
Memory Constrained Iterative Phase Retrieval Using GPGPU

Ladislav Mikeš

Institute of Computer Science, Faculty of Science
Pavol Jozef Šafárik University in Košice

Košice, Slovakia
Email: ladislav.mikes@upjs.sk

Abstract—Prediction of a scattering experiment for the new
generation of coherent X-ray sources, such as X-Ray Free-
Electron Laser (XFEL) requires a significant advance in both
precision and numerical effectivity of radiation damage modeling.
The preferred method of analyzing data from such experiment
to obtain structure information relies on an iterative approach of
refining an object estimate by repeatedly simulating the beam
propagation between exiting the object and arriving at the
detector. Currently, the most cost-effective way is to delegate work
to General-Purpose computing on Graphics Processing Units
(GPGPU), working around its limitations given by a reduced
instruction set, limited memory size and increased latency when
accessing the rest of the system. In this paper, we present
managing fast GPU memory when performing reconstruction of
an object consisting of up to 128 million voxels on currently
available devices with less than 6GB of onboard memory.

Keywords–Radiation scattering; Inverse problem; Reconstruc-
tion; GPGPU.

I. INTRODUCTION

The emerging of new generation of coherent X-ray sources
is characterized by high fluence, femtosecond scale flashes
and high repetition rate. After vetoing blank and otherwise
defective measurements, we expect a stream of up to 1000
frames per second to be further analyzed. High fluence pro-
vides us with enough photons to image a single molecule
without need to create crystals, but at the cost of the sample
getting destroyed in a rather violent explosion. A detector
capable of sampling at 4.5MHz coupled with a very short
flash lets us measure the sample when the explosion is just
starting and its effects are still negligible [1][2], but to retain
detail, we have to consider ongoing radiation damage and
integrate over multiple time slices. This requires thousands
of the forward scattering problem instances to be solved and
considering the projected detector resolution of 1 and 4 MPix,
the required computational performance is only attainable by
massive parallelism and usage of numerical accelerators, such
as GPGPU.

In this contribution, we focus on the partial problem of
optimizing limited size single particle reconstruction from low-
angle scattering pattern, where only a single node equipped
with a single GPU is used. We are going to reconstruct wave
phase on detector using the iterative phase retrieval method.

While larger samples can be fixed to a motorized holder
to undergo a tomographic scan at smaller doses of radiation,
single particles at XFEL are injected into the beam in a stream,
losing information about orientation. Common practice is to
match the orientation of multiple shots, perform 2D phase
retrieval and run a tomographic reconstruction. There are,

however advantages [3] to first generating diffraction intensity
volume and then performing 3D phase retrieval. Due to limited
GPU onboard memory, performing 3D phase reconstruction at
projected detector resolutions with GPGPU is an intricate task
and our ongoing research aims to find a reasonable solution.

In Section 2, we describe the general algorithm for phase
reconstruction. Section 3 gives an overview of the GPGPU
architecture. Section 4 enumerates memory requirements of the
basic phase reconstruction algorithm as discussed in Section 2.
In Section 5, improvements to address memory consumption
concerns are proposed. Results of a test run are shown in
Section 6 and conclusions are presented in Section 7.

II. PHASE RECONSTRUCTION

In a scattering experiment, we examine the object interact-
ing with incident radiation. Finding the object corresponding
to measured data is more or less straightforward in optical
spectrum, but in X-ray, depending on material and wavelength,
the imaginary part of refraction index, causing phase shifts in
beam, becomes crucial.

While modern detectors are capable of counting X-ray
photons at acceptable rates, phase information is lost.
However, the phase information can be inferred providing
sufficient oversampling [4]. One of the phase problem
solutions is the algorithm called iterative phase retrieval [5]. It
works on an object estimate and makes gradual improvements
to it based on feedback from scattering simulation. To be able
to harness the duality of object and its diffraction pattern, we
need to understand how a wave evolves between exiting the
object and being measured on a detector.

The easiest solution is to place the detector relatively
far from our sample and use small angle scattering, which
numerically translates to using Fourier transforms, in our case
Fast Fourier Transform (FFT). We could also use X-ray optics
to further enhance resolution, but this requires more complex
propagators and increases reconstruction difficulty.
The general algorithm is as follows:
Start with a flat or a fully random object estimate.

1) Propagate beam interacting with object estimate to
detector distance

2) Update simulated amplitudes to reflect measured data,
leave phase unaltered

3) Propagate beam back by an inverse operator
4) Update object estimate

We iterate these steps over until the object converges and there
is nothing to update in step 2.

Since a detector is usually neither a single chip nor a

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

borderless composite, blind spots are inevitable. Usage can
also destroy individual pixels and we will need to ignore them.
We therefore keep a pixel validity mask and update only valid
ones in step 2.

We usually start with a random object and the best results
can be achieved by simply executing the algorithm multiple
times and averaging the results.

The object should only take up a portion of reconstruction
volume. We employ a support function to differentiate between
object and supposedly empty space. The general idea is to
bring object estimate inside support closer to backpropagated
values while suppressing areas outside support. The support
function can be derived from other experiments such as elec-
tron microscopy or just estimated roughly, but reconstruction
precision and speed require a well-behaved tight support.
Ideally, we could derive the support function from object
estimate itself by shrinkwrap technique [6], based on a low-
pass filter and thresholding. It is numerically more demanding
than other steps of one iteration, but we only need to update
the support function once every few iterations.

We could also assume object to be positive, since it
cannot absorb more radiation than there is and usually does
not spontaneously emit radiation either. This, however, can
be counter-productive and leave us unable to find the right
solution so we use the positivity constraint in a different form.

There has been significant progress made to improve the
step 4 [7] and we are currently using the Relaxed Averaged
Alternating Reflections method [8]:

objectn+1 = objectPn + β ∗ (objectn − 2 ∗ objectPn)+
β ∗ φS+

(
2 ∗ objectPn − objectn

)
(1)

objectPn = φBPROP (φA(φPROP (objectn))) (2)

Where
objectn is the object estimate in iteration n,
objectPn is the object estimate backpropagated from step 3
β ∈ [0, 1] is the update factor
operator φS+

applies support and positivity constraint, ignoring
(zeroing) negative values
φA applies measured amplitudes in detector space and
φPROP and φBPROP propagate the exit beam to detector
space and back
We further require the information about convergence so we
know how much we can trust the reconstructed object. It is
extracted as the magnitude of change we had to perform in
step 2.

Even though the imaging experiment itself is at most in
2D by design, we are able to run it multiple times for various
orientations and put them all together to create a 3D diffraction
volume. The same algorithm then applies, but now we use 3D
FFT for our propagation instead of its 2D counterpart. For
3D object phase reconstruction we hit memory constraints due
to architectural limitations of GPGPU. The ways how to deal
with the GPGPU memory constraints are the topic of presented
contribution.

III. GPGPU

With increasing demand for 3D features and performance,
power of dedicated graphics cards rose rapidly. With higher
resolutions, more memory is also required to store color, depth

and stencil buffers, as well as high quality textures and other
features.

After the introduction of programmable shaders in the
early 2000s, enthusiasts learned to repurpose these to perform
various computations on the graphics card, taking advantage
of their highly parallelized architecture. The first release of
general purpose computing on GPU was with the Nvidia 8800
series, the first CUDA-capable card.

There are 2 major platforms for GPGPU : CUDA by Nvidia
and OpenCL by consortium Khronos Group.
• CUDA is available only for chips made by Nvidia

and is popular for its easy to use API. Device code
(an extension of C) is compiled using a specialized
tool and linked into the executable.

• OpenCL was created as an open standard and any
GPU manufacturer is welcome to support it. Device
code (in C) is loaded, compiled and linked at runtime,
making it a somewhat more difficult to manage.

A. Construction

A GPGPU device usually consists of a controller, onboard
memory and compute units: cuda cores or stream processing
units. A compute unit contains a number of computation cores
with their private registers and a small amount of locally
shared memory. A program is executed on a block of cores,
all performing the same instruction.

Massive parallelism is the main advantage of GPGPU.
While individually not as powerful as CPU cores, the sheer
number of cores available within a single device makes
GPGPU the ideal choice for element-wise operations, a major
part of phase retrieval algorithm.

When considering GPGPU for scientific research, it is also
important to note their double precision (DP) performance and
error correction in memory. These features are exclusive to
professional grade cards with double precision performance
being reduced to half or even eighth of their single precision
(SP) performance as opposed to up to 1/32 in consumer
gaming cards. In our case double precision also doubles the
memory requirements for most buffers, a price we may not be
able to afford in some cases.

B. Memory hierarchy

We can utilize various types of memory on GPU:
• registers are very fast but only in limited supply
• local memory is shared between threads in a block, up

to 48kB depending on architecture, 1TB/s throughput
• global memory is shared between everything on de-

vice, up to 12GB in current top-end devices, up to
320GB/s

• peer to peer access accessing another device’s global
memory is limited by speed of their PCIe bus, up to
32GB/s

• system memory limited by PCIe bus and RAM itself,
up to 32GB/s

We can see that using memory outside the device is by an
order of magnitude slower and is usually used only to load
data and save results. Even adding another device with very
fast memory of its own may not be a good choice in some
cases due to communication bottleneck.

Best practice in cases where memory size is not an issue
is to load all input data to GPU memory, perform computation

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

and save result back to system memory. For problems with
localized memory access, we can load only data relevant to
current batch being computed and reuse buffers for next batch.
There are mechanisms built into current GPGPU architectures
to allow for data transfers to/from GPU for next/previous
batch while current batch is being computed without significant
performance degradation due to concurrent memory access. In
our case, we need to have immediate access to all the buffers
for various steps of each iteration.

IV. MEMORY USAGE

When performing iterative phase retrieval as discussed
above, we need to consider not only the data structures needed
to store data, but also temporary storage.
We will express memory requirements using size as it mostly
depends on reconstructed volume resolution.

A. Basic data structures

As the algorithm suggests, we need place to store:
• input data: size floats
• input validity mask: size booleans, bytes at best
• object estimate: size floats
• object backpropagated: size floats
• support function: size booleans
• average: size floats, [optional]

B. Fast Fourier Transform

There are existing implementations for FFT for both major
GPGPU platforms: cuFFT for CUDA and clFFT for OpenCL,
both of similar performance. FFT in general requires input and
output buffers and temporary storage

• input buffer: size complex floats
• output buffer: size complex floats
• temporary buffer: size complex floats

Commonly used FFT implementations place the zero-
frequency element after transforming to the frequency do-
main at the beginning of buffer, as opposed to the center
of image acquired by detectors. While input data can be
shifted before some of the other buffers are populated, the
shrinkwrap algorithm requires access to zero-centered data or
suffers performance losses. Shifting between normal and 0-
centered layout requires an additional buffer since it cannot be
done with limited register/local memory in-place.

• shift buffer: size floats

C. Sequential operations

During thresholding and error calculation, we may need
to find the maximum or sum of a buffer. This is seemingly
sequential task, but it can be parallelized quite well using the
divide-and-conquer strategy.

With built-in mechanisms for synchronization within a
thread block we can compute maximum or sum of some part
of a buffer. This could be the whole buffer, but then we are
limited to using only one thread block and work is done
mostly sequentially. What we can do is to have multiple blocks
compute over parts of the buffer and when all are finished,
we find the maximum or sum of their results. We only need
some additional space to hold partial results. Its size does not

depend on reconstruction dimensions, but rather on the number
of blocks we wish to use, which is almost negligible.

• divide-and-conquer buffer: #blocks floats

D. Shrinkwrap

To perform low-pass filtering, we need a buffer to store
temporary result before finding the maximum and applying
threshold.

• shrinkwrap buffer: size floats

E. Total usage

To sum it all up, we require up to size∗12 floats , size∗2
bytes and another #blocks floats. In single precision, this is

size ∗ 50 + #blocks ∗ 4

bytes, which for object with 128M voxels (and a negligible
number of blocks in comparison) is 6400MB of memory.
The Nvidia TESLA card we were using only had 5.3GB
onboard memory, but the memory requirement estimate is
upper bound and we can further improve it.

V. IMPROVEMENTS

To fit all the required buffers into available memory, we
had to modify the straightforward implementation of iterative
phase retrieval and place some limitations on object size.

A. FFT buffers

We can see that the detector space buffer is only used to
adjust amplitude. We could keep freeing and reallocating it as
needed, but we can also repurpose the space when it is not
used.

While CUDA allows us to declare a buffer inside another
just by adjusting pointers, in OpenCL we only work with buffer
handles and we have to ask for a subbuffer to be created inside
another. Another way is to leave one buffer out completely by
switching to in-place Fourier transforms.

B. Fourier shift buffer

If reconstruction size is even in all dimensions, shifting
is reduced to swapping values in pairs and is possible to do
in-place. All we have to do is to pad the input to suitable
dimensions, which should be done anyway to ensure good FFT
performance.

C. Detector mask

Since the sole purpose of detector mask is to invalidate
pixels/voxels, we can do this on the detector data itself. As the
amplitude is supposed to be positive, we could use negative
values for signify invalid data.

D. Updated total

By doing these simple modifications, we can save size ∗ 3
floats and size bytes, reducing total memory usage to

size ∗ 37 + #blocks ∗ 4

bytes (SP).
Following mentioned improvements, reconstruction of an

object enclosed in a cube with side length of 512 (up to 128M

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

voxels) now requires 4.74GB of onboard memory for single
precision, which fits our device with a safe margin. For double
precision it would be 9.34GB. If we wanted to work with data
from a 1MPix detector and a cube with 1G voxels, we would
need 37GB(SP) or 73GB(DP).

VI. RESULTS

We implemented the algorithm described above to be part
of a toolbox called SingFEL as a means of reconstructing
objects from experimental data for the Single Particles, clusters
and Biomolecules instrument at European XFEL.

The reference implementation on CPU was designed to use
matrix element-wise operations, but was only compiled with
single-thread support for testing purposes. We compared the
runtime for objects of various sizes and the time spent solely
on iterations, without I/O or host-device transfers and the GPU
version was about 70 times faster.

Shown in Table I is runtime and maximum observed
memory usage when running 100 iterations of phase recon-
struction. Memory usage increase on CPU can be accredited
to Armadillo, linear algebra library, [9] creating temporary
buffers for operation results, while in GPU the CUDA runtime
requires some additional memory but otherwise fits with our
estimates.

TABLE I. PERFORMANCE COMPARISON CPU-1 vs CUDA

Input CPU RAM GPU - CUDA VRAM
1283 90s 160MB 1.5s 120MB
2563 843s 1200MB 12s 620MB
5123 7020s 9000MB 101s 4810MB

The test was performed on a phantom object (Figure 1)

Figure 1. Phantom object

While not representative of our intended target object, a
sub-cellular biological sample, it offers well-defined borders
and is homogeneous inside for easy error assessment.
To simulate a real detector with blind spots, we applied a
tic-tac-toe shaped 3D mask to detector data, accounting for
missing detector information (Figure 2)
The result after 250 iterations (Figure 3) shows the correct

general shape, but is still noisy. We are losing a significant
amount of information by masking pixels out.
The error function (Figure 4) approaches zero as there ceases

to be any activity during amplitude update.

Figure 2. Detector mask, central cut

Figure 3. Reconstructed object, frontal cut, off-center

Figure 4. Error measurement

As we can see, the object converges after approximately
170 iterations. If detector data are unmasked, convergence
occurs after less than 100 iteration and the difference from
input is almost immeasurable in single precision. With real
experimental data, the algorithm usually requires hundreds if
not thousands of iterations to converge, making the overhead
of copying data to GPU insignificant in comparison.

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

VII. CONCLUSION

We have optimized for GPGPU and implemented the
Relaxed Averaged Alternating Reflections method with
shrinkwrap-based periodical support update to be included
in SingFEL for object reconstruction. We show the best
achievable case and and why the 10243 resolution derived
from intended detector resolution is not possible with current
hardware and our single GPU limitation. While this is quite
certainly a setback, best usable case is still satisfactory for
immediate deployment within SingFEL, a software suite for
single particle imaging at FEL (in development).

With an average speed-up of 70 over single-threaded CPU
implementation, we have also supported the claims about
GPGPU being the most cost-effective solution (for reasonably
sized problems) to date, as a system with 70+ CPU cores is
not going to scale linearly in performance.

At the time of writing this paper, professional single-GPU
cards top out at 16GB and dual-GPU cards at 24GB of onboard
memory. The first single-GPU card to have 32GB onboard
memory was just announced, but still falls short of the esti-
mated 37GB memory required for 1G voxel reconstruction in
single precision. Dual-GPU cards may therefore soon surpass
this requirement but are still expected to be just as performance
limited as multiple cards by having to communicate through
the PCIe bus. To push the resolution further, we have to
accept a slight bottleneck in inter-device transfers. One of
the possibilities would be to dedicate one card to detector
(Fourier) tasks. This way, all (2 or 3) FFT buffers and detector
data could reside on one card and everything else on the
other one. In each iteration we then need to transfer object
estimate forward and backpropagated object estimate back,
totaling 8GB transfers for 1G voxel reconstruction, delaying
each iteration by approximately 1 second at 12GB/s compared
to the estimated 8s for a single iteration were it all performed
on a single device. We consider this drawback tolerable and
will proceed in this direction further.

With double the memory requirements, we did not pay
much attention to double precision and the advantages it might
bring. Rounding errors usually propagate through iterations,
but in case of iterative phase retrieval, the mechanism of
replacing amplitudes with measured data creates a fixed point
in our computation and error does not compound itself.

On the opposite side, we have the recent introduction of
16-bit floats with the newest CUDA framework. While cuFFT
does not yet support half precision, we are considering its
feasibility for further development.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Community’s Seventh Framework Pro-
gramme (call FP7-REGPOT-2012-2013-1, proposal 316310)
”Fostering Excellence in Multiscale Cell Imaging (CELIM),
USP Technicom (ITMS 26220220182) and VVGS-PF-2014-
451.

REFERENCES
[1] R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu,

“Potential for biomolecular imaging with femtosecond X-ray pulses,”
Nature, vol. 406, no. 6797, Aug. 2000, pp. 752–757.

[2] Z. Jurek, G. Faigel, and M. Tegze, “Dynamics in a cluster under the
influence of intense femtosecond hard X-ray pulses,” The European
Physical Journal D - Atomic, Molecular, Optical and Plasma Physics,
vol. 29, no. 2, May 2004, pp. 217–229.

[3] N. D. Loh and V. Elser, “Reconstruction algorithm for single-particle
diffraction imaging experiments,” Physical Review E, vol. 80, no. 2,
Aug. 2009, p. 026705.

[4] R. H. T. Bates, “Fourier phase problems are uniquely solvable in more
than one dimension. I: underlying theory,” Optik, vol. 61, 1982, pp. 247–
262.

[5] R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the
determination of the phase from image and diffraction plane pictures,”
Optik, vol. 35, 1972, pp. 237–246.

[6] S. Marchesini, H. He, H. N. Chapman, S. P. Hau-Riege, A. Noy, M. R.
Howells, U. Weierstall, and J. C. H. Spence, “X-ray image reconstruction
from a diffraction pattern alone,” Phys. Rev. B, vol. 68, Oct 2003, p.
140101(R).

[7] J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt.,
vol. 21, no. 15, Aug. 1982, pp. 2758–2769.

[8] D. R. Luke, “Relaxed averaged alternating reflections for diffraction
imaging,” Inverse Problems, vol. 21, no. 1, 2005, pp. 37–50.

[9] C. Sanderson, “Armadillo: An open source c++ linear algebra library for
fast prototyping and computationally intensive experiments,” Technical
Report, 2010.

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

