
Statistical Emulation Applied to a Very Large Data Set Generated by an Agent-based

Model

Wim De Mulder
and Geert Molenberghs

and Geert Verbeke

Leuven Biostatistics and
Statistical Bioinformatics Centre

Leuven, Belgium
Email: wim.demulder@cs.kuleuven.be

Bernhard Rengs
and Thomas Fent

Wittgenstein Centre (IIASA, VID/ÖAW, WU)
VID/ÖAW

Vienna, Austria

Abstract—This paper presents a method to apply statistical
emulation on very large data sets, making use of cluster analysis.
It is shown how integrating cluster analysis with the interpolation
method called inverse distance weighting, naturally generalizes
the basic emulation framework where a single Gaussian distri-
bution is used, to a framework where a mixture of Gaussians is
employed. Our results indicate that it might be advantageous to
choose a different number of Gaussians in the mixture depending
on the goal of the subsequent analysis. For example, is a certain
estimation needed or is a confidence interval required? Some
interesting future research questions are discussed. Our work is
truly interdisciplinary, covering the fields of statistical emulation,
demography, agent-based models, genetic algorithms and cluster
analysis.

Keywords–Statistical emulation; Agent-based models; Cluster
analysis; Genetic algorithms.

I. INTRODUCTION
Statistical emulation, more extensively discussed in Sec-

tion III-A, is a fairly recent methodology to approximate
deterministic computer models. The use of emulation has
several advantages, such as the fact that the emulator (the
approximation to the computer model) generates its output for
a given input almost instantaneously [1], an especially desired
property if the considered computer model is computationally
expensive. Furthermore, emulation offers a framework that is
well suited to perform a sensitivity or uncertainty analysis of
the computer model under consideration, see e.g. [2] and [3].

However, the standard emulation framework is not suitable
for very large data sets or when stationarity of the data cannot
be assumed, as discussed in [4]. The authors of the cited work
applied a treed partition model, meaning that they divide up
the input space by making binary splits on the value of a single
variable so that partition boundaries are parallel to coordinate
axes. Partitioning is hierarchical, in the sense that each new
partition is a sub-partition of a previous one.

We elaborate on the idea of constructing different emulators
for different parts of the input space, but instead of using
hierarchical partitioning we apply a non-hierarchical clustering
algorithm, namely k-means (see Section III-B). The work that
is discussed here is mainly of an exploratory nature, where
we experiment with six different implementations. First, we
compare results in terms of two alternative definitions of

the distance of a non training data point to a given cluster,
where we consider the possibilities of defining this distance
as the minimum over all distances from the given point to the
training data points belonging to this cluster versus adopting
the commonly used distance concept in cluster analysis where
the distance from a point to a cluster is taken as the distance
to the center of this cluster. Secondly, results are compared in
terms of the number of clusters, or equivalently the number
of emulators, that are used in obtaining an output for a non
training data point. That is, we consider the possibility of
assigning a non training data point to more than one cluster,
quite similar to fuzzy clustering [5].

The paper is organized as follows. In Section II we describe
our agent-based model for which we have constructed an
emulator. Section III discusses the three methodologies that
play a role in this construction: statistical emulation, cluster
analysis and genetic algorithms. Several choices on implemen-
tation details have to be made. This results in six different
implementation methods, described in Section IV. Section V
gives a description of the measures that are used to evaluate
the results of these implementation methods. Results are then
analyzed in Section VI.

II. APPLICATION TO DATA GENERATED BY AN
AGENT-BASED MODEL

A. Short introduction to agent-based models
An agent-based model (ABM) is a computer model that

simulates the behavior and interactions of autonomous agents
[6]. A key feature is that population level phenomena are
studied by modeling the interactions of individuals that are
members of the population of interest. The macro level be-
havior that emerges from such individual, i.e. lower level,
interactions is typically complex, more often than not to the
extent that the behavior on the macro scale cannot be deduced
by knowledge of the system’s parts alone. Thus, for example,
an ABM is very well suited to study traffic jams, since a traffic
jam results from the behavior of and interactions between
individual vehicle drivers, but it may be moving in the direction
opposite that of the cars that cause it [7].

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

B. Description of our agent-based model
We developed an agent-based model to analyze the ef-

fectiveness of family policies under different assumptions
regarding the social structure of a society. The agents represent
the female partner in a household. They are heterogeneous with
respect to age, household budget, parity, and intended fertility.
A network of mutual links connects the agents to a small
subset of the population to exchange fertility preferences. The
agents are endowed with a certain amount of time and money
which they allocate to satisfy their own and their children’s
needs. We consider two components of family policies: 1. the
policy maker provides a fixed amount of money or monetary
equivalent per child to each household and 2. a monetary or
nonmonetary benefit proportional to the household income is
received by the household. The output on the aggregate level
that is produced by the ABM consists of the cohort fertility,
the intended fertility and the fertility gap. The inputs that are
provided to the ABM include the level of fixed and income
dependent family allowances, represented by the parameters bf
and bv , and parameters that determine the social structure of a
society, such as a measure for the agents’ level of homophily
α, and the strength of positive and negative social influence,
which are denoted as pr3 and pr4 resp. Analysis of the model
outcomes indicates that both fixed and income dependent child
supports have a positive and significant impact on fertility, but
that the effectiveness of such family policies strongly depends
on the social structure of the considered country. This has been
described extensively in previous work [8].

C. Data set
The input variables of our ABM are given equidistant

values from the input domain and the ABM is applied to
generate the corresponding outputs. A total of 741,312 data
points in input space were considered in [8]. However, since
it is not our purpose here to use emulation to enhance the
analysis of the ABM outcomes, but rather to explore the
application and behavior of emulation when the training data
set has been partitioned into clusters, we limit the size of the
data set as follows. First, on the output side we consider only
cohort fertility. Secondly, on the input side we consider only
those variables that were found to have the largest influence
on the outcomes, namely bf , bv, α, pr3 and p4. This reduces
the data set to 11,232 data points. From this data set we
selected randomly 500 points to be used as test points, leaving
10,732 data points as training data set. This is still a very
large data set which suffices for our purposes. In this way, we
limit computation time to some extent without affecting our
objectives.

III. METHODOLOGY
A. Statistical emulation

Statistical emulation provides an approximation to a deter-
ministic computer model that maps real vectors to real vectors.
Such a computer model can be seen as a function ν that
generates output y = ν(x) for any given vector x that belongs
to the input domain. In our case study, y is a real number.

The approximation to ν, i.e. the emulator, is determined
via the Bayesian formalism as follows. In the first step, it is
assumed that nothing is known about ν. The value ν(x) for
any x is then modeled as a Gaussian distribution with mean
m(x) =

∑q
i=1 βi hi(x), where βi are unknown coefficients

and where hi represent regression functions chosen by the

user. As is custom in statistical emulation, we choose hi
linear. The covariance between ν(x) and ν(x′) is modeled
as Cov

(
ν(x), ν(x′) |σ2

)
= σ2 c(x,x′), where σ2 denotes

a constant variance parameter and where c(x,x′) denotes a
function that models the correlation between ν(x) and ν(x′).
We adopt the most common choice for c:

c(x,x′) = exp
[
−
∑
i

(
(xi − x′i)/δi

)2]
with xi and x′i the ith component of x and x′ resp., and where
the δi represent parameters, commonly called the correlation
lengths. One way to optimize δi is via maximum likelihood [9].
In the second step, training data (x1, ν(x1)), . . . , (xn, ν(xn))
are obtained and, via appropriate applications of Bayes’ rule,
used to determine the parameters involved and to update the
Gaussian distributions to Student’s t-distributions. However, it
is custom to approximate each t-distribution with a Gaussian
distribution. The mean m?(x) and variance v?(x) of this
distribution, given an input point x, are produced by the
trained emulator. The value m?(x) is then considered as the
approximation for ν(x) and we determine a 95% confidence
interval CI(x) as [m?(x)−2

√
v?(x),m?(x)+2

√
v?(x)]. We

refer to [10] for a more detailed account on emulation. We
adopt the widespread practice of considering the distributions
that are produced by the trained emulator as Gaussian. This is
legitimate, given the sufficiently large number of training data
points we use for training.

The correlations between each pair of training data points
are encapsulated in a correlation matrix A. The inverse of A
is used in the analytical expression for the optimal values of
the βi and of σ2. However, when the size of the training data
is large it is typically found that A is computationally non-
invertible. A simple and widely applied solution is then to
replace A by the matrix A+αI , where I is the identity matrix
and where α > 0 is a parameter called the nugget [11].

B. Cluster analysis
Cluster analysis is the unsupervised partitioning of a data

set into groups, also called clusters, such that data elements that
are member of the same group have a higher similarity than
data elements that are member of different groups. Similarity
is typically expressed in terms of a user-defined distance
measure, such as the commonly used Euclidean distance which
we employ here. The best known clustering algorithm is k-
means, an iterative algorithm to compute the centers of a
predefined number of clusters such that each given data point
is assigned to the cluster with the nearest center [5]. We use
k-means to subdivide the very large training data set into
clusters and then construct an emulator for each of these
clusters. Indeed, it is practically impossible to apply emulation
directly to the full training data set, as we found that it is even
impossible to store in memory the correlation matrix, which
contains a number of elements that is of quadratic order in the
training data size. Even on much more powerful computers, it
is not advisable to train one emulator for the complete training
data set, due to computational instabilities in inverting the cor-
relation matrix (see Section III-A). Furthermore, constructing
different emulators for different subdomains is a more flexible
approach compared to the standard emulation framework, since
it allows the parameters βi and σ2 to vary from subdomain to
subdomain.

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

C. Genetic algorithms
Determination of the parameters βi and σ2 is simple,

as analytical expressions exist for their optimal values (see,
e.g., [10]). However, such expressions do not exist for the
correlation lengths. These are typically obtained by applying
the maximum likelihood principe, as described in [9]. The
optimization of their density function is a nontrivial task here
as this function is a R5 → R mapping (there are 5 correlation
lengths, one for each of the input variables bf , bv, α, pr3 and
pr4), which may have many local optima. We use genetic
algorithms for this optimization task.

Genetic algorithms are a type of heuristic optimization
method that mimics some aspects of the process of natural
selection, in that a population of candidate solutions to an
optimization problem is evolved toward better solutions. Many
possible implementations have been developed. The variant we
use is essentially the same as described in [12], Section 2.3,
and may be summarized as follows:

1) A fitness function is chosen by the user. This fitness
function measures the quality of a candidate solution.
We simply choose the fitness of a vector of correlation
lengths as the value of the density function in this
vector. The larger the fitness value, the higher the
quality of the candidate solution.

2) An initial population of candidate solutions is chosen,
randomly selected from the input space. The popula-
tion size is chosen as 100.

3) Select the worst half of the population, i.e. the 50
candidate solutions with the lowest fitness value. This
population is transformed in the following way. Select
repeatedly pairs of different candidate solutions from
this subpopulation. Each such pair, say v and w,
representing vectors of correlation lengths, is changed
into a new pair as follows. Generate a random,
uniformly distributed 0 < β < 1 and a random
number l ∈ {1, . . . , 5} where each of numbers 1, . . . ,
5 have equal probability to be selected. Then change
the value of the lth component vl and wl of v and
w resp. into new values v′l and w′

l via the following
rule:

v′l = (1− β)vl + βwl
w′
l = (1− β)wl + βvl

This process is called crossover and amounts to
exploring the search space. The crossover process is
applied to 25 such pairs.

4) Combine the transformed worst half of the population
with the unchanged best half into a new population.

5) Each of the candidate solutions in the new popu-
lation possibly undergoes a mutation. That is, each
candidate solution is considered in turn and with a
certain fixed probability, called the mutation rate, its
value (i.e. each of the five components) is changed to
a random new value. The mutation rate is typically
chosen small; we choose it as 0.05. The purpose of
mutation is to maintain diversity in the population
and thus to avoid that the algorithm converges to a
purely local optimum.

6) Go back to the third step unless a predefined max-
imum number of iterations has been reached. We
choose this maximum number as 100. If the maxi-

mum number of iterations is reached, the candidate
solution that has the largest fitness value of all can-
didate solutions, over all 100 iterations, is selected as
the optimal vector of correlation lengths.

Key advantages of genetic algorithms are that they only
employ function evaluations (and thus not, e.g., information
about derivatives as is required by many other optimization
methods, such as, for example, gradient descent) and that they
are well suited to avoid getting stuck in local optima. Both
characteristics make them particularly useful to optimize the
density function of the correlation lengths.

IV. DESCRIPTION OF THE SIX IMPLEMENTATION
METHODS

Given a set of emulators, each trained on a different part
of the input domain, it has to be decided how this set is used
to determine an approximate value ν̂(x) to ν(x) given a non
training data input point x. First, we have to choose whether
we use just one emulator or we combine the outputs of several
emulators into one suitable approximate value ν̂(x). Secondly,
in order to choose which specific emulator or emulators to
employ we have to make a choice on the definition of the
distance from x to any given cluster, since it is intuitive to use
the emulator(s) that correspond to the cluster(s) to which x is
closest.

A. One emulator versus several emulators
Given a single emulator that is to be used to determine an

approximate output value in x, we simply take the posterior
mean m?(x) of this emulator as ν̂(x) and we use the corre-
sponding confidence interval CI(x) produced by this emulator
to model the uncertainty in using ν̂(x) = m?(x) as the true
output.

Alternatively, we could use more than one emulator to
determine ν̂(x). This idea is inspired by the use of ensemble
methods in machine learning, a technique by which a new data
point is classified by taking a weighted vote of the predictions
of several classifiers. Such ensembles often perform better than
any single classifier [13].
Given an input point x, the question is then how to determine
ν̂(x) on the one hand and how to obtain an appropriate
confidence interval on the other hand. To be more concrete,
consider the k emulators that correspond to the k closest
clusters, where distance is measured according to either the
minimum or the average distance, as explained in the next sec-
tion. The distances to these clusters are denoted as d1, . . . , dk,
and the posterior means of the corresponding emulators as
m?

1(x), . . . ,m
?
k(x). We apply an intuitive method to obtain

ν̂(x), called inverse distance weighting, which approximates
an unknown value in a given input point by a weighted average
of known values in training data input points where the weights
are inversely related to the distance from the considered input
point to each of the training data points [14]. Using this
technique, we determine ν̂(x) as

ν̂(x) =

m∑
i=1

1
di
m?
i (x)∑m

j=1
1
dj

(1)

To determine an appropriate confidence interval, we notice that
(1) in fact expresses the mean of a mixture of Gaussian dis-
tributions. Thus it is intuitive to obtain the confidence interval
from the cumulative distribution function of this mixture. This
can be done using the regula falsi method [15].

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

We have thus shown that combining an idea from machine
learning, namely ensemble methods, with an idea from the
domain of interpolation, namely inverse distance weighting,
leads to a natural extension of the basic emulation framework
where instead of using a single Gaussian distribution to model
an output a mixture of Gaussian distributions is employed.

B. Center distance versus minimum distance
The k emulators that are used to determine ν̂(x) and to

which we referred in the previous section, are chosen as the
emulators that are trained with the k clusters of the training
data set that are closest to x. This requires to define the
distance from an input point x to a cluster C, denoted as
d(x, C). We consider two possibilities, to which we refer as
the center distance and the minimum distance resp.

First, d(x, C) can be defined as the distance from x to the
center of C. Intuitively speaking, the center of a cluster is the
data point (not necessarily belonging to the training data set)
that is most representative of this cluster. The centers are given
as part of the output of the k-means algorithm. This definition
of distance from a point to a cluster is commonly used in
cluster analysis.

Secondly, d(x, C) can be defined as the minimum distance
from x to each of the training data points belonging to C.
Such a definition conforms the definition of distance from a
point to a set in a metric space.

Both definitions rely on the distance between two points,
which we take here as the commonly used Euclidean distance.

C. The resulting implementation methods
We obtained results, described below, for k = 1, 2, 3.

Combining this with the two possibilities for the definition
of distance, this gives six alternative methods to determine
ν̂(x) in each of the test points x. We refer to the method
using k ∈ {1, 2, 3} emulators and using the minimum distance
as Ek min and to the method using k ∈ {1, 2, 3} emulators
and using the center distance as Ek cen. For example, the
method where ν̂(x) is determined using the two emulators
that correspond to the two closest clusters, where distance
is measured according to the center distance, is denoted as
E2 cen.

V. DESCRIPTION OF THE EVALUATION MEASURES
Each of the implementation methods described in the

previous section determine a value ν̂(x) as approximation for
ν(x) and a confidence interval [l(x), u(x)] around ν̂(x). The
500 test points are used to evaluate each of the implementation
methods. We use two measures to perform this evaluation, one
to evaluate the produced approximation to ν(x), called the
average relative difference, and one to evaluate the produced
confidence interval, called the average interval score.

A. Average relative difference
Given a test input point x with corresponding true output

ν(x) and an approximation ν̂(x) produced by one of the six
methods, we can evaluate the quality of the approximation as
the relative difference between ν(x) and ν̂(x) as follows:

RD(x) =
∣∣∣ ν̂(x)− ν(x)
1/2(ν̂(x) + ν(x))

∣∣∣
The average relative difference for a particular method, de-
noted ARD, is then the average of RD(x) over all test points
x.

B. Average interval score
The quality of a confidence interval [l(x), u(x)] around

ν̂(x) is evaluated using the interval score described in [16].
Given an (1−α)% confidence interval [l(x), u(x)], with α =
0.05 chosen in this paper, the interval score is defined as

IS(x) =
(
u(x)− l(x)

)
+

2

α

(
l(x)− ν(x)

)
1{ν(x)<l(x)} +

2

α

(
ν(x)− u(x)

)
1{ν(x)>u(x)}

where 1{expr} refers to the indicator function, being 1 if
expression expr holds and 0 otherwise. This scoring rule
rewards narrow intervals, while penalizing lack of coverage.
The lower its value, the higher the quality of the confidence
interval is considered. The average interval score, denoted
AIS, is simply the average of IS(x) over all test points x.

VI. RESULTS
A. Clustering the training data set

In clustering the training data set containing 10,732 data
points we have to find a compromise between the desire to
obtain clusters with a large enough number of data points
to ensure that enough information is available to determine
suitable parameter values for the emulator, and the desire
to have clusters with a small enough number of data points
to avoid computational instabilities (see also Section III-A).
Although a nugget can help to avoid computational instabilities
(see again Section III-A), it should be used with caution,
since the nugget introduces additional uncertainty in an ad
hoc way which might not be justified. In any case, the nugget
should be smaller than 1, so that the introduced uncertainty is
smaller than the process uncertainty [17]. As a rule of thumb,
we do not want the nugget to be larger than 0.25 for our
emulators. Intuitively speaking we expect that the larger a
cluster the larger the nugget has to be to avoid computational
instabilities. We determine an appropriate maximum cluster
size by randomly selecting subsets of the training data set of
varying sizes, and playing with several values for the nugget.
This trial and error exercise indicated that for a size of 500 data
points a nugget of 0.25 is sufficient to avoid any computational
instability. Significantly larger sizes require a larger nugget
than 0.25, while a size of 500 with significantly smaller
nuggets results in computational instabilities. To illustrate this
last point, by choosing the nugget 0.2 we found that there
are subsets of the training data set of size 500 for which our
software written in R outputs an infinite likelihood, for some
values of the δi parameters.

A maximum cluster size cannot be given as input to the
k-means algorithm, thus we find appropriate clusters by trial
and error. Different numbers of clusters are given as input to
the k-means algorithm and the resulting number of data points
in each cluster is inspected. We find that choosing 32 clusters
comes close to the requirement of a maximum cluster size of
500: all but 2 clusters contain at most 500 data points. The
2 largest clusters, having sizes 648 and 652, are split into 2
smaller clusters by applying k-means to each of these clusters
and requiring 2 clusters as output for each of them. We then
end up with 34 clusters where the largest cluster has size 500.

B. Obtaining an emulator for each cluster
For each cluster an emulator is trained. Although each

emulator is trained on a much smaller data set than the full

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

Figure 1. Application of genetic algorithm to find the correlation lengths
(first illustration)

Figure 2. Application of genetic algorithm to find the correlation lengths
(second illustration)

training data set, a nugget is still required. The nugget for each
of the emulators is chosen heuristically, taking into account
the observation that we found subsets of the training data set
of size 500 for which a nugget of 0.25 is sufficient to avoid
computational instabilities while a significantly smaller nugget
does not work (see previous section). If the cluster size is
smaller than 150, the nugget is chosen as 0.1, for a cluster
size between 150 and 300 the nugget is taken as 0.15, for a
cluster size between 300 and 400 as 0.2, and for cluster sizes
larger than 400 as 0.25. Computational instabilities are not
encountered for any emulator.

As described in Section III-C, a genetic algorithm is used
to determine optimal values for the correlation lengths. Figures
1 and 2 show the evolution of the largest fitness value in the
population over the 100 iterations for two of the emulators.
The fast convergence is also observed for the other emulators.

C. Evaluation of the six implementation methods
The six implementation methods, described in Section IV,

are evaluated as explained in Section V. The results are shown
in Table I.

Considering ARD, i.e. the evaluation of how well ν̂(x)
approximates ν(x), we see that E1 min is the best method,
with a second place for E2 min. It is also seen that using the
minimum distance gives better results than using the center

TABLE I. EVALUATION OF THE SIX IMPLEMENTATION METHODS

Implementation method ARD AIS
E1 min 0.14 3.27
E1 cen 0.17 3.95
E2 min 0.21 2.06
E2 cen 0.23 3.21
E3 min 0.24 2.53
E3 cen 0.26 3.52

distance.
Analysis of AIS, i.e. the evaluation of the quality of the

produced confidence intervals, shows another picture. For this
measure E2 min is by far the best method, while the second
best is E3 min. Again, better results are obtained with the
minimum distance than with the center distance.

Thus, our experiment points to the following observations:
• The minimum distance gives for both evaluation mea-

sures better results. This is counterintuitive to the
widespread use of the center distance in cluster anal-
ysis.

• For ARD it holds that the less emulators are used to
determine an approximate value ν̂(x) the better.

• For AIS it holds that using several emulators to
determine a confidence interval around ν̂(x) is better
than using one emulator.

VII. CONCLUSION AND FURTHER RESEARCH
In this paper we have shown how to apply statistical

emulation to a very large data set, generated by an agent-based
model, using cluster analysis.
In terms of methodology, the main contribution of our work
is in demonstrating how the concept of ensemble methods in
machine learning can be combined with the inverse distance
weighting interpolation method to generalize the standard
emulation framework where a single Gaussian distribution
models the output of a deterministic computer model, to a
framework where a mixture of Gaussian distributions is used
for this modeling process.
In terms of experimental results, the presented work shows that
the choice of definition of distance from a point to a cluster is
an important one, and that one cannot take the center distance,
widely used in cluster analysis, for granted. Furthermore, the
results demonstrate that it can be advantageous to consider a
different number of distributions in a mixture of Gaussians
depending on whether an approximation to the deterministic
computer model output in a given input is to be determined
or a confidence interval is to be sought. For our experiment
we found that the less emulators are used to determine an ap-
proximation to the output the better, i.e. using one emulator is
preferred, while determining a confidence interval is best done
with several emulators. Of course, this is a very preliminary
conclusion and is by no means to be considered as a general
rule. Further research is definitely needed to shed more light
on this.

Other further research includes:
• In our work, we allowed a non training data point to

belong to several clusters, in contrast to the training
data points which were assigned to a single cluster
using k-means. Instead of using k-means to cluster the
training data set, one can think of applying fuzzy clus-
tering. However, this will result in the loss of a basic

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

property of emulation, namely that in the training data
points it holds that m?(x) = ν(x). This property will
be lost when using fuzzy clustering, since in this case
a training data point will belong to several clusters.
On the other hand, fuzzy emulation, as we might call
it, has the advantage that it can preserve continuity of
ν̂(x) by allowing the membership degrees of an input
point x in each of the clusters to change gradually
as x itself changes gradually. This does not hold
for our k-means emulation framework, since points
x and x′ that are close together can belong to two
different clusters and thus having outputs determined
by different emulators.

• Comparison with treed partitioning could provide
additional insights into our method as well as into
treed partitioning itself. Treed partitioning has the
disadvantage of producing an approximation ν̂ to ν
that is not continuous, while fuzzy emulation does
not have this deficiency. Possibly, ideas from both
methods can be integrated in a fruitful way.

• Methodological further research includes developing
methods to find an appropriate number of clusters for
the given training data set in a systematic fashion, and
developing methods to determine the coefficients in
the mixture of Gaussians according to some optimality
criterion. After all, the inverse distance weighting
method determines the coefficients in a purely heuris-
tic way, without taking into account any evaluation
measure.

REFERENCES

[1] S. Conti and A. O’Hagan, “Bayesian emulation of complex multi-output
and dynamic computer models,” Journal of Statistical Planning and
Inference, vol. 140, 2010, pp. 640–651.

[2] A. Sarri, S. Guillas, and F. Dias, “Statistical emulation of a tsunami
model for sensitivity analysis and uncertainty quantification,” Natural
Hazards and Earth System Sciences, vol. 12, 2012, pp. 2003–2018.

[3] E. Chang, M. Strong, and R. Clayton, “Bayesian sensitivity analysis of
a cardiac cell model using a Gaussian process emulator,” PLoS One,
vol. 10, 2015.

[4] R. Gramacy and H. Lee, “Bayesian treed Gaussian process models
with an application to computer modeling,” Journal of the American
Statistical Association, vol. 103, 2008, pp. 1119–1130.

[5] A. Jain and R. Dubes, Eds., Algorithms for clustering data. Prentice
Hall College Div, 1988.

[6] N. Gilbert, Ed., Agent-based models: quantitative applications in the
social sciences. SAGE Publications, Inc, 2007.

[7] A. Bazghandi, “Techniques, advantages and problems of agent based
modeling for traffic simulation ,” IJCSI International Journal of Com-
puter Science Issues, vol. 9, 2012.

[8] T. Fent, B. Aparicio Diaz, and A. Prskawetz, “Family policies in the
context of low fertility and social structure,” Demographic Research,
vol. 29, 2013, pp. 963–998.

[9] I. Andrianakis and P. G. Challenor, “The effect of the nugget on Gaus-
sian process emulators of computer models,” Computational Statistics
and Data Analysis, vol. 56, 2012, pp. 4215–4228.

[10] J. Oakley and A. O’Hagan, “Bayesian inference for the uncertainty
distribution of computer model outputs,” Biometrika, vol. 89, 2002, pp.
769–784.

[11] R. Gramacy and H. Lee, “Cases for the nugget in modeling computer
experiments,” Statistics and Computing, vol. 22, 2012, pp. 713–722.

[12] J. Carr, “An introduction to genetic algorithms,” url:
https://karczmarczuk.users.greyc.fr/TEACH/IAD/GenDoc/carrGenet.pdf,
2014.

[13] T. Dietterich, “Ensemble methods in machine learning,” in Proceedings
of the First International Workshop on Multiple Classifier Systems.
Springer-Verlag, 2000.

[14] D. Shepard, “A two-dimensional interpolation function for irregularly-
spaced data,” in Proceedings of the 1968 ACM National Conference.

[15] J. Sloan and S. Sinha, “Bayesian predictive intervals for a mixture of
exponential failure-time distributions with censored samples,” Statistics
& Probability Letters, vol. 11, 1991, pp. 537–545.

[16] T. Gneiting and A. Raftery, “Strictly proper scoring rules, prediction,
and estimation,” Journal of the American Statistical Association, vol.
102, 2007, pp. 359–378.

[17] P. Ranjan, R. Haynes, and R. Karsten, “Stable approach to Gaussian
process interpolation of deterministic computer simulation data,” Tech-
nometrics, vol. 53, 2011, pp. 366–378.

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-442-8

SIMUL 2015 : The Seventh International Conference on Advances in System Simulation

