
Using VIRL to Improve the Scale-out

of Large Virtual Network Testbeds in Higher Education

Sven Reißmann∗, Sebastian Rieger†, Christian Pape†
∗Datacenter

Fulda University of Applied Sciences, Fulda, Germany
Email: sven.reissmann@rz.hs-fulda.de

†Department of Applied Computer Science
Fulda University of Applied Sciences, Fulda, Germany
Email: {sebastian.rieger, christian.pape}@cs.hs-fulda.de

Abstract—To build laboratory setups for courses and research
projects in higher education dealing with computer networks,
virtualized network environments have been continuously gaining
momentum over the last years. Depending on the desired practical
or theoretical orientation, they can be implemented using differ-
ent hardware or software solutions. A high practical relevance
and functional realism can be achieved using network emulation.
However, the emulation requires more resources compared to
network simulators, due to the complexity of realistic network
functions. To offer emulated virtual network environments, e.g.,
for a large number of participants in higher education courses,
scalable virtualization backends and cluster solutions are nec-
essary. This paper describes the solutions used for network
emulation and simulation in the network laboratory (NetLab) of
Fulda University of Applied Sciences and discusses possibilities
to evaluate and improve their scalability and performance.

Keywords–Emulation; Simulation; Network Virtualization;
Higher Education; VIRL.

I. INTRODUCTION

In research and higher education, especially in the area
of computer networks, experimental testbeds are a typical re-
quirement. To provide such environments, various approaches
are possible, depending on the intended focus on theoretical or
practical relevance. Figure 1 gives an overview of correspond-
ing gradations of possible approaches, including references
to some of the tools available. While the implementation of
testbeds in real-world networks, e.g., campus networks of
organizations and universities as shown at the left end of
the figure, would provide the most realistic testbed, the risk
of interference with regular operation and availability of the
production network forbids this option in most cases. To over-
come this problem, a separate physical testbed can be created
apart from the production network. However, bootstrapping
such a testbed with realistic characteristics is complex and
expensive, hence making fast adaption to varying requirements
and ever-changing network environments far from realistic.
Virtual testbeds can reduce the setup cost immensely, but
besides the additional effort and complexity introduced by
the virtualization, still a lot of manual work is required for
providing the required networking components and interfaces,
setting up virtual networks and so on.

Theoretical models, as shown on the right of Figure 1,
take a completely different approach by abstracting com-
plex network topologies and protocols in the model. This
is specifically useful when designing experimental protocols,

but the implementation of such formal specifications - or
even the transfer of the insights learned - in the real world
can be quite challenging due to missing practical orientation.
Simulations, though also based on an abstract model of the
network and protocols, improve the practical relevance by
trying to replicate real-world characteristics. One of the big
advantages of simulations is the capability of exact modeling
of real-world behavior, such as timing or transmission quality.
Another advantage of deterministic simulation is the option
of changing the simulation speed. However, only an abstract
network is modeled by a simulation, which does not fully
reflect the characteristics of a real network.

To resolve these issues, emulation is recommended in
[1] as the means of choice to implement virtual network
testbeds. The authors come to this conclusion by evaluating
the goals and advantages of emulation using the following
criteria: Functional Realism, Timing Realism, Traffic Realism,
Topology Flexibility, Easy Replication, and Low Cost. In
their research, they show that emulation only lacks in the
area of Timing Realism while fulfilling all other evaluation
criteria. Therefore, emulation provides a flexible foundation
for experimental network testbeds being positioned in the
middle between practical implementations with high relevance
for real-world environments and accurate but typically rather
abstract theoretical models. Besides the evaluation in [1], the
advantages perceived by using emulation for virtual network
testbeds with a high practical relevance is also described in [2],
[3] and [4]. Hence, this approach is currently primarily used
for higher education courses in the NetLab providing similar
advantages that will be discussed in this paper.

��������� �	
�

�
�������

���	����

�
	��
�

�������

�
	��
�

��������� ���������� ��
��
�����

��������

�������
 ��
���

��������

�	�
������

�����

�����������

�����������

���������

�	�	��

�������������

���� !!��

�"�����
#$"
��%

&�'��"��

���()�)����

�

��*��	+�
	��"�

���'��"���(,�

�� -�������� ��%.�
 ��%����

�

/��'�����

��%."��
�"

"�
�)"���

Figure 1. Classification of experimental scientific networking testbeds.

Nevertheless, the emulation of scalable virtual network
testbeds results in high resource requirements due to the
number of virtual machines needed, especially for large re-
search projects or higher education courses. In this paper, we
present an analysis of these resource requirements of virtual

29Copyright (c) IARIA, 2017. ISBN: 978-1-61208-594-4

SIMUL 2017 : The Ninth International Conference on Advances in System Simulation

network testbeds based on experiences from providing such
an environment in the networking laboratory (NetLab) in the
Applied Computer Science department of Fulda University of
Applied Sciences. Solutions that were evaluated and used in
the NetLab, are shown in Figure 1 (e.g., GNS3, EVE-NG,
VIRL). Primarily, currently Cisco’s Virtual Internet Routing
Lab (VIRL) is used. Advantages of this solution will be
presented in this paper. Further, we discuss options to improve
the scalability of such an environment.

The remaining part of this paper is laid out as follows.
Section II introduces software products available for exper-
imental networking testbeds based on the classification and
examples shown in Figure 1. The following Section III dis-
cusses related work in this area. Based on our experiences
during the implementation of these solutions, in Section IV we
present our selection of tools for creating a scalable platform
for virtual networking testbeds. Section V gives examples for
emulated network topologies used in higher education courses
in the NetLab including a description of the implementation.
Next, an evaluation of the scalability and performance of the
environment is presented in Section VI. Finally, a conclusion
and future work can be found in Section VII.

II. VIRTUAL ENVIRONMENTS FOR NETWORK TESTBEDS

Emulation can be seen as a compromise between theory
and practice, especially when it is used to implement virtual
network testbeds. It allows to deploy real-world operating
systems (i.e., GNU/Linux servers, Windows clients) and utilize
typical network management tools, like Wireshark or iperf. In
the NetLab physical and virtual testbeds, as well as emulation
and simulation have been used over the past years to support
higher education courses and research projects. In accordance
with the results discussed in [1], emulation has proven to be
a particularly flexible solution. Physical testbeds are provided
in the lab in form of pre-packed experimental racks to allow
realistic student projects and Cisco certifications (i.e., CCNA,
CCNP) [5]. However, due to the complex and time-intense
preparation of the environment, these physical testbeds are not
suitable for short-term exercises and lab sessions in which stu-
dents should carry out experiments, e.g., to see the practical use
of theoretical concepts presented in a corresponding lecture.

Yet, the realization of virtual testbeds (i.e., using a dis-
tributed approach with VMware Workstation or a central
approach with VMware vSphere ESXi) doesn’t require less
effort, as the preparation and maintenance of the virtual
machines and networks is time consuming. For this reason,
in the NetLab virtual testbeds are mostly used for practical
relevant client-server applications and experiments in the IT
security area. The constant need to install software updates in
the virtual machines used for these testbeds and adapt them to
changes in the surrounding laboratory environment throughout
the semester, requires additional effort. Simulation software
like ns-3 [6] or OMNeT++ [7] is mentioned in some lectures
in master’s programs, but are not currently used for practical
relevant experiments in the lab.

Practical training for the previously mentioned CCNA
certification includes the use of Cisco Packet Tracer [8].
However, in some lecture exercises students criticized the
missing practical relevance. For example, network clients (i.e.,
PCs) in Packet Tracer are simulated and do not provide
feature-complete implementations of common network tools,

such as arp, ping or traceroute. Another drawback of the
simulation is, that there are peculiarities that only appear in the
simulation and need to be specifically explained to students.
One example of such behavior is that in case of an ICMP
PING, the first packet will be dropped at the router in the
destination network until the destinations MAC address has
been determined using ARP. While this behavior is correct, it
typically can’t be observed in a real network, where almost
any client starts to send packets to the router immediately
after booting the operating system, hence its MAC address is
already in the routers ARP table, when sending ICMP PING
packets. Besides this lack in Traffic Realism and the stated lack
in Functional Realism, e.g., due to missing common tools in
the simulated clients and network components, there is also
no Timing Realism achieved within Packet Tracer, which is an
even bigger problem for research projects.

The software Mininet [9], mentioned in [10] and [1], is
also provided in our NetLab, where it is mainly used for ex-
periments in the SDN area. While the resource requirements of
Mininet are low, due to a container-based approach, individual
topologies require decent knowledge of the underlying Python-
API, which again is time-consuming in short-term courses.
Further, it is not possible to use or connect arbitrary real-world
network components in Mininet topologies.

III. RELATED WORK

Services in today’s cloud-driven infrastructures are based
on sophisticated network topologies that interconnect various
network and server components. The simulation and emulation
of such network topologies for teaching higher education
classes is subject of current research. In [3], a virtual en-
vironment based on VIRL is compared to physical setups
using CCNA pods and network simulation software like Cisco
Packet Tracer. Furthermore, the cost, setup requirements and
limitations are estimated and reviewed. The use of VIRL in
the area of research and education is also discussed in [4]. An
extensible and scalable emulation/simulation framework based
on a declarative XML-based language (as also used in VIRL)
for modeling and evaluation of large network topologies is
explained in [11]. This open-source toolset is also compared
to other well-known simulation and emulation environments
like ns-3 or PlanetLab. A brief introduction to model and
simulate interconnected autonomous systems using the Boson
Network Simulator is described in [12]. An open-source tool
for simulating protocol behavior in congested networks by
throttling network links and controlling delay and packet loss
is described in [13]. This software is widespread and used in
other emulation products to alter link transmission properties
in network topologies. The didactics-oriented software called
Netkit to model and emulate a wide-range of real-world de-
vices is outlined in [2]. The goal of this emulation environment
software is to setup networking experiments at low cost and
with little effort. A framework for reproducible container-based
emulation of networking experiments is presented in [1].

IV. RATIONALE FOR THE SELECTION OF VIRL
Over the last years, eNSP [14], GNS3 [15], EVE-NG [16]

(formerly UNetLab) and VIRL [17] have been deployed and
evaluated as a solution for realistic emulation of networking
environments in the NetLab. Currently, VIRL is the most
promising option used in the several courses. The advantages

30Copyright (c) IARIA, 2017. ISBN: 978-1-61208-594-4

SIMUL 2017 : The Ninth International Conference on Advances in System Simulation

of VIRL are related to the findings in [1] and [4]. The
functional realism of VIRL is extended compared to the other
alternatives as it allows to use official network operating sys-
tem images of Cisco components, like IOS or NX-OS, while at
the same time, images from other vendors (i.e., Arista vEOS,
HP VSR, Juniper vSRX/vMX, Cumulus VX) are supported as
well. However, the most important advantage over the other
alternatives is the underlying scale-out architecture (based on
OpenStack). This allows a central and scalable installation and
enables the users to access the emulated network topologies
location-independent (i.e., from within the NetLab or from
at home using private PCs and laptops, which is specifically
important for students). Multiple VIRL hosts in the NetLab
enable a scale-out of the testbed, which allows to emulate much
bigger topologies than possible on a single PC in the laboratory
or on a student notebook. In addition, the open architecture of
OpenStack, as well as the open components used by VIRL
(i.e., Ubuntu 14.04, LXC, linux-bridge, VXLAN) make it
possible to extend the environment with in-house developed
components to build specially tailored testbeds for the use in
research and education. Improvements in terms of scalability
(i.e., the size and amount of emulated testbeds), performance
(i.e., the time to bootstrap a complete emulated topology)
and usability (i.e., initial configuration) of VIRL in the area
of research and education will be discussed in the following
sections of the paper.

V. EXAMPLES FOR EMULATED NETWORK TOPOLOGIES IN
OUR NETWORKING LABORATORY (NETLAB)

Refer to Figure 2 for VIRL-based network topologies used
in our NetLab environment for student laboratory exercises.
Figure 2a shows a topology consisting of four Arista vEOS
(4.16.9) nodes with redundant links between them. The topol-
ogy is one out of many used by master’s students to understand
and troubleshoot real-world networks. In this specific case,
students team up to investigate the impact of the Spanning
Tree Protocol (STP) in various data center scenarios using
technologies like MSTP, LACP and MLAG. Based on similar
exercises, the master’s students also work on Leaf-Spine-
based topologies including BGP fabrics, which are widely
used in web-scale data centers by companies like Facebook or
Microsoft (Figure 2b). Here, the endpoint nodes are based on
Ubuntu 14.04 GNU/Linux Containers (LXC), while the Spine
and Leaf switches are driven by Cisco IOSv (15.6(2)T). In the
past we also realized similar topologies using vEOS (BGP)
and NX-OSv (FabricPath). A great advantage of this setup
is the flexibility we provide for the students. LXC containers
can be managed using standard Linux commands via SSH,
nodes can be started and stopped in the middle of a running
emulation, network links can be connected or disconnected,
and it is also possible to configure various QoS parameters like
delay, jitter or packet loss on the links. Beyond that, traffic
entering or leaving a specific interface can be collected and
investigated using Wireshark. SDN-based scenarios including
the OpenFlow controller OpenDaylight and OpenFlow 1.3
capable Arista vEOS switches, can be explored using the
topology shown in Figure 2d. Since vEOS behaves identical
compared to the EOS-based Arista hardware switches, by
choosing VIRL over the previously used Mininet, students can
test OpenFlow deployment in a near real-world environment.

An example of a much simpler network topology is shown
in Figure 2c. Students in the bachelor program troubleshoot

veos-2 veos-3

veos-1

veos-4

(a) 4-node Arista vEOS MLAG

leaf-1 leaf-2 leaf-3 leaf-4

spine-1 spine-2

SQL

lxc-iperf-1

SQL

lxc-iperf-2

SQL

lxc-iperf-3

SQL

lxc-iperf-4

(b) Leaf-Spine BGP Fabric

SQL

ISP
router-A router-B

SQL

server-A

switch-A

SQL

server-B

SQL

client

flat-1

(c) Simple Toubleshooting

SQL

controller

veos-1
SQL

server

SQL

client

flat-1

(d) vEOS/OpenDaylight SDN topology

Figure 2. Examples of emulated network topologies for student exercises.

network misconfiguration (i.e., ARP, routing, delay, packet
loss, port status) and discover the underlying network topology
by using tools like ping, traceroute/mtr and Wireshark, before
they establish connections to an Apache web server running on
node Server-B. Again, all server and client nodes are based on
Ubuntu 14.04 LXC, while switches in this scenarios are based
on IOSvL2 (15.2(4.0.55)E). For realistic WAN emulation we
use the standard Linux network emulation netem on the ISP
node to inject delay and add packet loss. The node named ISP
acts as a default gateway for the emulated topology, which
is connected to the physical local area network for NetLab
projects (flat-1). Thus, the invocation of commands like ping
or traceroute targeting hosts on the Internet (i.e., google.com)
is possible from inside the emulated environment. Furthermore,
from within the NetLab, students can connect to their nodes
in the emulated network using OpenVPN, for instance to
configure the web server.

All examples mentioned in this section are managed using
Git and can be downloaded from [18]. For the operation of
VIRL in our environment, a few extensions were implemented,
including customizations to the Arista vEOS and CumulusVX
operating system images for our university’s environment and
for deployment in VIRL [19]. For example, to allow the
operation of MLAG, it was necessary to modify the base mac
in order to prevent clashes of MAC address generated by vEOS
with locally generated KVM MAC addresses [19].

VI. PERFORMANCE AND SCALABILITY EVALUATION

Thanks to using virtual networks for the exercises shown in
Figure 2, students can especially benefit from the advantages of
the emulation as discussed in Section I. However, for complex
topologies and a large number of students in the class, the ben-
efits of the emulation places enormous demands on the virtual
infrastructure it is running on. Even for smaller topologies it
can take more than 5 minutes to start the emulations. Hence,
in the following sections, we describe a way to benchmark and
optimize the waiting time until the emulations are ready to be
used by the students in our laboratory.

31Copyright (c) IARIA, 2017. ISBN: 978-1-61208-594-4

SIMUL 2017 : The Ninth International Conference on Advances in System Simulation

A. Implementation of a VIRL benchmarking environment
The hardware we use for evaluating the performance and

scalability of our VIRL environment was described in detail
in [20]. All VIRL hosts are based on Ubuntu 14.04 VMs, each
configured with 32 vCPUs and 64 GB of RAM. These VMs
build a nested virtualization environment inside our VMware
vSphere 6.5 cluster in which each of the four VMs is bound
to a separate physical ESXi host by DRS constraints. Each
underlying ESXi host is equipped with two 8-core Intel(R)
Xeon(R) E5-2650v2 2.60 GHz CPUs, 256 GB RAM and uses
two NetApp E2700 over a redundant 16 Gbit/s Fibre Channel
connection as a storage back end. The nodes are connected
via 1 Gbit/s Ethernet to a Cisco Catalyst 3850 switch and with
two 10 Gbit/s links to an Arista 7150S-24 and Arista 7050S-52,
respectively. As discussed in [1], the Timing Realism regarding
emulation with regard to virtualization particularly depends
on the isolation level of the virtualization environment. When
strict isolation is not guaranteed, concurrently running VMs
can have a negative performance impact. Therefore, we defined
a separate resource pool with static resource allocation for
our VIRL environment. All benchmarking scenarios were per-
formed at night in the semester break to ensure minimum load
on the ESXi cluster. By monitoring the overall performance
and capacity of our VMware vSphere cluster, we were able
to verify that VMs related to the VIRL benchmark were the
only systems that produced considerable load in our VMware
environment during the tests. The topology shown in Figure
2a was used to evaluate the performance and scalability of our
environment. Due to its small size and node count, it can be
scaled fine-grained up to the full capacity of our cluster. For
the evaluation of the scalability of virtual testbeds and their
application in higher education courses with a large number of
participants, the following four metrics are of special interest:

• Start Time, the time until the start of all submitted
topologies is processed by VIRL’s REST API

• Active Time, the time until all VMs start to boot
• Usable Time, the time until booting has finished and

the virtual console of all vEOS nodes is accessible
• Console delay, the latency of the virtual console

To measure these metrics and in order to minimize outliers,
we developed a script to run our performance tests in a reliable
and reproducible manner. Each test run first starts up the
network topologies using VIRL’s REST API and measures
the time until the start is confirmed (Start Time) and all
nodes become active (Active Time). In our terminology, Active
Time means that the VM is deployed by the OpenStack Nova
scheduler on a VIRL host system, all virtual networks and
ports are up and accessible, the vEOS image is provided and
the boot sequence starts. Next, we measure the time until the
VM really becomes responsive by connecting to the virtual
console (Usable Time) and finally measure the interaction
delay of keyboard inputs (Console delay). For this purpose,
a Python script was developed that establishes WebSocket
connections to the serial consoles of the nodes running on
the VIRL hosts.

A schematic representation of the VIRL environment is
depicted in Figure 3. At first, we performed all tests on only a
single VIRL node, meaning that the node not only executes the
VMs needed for the emulated topology, but also acts as control
node, which provides the OpenStack and VIRL environment.

OpenStack

VIRL

KVM

VIRL Master
32 vCPU, 64 GB RAM

KVM

OpenStack

Compute #1
32 vCPU, 64 GB RAM

KVM

OpenStack

Compute #2
32 vCPU, 64 GB RAM

KVM

OpenStack

Compute #3
32 vCPU, 64 GB RAM

dy
na

m
ic

m

em
or

y
al

lo
ca

tio
n

Figure 3. Schematic view of the environment’s memory usage.

In Section VI-B we will share some negative observations we
made, when including the control node in VM execution. Each
individual test run for an increasing number of simultaneously
emulated network topologies was executed ten times in a row.
We started with only one topology and scaled in steps of five,
until the VIRL host was working to capacity. Next, all tests
were repeated on a 2-node and finally on a 4-node VIRL cluster
to draw conclusions concerning scalability of the environment.
The benchmark script and related toolset is available at [21].

B. Scalability Evaluation
The results from our previously explained test case are

illustrated in Table I and Figure 4. When using a single VIRL
host, the maximum number of simultaneously emulated net-
work topologies is mainly limited by the resources (primarily
the amount of main memory) available to the host. Each vEOS
node uses 1 vCPU and 2 GB of RAM. Therefore, a test run
with ten concurrently emulated network topologies requires 80
GB of main memory (10 * 4 vEOS nodes * 2 GB RAM) to
be available, which is more than a single VIRL host in our
test system can provide (Figure 3). Hence, a stable execution
was not possible with a single host, even with memory over-
provisioning enabled (Figure 4a).
TABLE I. RELATIVE CHANGE IN Start Time, Active Time AND Usable Time

DEPENDENT ON THE NUMBER OF TOPOLOGIES.

Number of Topologies Start Time Active Time Usable Time
1 → 5 5.0617 2.5242 1.7440
5 → 10 2.0378 1.8517 1.6705
10 → 15 1.5105 1.4693 1.4686
15 → 20 1.3597 1.4548 1.4420
20 → 25 1.2334 1.2797 1.2793
25 → 30 1.2081 1.2304 1.2349

Looking at the effects of the number of parallel topologies
in respect of performance, Figure 4b clearly depicts our
expectation of a linear increase of the Start Time, while with
an increasing number of topologies the Active Time and Usable
Time ascends non-linear. The effect can best be observed when
performing the test on a cluster with four or more nodes
(Figure 4c). Up to a number of 10 simultaneously started
topologies, the difference between Active Time and Usable
Time gets smaller. This can be explained by the overhead
the OpenStack-based resource scheduling and management
introduces, which decreases with the number of simultane-
ously started topologies. For higher numbers of concurrent
simulations, the system load generated from setting up virtual
networks and interfaces causes and increase the difference
between Active Time and Usable Time. The curve for Usable
Time has a larger slope as expected, as for an increasing
number of virtual nodes, the time until all nodes are usable
increases due to the limited resources.

Alongside with the overhead introduced by the scheduling,
the comparatively large difference between Start Time and

32Copyright (c) IARIA, 2017. ISBN: 978-1-61208-594-4

SIMUL 2017 : The Ninth International Conference on Advances in System Simulation

����
����

�	

����

�����

�	

���

�����

�	

���

�����

�����

�����

� � ��

�
�
�
�
�
�
�

������ �� ���������� �����
�����

��
�������� ���! "���#������� ���! $�
��������� ���!

(a) Single VIRL Host

����
����

�����
�	��

�����

�
��

�
��	

�����

���	

���

�����

�����

�����

�
 ��

�
�
�
�
�
�
�

����� �� ��������� ����������

��������������� !���"����������� #���������������

(b) 2-node Cluster

���� ��
�����

�����
	�	��

��	�	
�����

����
�
�

	��
�����

�����

�
����

�	
���

�����
�����

�����

�����

�
	��

������

����

�

�

�

�

�

��

��

��

� � �
 �� �
 �� 	

�
�
�
�
�
�
�

�����������������������������

��������������� !���"����������� #���������������

(c) 4-node Cluster

����� �����

����� 	
���

�����

�
����

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

��

�

�
 ��

�
�
�
�
�
�
�

�����������������������������

����� ������ �����

(d) 4-node, More Workers

����
����

�����

����

��	��

	
���

����

����	

�����

���

�����

�����

	����

�����

�����

� � ��

�
�
�
�
�
�
�

�����������������������������

����� ������ �����

(e) 4-node, Ramdisk

����
����

�����

����

����	

�����

�����

�
���

�	��	

���

�����

�����

�����

�����

	����

� 	 ��

�
�
�
�
�
�
�

�����������������������������

����� ������ �����

(f) 4-node, SSD

�����

�����

�����

����� �����
����� ����	

���	

���

���

����

����

���	

� � �� �� �� �� ��

�
�
�
�
�
�
�

�����������������������������

����� ����������!���"

(g) 4-node, Avg Delay

Figure 4. Results from measuring the time it takes to start multiple instances of the topology shown in Figure 2a.

Active Time results from the expensive process of creating
all required virtual networks for connecting the devices. All
links of the topology (Figure 2a) are redundant, which requires
the creation of two VXLAN segments and its associated ports
per pair of devices on the GNU/Linux bridge interface of the
OpenStack nodes. The overhead of this was clearly visible by
the CPU load produced by the Neutron process on the Open-
Stack controller node. The main limitation here is the fact,
that neutron-server and nova-conductor are single-threaded in
VIRL’s OpenStack Kilo setup, which limits the maximum
performance of virtual network creation to a single CPU
core. In most of our test-cases, the CPU core neutron-server
was executed on, was working to capacity. To overcome this
limitation, we increased the number of neutron-server, nova-
api and nova-conductor worker processes to ten. However, due
to the fact that memory gets reserved on the VIRL master for
these processes, the additional resource requirements resulted
in a decrease of the maximum number of simultaneously
started topologies to only 25 (Figure 3). Even more prob-
lematic was the observation, that some of the vEOS nodes
were not successfully started at the end of the test run, which
is most likely explained by the dynamic memory allocation.
When starting all topologies nearly at the same time, nova-
scheduler is not able to determine the truly remaining amount
of main memory and schedules too many VMs to the control
node. At the same time, Figure 4d depicts that the Usable
Time of the 20 topologies decreased by 16% and Active

Time by 18%. While we assume room for improvement by
carefully optimizing the OpenStack and KVM configuration,
our recommendation is rather the use of a dedicated VIRL
master node, which is currently not possible in VIRL, but
can be manually achieved by deactivating nova-compute on
the controller. The average console delay of the emulated
vEOS nodes stays nearly constant with a growing number of
simultaneously active topologies, as shown in Figure 4g. As
a result, even if the time to start the concurrent simulations
increases, a smooth use of the individually usable emulations is
guaranteed despite the increased CPU load of the hypervisors.
Limiting factors regarding our benchmark are more related to
the amount of main memory and I/O performance, rather than
the CPU load. What accounts for the latter is primarily the
OpenStack und VIRL management processes, as well as the
boot process of the vEOS instances, which utilizes the assigned
vCPU to capacity for about 60 seconds in case of our test
setup. As a performance improvement, Cisco recommends the
use of a ramdisk for running Nova VMs, as well as a SSD for
the VIRL hosts. We implemented both recommendations in
our test environment to compare the impact on performance.
First, a ramdisk was created, which is only supported on the
controller in VIRL, hence we needed to manually configure it
on the compute nodes. Figure 4e depicts the measurement re-
sults, clearly showing only a minor performance improvement,
which is obviously attributable to the small amount of required
ephemeral storage of only about 213 MB for a vEOS image.

33Copyright (c) IARIA, 2017. ISBN: 978-1-61208-594-4

SIMUL 2017 : The Ninth International Conference on Advances in System Simulation

Second, we added two local solid state drives (Samsung 850
PRO) to each of the servers. Figure 4f shows no significant
improvement of the performance, which is attributable to the
previously used storage back end (NetApp E2700) already
offering about 650 MB/s read/write performance. Due to the
higher number of IOPS of the SSD, we would assume that
an improvement is observable when the I/O load of the VMs
increases as a result of more complex topologies.

VII. CONCLUSION AND FUTURE WORK

Cisco VIRL provides a platform, which is capable of
creating realistic and scalable virtual network testbeds for
education and research projects. In comparison with alterna-
tives, such as GNS3 or EVE-NG, a clear advantage is that
it offers to use original Cisco operating system images in
conformance with license requirements. Beyond that, an even
more important feature is the foundation of VIRL, which is
based on the open source project OpenStack. This enabled
us to modify and extend the environment as shown in this
paper, and to build a well-scaling multi-node VIRL cluster,
which supports a sufficiently large number of simultaneous
emulations for application in education. Further, by allowing
the utilization of standard network management applications
(i.e., ping, traceroute) and operating systems (i.e., Ubuntu
VMs) inside the emulated network testbeds, as well as the
connection to real physical networks, a great flexibility and
functional realism can be achieved in comparison with other
simulation approaches. The increased start time introduced
by the emulation, especially for complex topologies, can be
compensated by using a VIRL scheduler that we developed
to specifically address the requirements of our NetLab. It
offers to pre-load topologies based on a schedule, e.g., in
advance of an upcoming seminar, hence minimizing delays
for the students. Additionally, we are actively developing a
management application for VIRL labs. When finished, it will
provide a self-service system enabling students to subscribe
to courses and to start working on topologies and reserving
virtual lab time. To increase performance even further, the
most promising approaches are given by increasing the number
of cluster nodes and optimizing to the OpenStack resources
management, as well as the underlying network infrastructure.

By the time of writing, new major versions of the previ-
ously mentioned software projects GNS3 and EVE-NG were
released, both with valuable new features. As an example,
EVE-NG added support for multiple simultaneous users who
can work on the same topology, which is a requirement to
qualify for educational use. Still, both projects do not provide a
way to use Cisco operating system images in conformance with
the license requirements, however, other network operating
systems like Arista vEOS are available. In the future, we will
setup a new lab environment with these software projects to
evaluate the suitability and scalability for our use-cases. Since
Cisco seems to have changed the strategy for VIRL and tries
to move universities to the expensive Cisco Modeling Lab, the
new version of GNS3 could become an interesting alternate
candidate for our environment. We are currently looking into
the possibility to develop appropriate extensions to GNS3 or
EVE-NG to fix the current lack in cluster-based load balanc-
ing and centralized management and real-time collaboration
options on running simulations compared to VIRL.

ACKNOWLEDGMENT

We thank Cisco for providing us with a research license
within the context of the Cisco dev/innovate research program.

REFERENCES
[1] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,

“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international conference on Emerging net-
working experiments and technologies. ACM, 2012, pp. 253–264.

[2] M. Pizzonia and M. Rimondini, “Netkit: network emulation for educa-
tion,” Software: Practice and Experience, vol. 46, no. 2, Feb. 2016, pp.
133–165.

[3] S. V. Tagliacane, P. W. C. Prasad, G. Zajko, A. Elchouemi, and
A. K. Singh, “Network simulations and future technologies in teaching
networking courses: Development of a laboratory model with Cisco
Virtual Internet Routing Lab (Virl),” in 2016 International Confer-
ence on Wireless Communications, Signal Processing and Networking
(WiSPNET). IEEE, 2016, pp. 644–649.

[4] J. Obstfeld et al., “VIRL: The Virtual Internet Routing Lab,”
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, Aug. 2014,
pp. 577–578. [Online]. Available: http://doi.acm.org/10.1145/2740070.
2631463

[5] C. Pape and C. Seifert, “Adaption and improvement of an industry-
developed IP Telephony curriculum,” in 7th Annual International Con-
ference on Computer Science and Education in Computer Science,
Sofia/Dobrinishte, Jul. 2011, pp. 199–210.

[6] ns-3. URL: https://www.nsnam.org, 2017.06.07. (2017)
[7] OMNeT++ Discrete Event Simulator. URL: https://omnetpp.org,

2017.06.07. (2017)
[8] Packet Tracer - A free network simulation and visualization tool for the

IoT era. URL: https://www.netacad.com/about-networking-academy/
packet-tracer, 2017.06.07. (2017)

[9] Mininet - An Instant Virtual Network on your Laptop (or other PC).
URL: http://mininet.org, 2017.06.07. (2017)

[10] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop: rapid
prototyping for software-defined networks,” in Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010,
p. 19.

[11] B. Momeni and M. Kharrazi, “Partov - a network simulation and
emulation tool.” J. Simulation, vol. 10, no. 4, 2016, pp. 237–250.

[12] M. A. Qadeer, P. Varshney, and N. H. Khan, “Design and Simulation of
Interconnected Autonomous Systems,” in 2009 International Conference
on Computer Engineering and Technology (ICCET). IEEE, 2009, pp.
270–275.

[13] S. Hemminger, “Network emulation with NetEm,” in Linux conf au,
2005, pp. 18–23.

[14] eNSP - Enterprise Network Simulator. URL: http://support.huawei.com/
enterprise/en/network-management/ensp-pid-9017384, 2017.06.07.
(2017)

[15] GNS3 - The software that empowers network professionals. URL: https:
//www.gns3.com, 2017.06.07. (2017)

[16] Emulated Virtual Environment Next Generation (EVE-NG) / Unified
Networking Lab (UNL). URL: http://www.unetlab.com, 2017.06.07.
(2017)

[17] VIRL - Virtual Internet Routing Lab. URL: http://virl.cisco.com,
2017.06.07. (2017)

[18] HS-Fulda NetLab VIRL Topologien. URL: https://gogs.informatik.hs-
fulda.de/srieger/git-virl-hs-fulda, 2017.06.07. (2017)

[19] S. Rieger. Arista vEOS image on VIRL. URL: https://learningnetwork.
cisco.com/thread/99040, 2017.06.07. (2017)

[20] K. Spindler et al., “AEQUO: Enhancing the energy efficiency in private
clouds using compute and network power management functions,”
International Journal on Advances in Internet Technology Volume 8,
Number 1 & 2, 2015, vol. 8, no. 1 & 2, 2015, pp. 13–28.

[21] HS-Fulda NetLab VIRL Utilities. URL: https://gogs.informatik.hs-
fulda.de/srieger/virl-utils-hs-fulda, 2017.06.07. (2017)

34Copyright (c) IARIA, 2017. ISBN: 978-1-61208-594-4

SIMUL 2017 : The Ninth International Conference on Advances in System Simulation

