012xx

io_datafile_complete_operations ()
=0.0028 x =

Where the x variable represents the file size to write or read.
The statistical dispersion also depends on the file size and
therefore it is calculated by using the same method.

19

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

12

--e-- read simulated /.
—a— read measured ,;.‘/"‘
10 /
A
z 8 e
7] e
€ e
= 6 gy /./
.
4 *’ ,/‘/
7
R
2 e
w
103 2x103 3x1034x103
File Size (MiB)
(a) read operations
0.005
---- control simulated e
—a— control measured
0.004 oo
- /
."'. ./‘
% 0.003 4
g - /./
v‘. o
F 0002 gt ‘___,..'_':"_'._. il
0.001} *~
0'000103 2x10% 3x10% x10°

File Size (MiB)

(c) control operations

14 -~ write simulated /-
- wri /i
12 —a— write measured Ve
./‘ :"
v
AlO .“ :.'
2 7
v 8 VA
E v
= 6 /./ o
./A ol
4 L
.—m.—.---"""‘“'
2 g R
103 2x103 3x1034x103
File Size (MiB)
(b) write operations
0.020
--#-- comm simulated
—a— comm measured /’
0.015 /
!
@ /'/ @
7] R
€ 0.010 v
= iy
. ./
0.005 ._4_._.____..,.»_»:;'3_. —d
FRRERS
0'000103 2x10° 3x10%x 103

File Size (MiB)

(d) communication operations

25| e
—a— total measured

total simulated

20
0

o 15
£
'_

10

5

103 2x10° 3x1034x103
File Size (MiB)

(e) total time

Figure 6: Simulated and Measured time in the system interface layer of the PVFS2

C. Initial Implementation

For the first proof of concept, an initial simulation model
was developed using ABMS’ framework called NetLogo. This
framework includes a simplified programming language and a
graphical interface that allows the user build, observe and use
agent-based modeling without understanding complex standard
programming language details. This tool is specifically indi-
cated for the simulation of complex systems; it allows giving
instructions to many independent agents that are concurrently
executed, which is useful to study the connection between
individual and collective behavior through agent actions and
interactions.

The scenario adopted for the initial experiments was simu-
lating the exchange of information among computation nodes
and storage nodes, considering in each of them the layers
discussed in previous sections. The MPI operations that can be

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

served by the application layer are only I/O operations, and this
initial implementation only includes open, read, write and close
operations. One of the parameters allows toggling between
executing only one type of operation or all of them. There
is an option for selecting a maximum number of operations,
which are distributed among the computation nodes selected.

The number of computation nodes and storage nodes
can be configured. Node actions and interactions were fully
implemented for the operations mentioned above. There are
other parameters that allow selecting the existence of the data
in the system before running the simulation, configuring the
corresponding layers and preparing the I/O server for this
scenario. Figure 5 shows the simulator’s user interface. The
configuration bars that the user has available to set the variables
and parameters of the I/O software stack and the scenario to
simulate are on the left. Also, the I/O configuration can be

20

SIMUL 2019 : The Eleventh International Conference on Advances in System Simulation

made through command line. The center shows the distribution
of the I/O system.

D. Verification and Validation

To validate the proposed model, we have configured a clus-
ter in AWS EC2 similar to deployed in the calibration phase
(see Section IV-B). The I/O system was deployed by using
the PVFS2 parallel file system in a HPC cluster composed
by five nodes, where each one was compute node (computing
and PVFS2 clients), metadata server and data server (datafiles).
IOR was executed for the following configurations:

e | GiB === mpirun -np 5 ./ior —-a MPIIO
-b 205m -t 205m -F

e 2 GiB === mpirun -np 5 ./ior -a MPIIO
-b 410m -t 410m -F

e 3 GiB === mpirun -np 5 ./ior —-a MPIIO
-b 615m -t 615m -F

e 4 GiB === mpirun -np 5 ./ior —-a MPIIO

-b 820m -t 820m -F

Figure 6 presents the simulated and measured times for the
IOR benchmark in the system interface layer of the PVFS2.
As can be seen, the I/O behavior in this layer is dominated
by the access data operations that corresponds to the read and
write operations. The simulated total time of System Interface
layer shows similar behavior to measured time but we can
see that the control and communication time present a higher
deviation for more than 3 GiB. However, due to the data access
operations represent the highest I/O time we can consider
the initial simulation model appropriate to represent the 1/0
behavior.

About the strange behavior of the communication and
control functions, it can be observed in Figure 6(c) and 6(d)
that these are constant for file size up to 3 GiB but these grows
up for 4 GiB. We have also modeled the communication and
control times by using the constant and exponential functions
but these do not fix with the right behavior for the cases
evaluated. Considering the evaluated pattern, these functions
did not impact significantly on the I/O behavior but we must
evaluate other file sizes and I/O patterns to can reduce the
deviation and guarantee that these functions will have not
impact on the I/O behavior independently of the data access
pattern.

V. CONCLUSIONS

This paper presented a conceptual model of HPC I/O
software stack by using agents based on state machines that
act and communicate within the defined environments.

The instrumentation method used to obtain the different
parameters for the simulator has been described. Likewise, the
functionality found through the instrumentation of the system
code was useful for the generation of state machines. This
methodology allowed us to study the working of the system
without the difficulty of obtaining exhaustive descriptions of
the system, required by other modeling paradigms. An initial
implementation using ABMS with NetLogo was validated for
the IOR benchmark configured for sequential pattern, a single
shared file, MPI-IO interface and independent 1/O.

As future work, we will continue analyzing other tech-
niques to monitor the data transfer rate (bandwidth) and the

Copyright (c) IARIA, 2019. ISBN: 978-1-61208-756-6

input/output operations per second (IOPs) at different levels
of the I/O software stack. Furthermore, we will evaluate
collective operations and other I/O strategies. Additionally, we
will extend the model for the Lustre parallel file system.

ACKNOWLEDGMENT

This research has been supported by the Agencia Estatal de
Investigacion (AEI), Spain and the Fondo Europeo de Desar-
rollo Regional (FEDER) UE, under contract TIN2017-84875-P
and partially funded by the Fundacion Escuelas Universitarias
Gimbernat (EUG).

We thank Roméan Bond, research engineering of Universi-
dad Nacional Arturo Jauretche (Argentina), for his support in
the implementation of the simulator.

REFERENCES

[1] A. Ndnez, J. Fernandez, J. D. Garcia, F. Garcia, and J. Carretero, “New
techniques for simulating high performance mpi applications on large
storage net,” J. Supercomput., vol. 51, no. 1, Jan. 2010, pp. 40-57.

[2] J. Kunkel, “Using Simulation to Validate Performance of MPI(-IO)
Implementations,” in Supercomputing, ser. Lecture Notes in Computer
Science, J. M. Kunkel, T. Ludwig, and H. W. Meuer, Eds., no. 7905.
Berlin, Heidelberg: Springer, 06 2013, pp. 181-195.

[3] N. Liu et al., “Modeling a leadership-scale storage system.” in PPAM
(1), ser. Lecture Notes in Computer Science, R. Wyrzykowski, J. Don-
garra, K. Karczewski, and J. Wasniewski, Eds., vol. 7203. Springer,
2011, pp. 10-19.

[4] B. Feng, N. Liu, S. He, and X.-H. Sun, “HPIS3: Towards a High-
performance Simulator for Hybrid Parallel I/O and Storage Systems,”
in Proceedings of the 9th Parallel Data Storage Workshop, ser. PDSW
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 37-42.

[5] C. Carothers, D. Bauer, and S. Pearce, “ROSS: a high-performance,
low memory, modular time warp system,” in Fourteenth Workshop on
Parallel and Distributed Simulation., 2000, pp. 53-60.

[6] V. J. Julidn and V. J. Botti, “Estudio de metodos de desarrollo de
sistemas multiagente,” Inteligencia Artificial. Revista Iberoamericana
de Inteligencia Artificial, vol. 7, 2003, pp. 65-80. [Online]. Available:
http://www.redalyc.org/articulo.0a?id=92501806. Retrieve: 10/2019

[71 A. Borshchev and A. Filippov, “From system dynamics and discrete
event to practical agent based modeling: reasons, techniques, tools,”
The 22nd International Conference of the System Dynamics Society,
Oxford, England, 07 2004.

[8] E. Kremers, “Modelling and Simulation of Electrical Energy Systems
through a Complex Systems Approach using Agent-Based Models,”
Ph.D. dissertation, Universidad del Pais Vasco (UPV/EHU), 2012.

[91 M. Taboada, E. Cabrera, F. Epelde, and E. Luque, “Using an agent-
based simulation for predicting the effects of patients derivation policies
in emergency departments,” in International Conference on Computa-
tional Science, Barcelona, Spain, 2013, pp. 641-650.

[10] Sharcnet. Parallel I/O introductory tutorial. [Online]. Available:
https://www.sharcnet.ca/help/index.php/Paralle]_IO_introductory_tutorial.
Retrieve: 10/2019. (2017)

[11] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective
I/0 in ROMIO,” in Proceedings of the 7th Symposium on the
Frontiers of Massively Parallel Computation, ser. FRONTIERS ’99.
Washington, DC, USA: IEEE Computer Society, 1999, pp. 182-.
[Online]. Available: http://dl.acm.org/citation.cfm?id=796733. Retrieve:
10/2019

[12] T. M. William Loewe and C. Morrone. IOR Benchmark. [Online].
Available: https://github.com/chaos/ior/blob/master/doc/USER_GUIDE.
Retrieve: 10/2019. (2013)

[13] P. Gomez-Sanchez et al., “Using AWS EC2 as Test-Bed infrastructure
in the I/O system configuration for HPC applications,” Journal of
Computer Science & Technology, vol. Volumen 16, no. 02, pp. 65-75,
11/2016 2016. [Online]. Available: http://hdl.handle.net/10915/57264.
Retrieve: 10/2019

[14] PVFS2 Team, “PVFS 2 File System Semantics Document,” PVFS
Development Team, Tech. Rep., 2015.

21

