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Abstract—Process optimisation usually leads to a nonconvex
mathematical problem, which can be solved in an iterative way
by using relevant information about the gradients of the objective
function and constraints. In this way, the use of automatic-
differentiation tools (AD) is recommended to efficiently obtain
such information from a system modelled in steady state. This
paper deals with the integration problem between some existent
powerful modelling & simulation software and tools for numerical
optimal control. The approach here is programming a com-
munication interface between EcosimPro R© (modelling), CppAD
(AD for C++ code) and IPOPT (Interior-Point Optimiser). The
effectiveness of the proposed combined tool has been tested in an
industrial evaporation process.

Keywords–Stationary model; EcosimPro; CppAD; RTO; NLP;
Automatic differentiation; Resource efficiency.

I. INTRODUCTION

The efficient use of resources has become one of the main
goals in modern industry [1]. In this framework, optimisation
problems naturally arise when dealing with process efficiency.
Thereby, real-time optimisation (RTO) of processes (i.e., find-
ing the best operating conditions) is a requirement: it reduces
the production cost and the environmental impact. RTO is a
wide applied online activity in large-scale systems such as
petroleum refineries and chemical plants [2]. As RTO problems
are solved at regular intervals, very detailed dynamic models
can be replaced by simplified stationary ones. As a result, the
optimisation problem is generally large, with many constraints
from the process model, but relatively few degrees of freedom
for optimisation [3].

In order to run an optimisation problem, some quantitative
computations are required to measure the goodness of a
process. A very extended one is the so-called key performance
indicators (KPI) [4]. Nevertheless, new indicators devoted
specially to measure resource efficiency in real time (REI) have
been recently developed [5]. They focus in a simpler visual-
ization and aggregation of the information between production
aspects and employed energy/materials.

After the definition of such REIs, a large amount of model-
based optimisation problems on resource efficiency can be
stated and solved with nonlinear programming (NLP) software.
These tools usually require precise computation of Jacobians
and Hessians to provide the optimiser with accurate infor-
mation to advance through the right way to the optimum
[3][6]. There exist several options to compute derivatives in an
automatic way. The most used is the approximation by finite
differences, which offers a simple and systematic methodol-
ogy. Nevertheless, the obtained results are not as accurate

as desired. Another option is symbolic calculus. This option
gives exact results at the price of increasing the computational
cost, which may become a bottle-neck in applications with
demanding real-time constraints. The current trend is to use
tools which implement automatic differentiation [7]. Such tools
take advantage of the well-known chain rule to automatically
codify the required computations for derivatives directly in
machine code. Hence, precise results can be obtained in less
computational time than the required for the symbolic calculus
[8].

Also good object-oriented software tools for modelling
and simulation have been developed in recent years [9][10].
These tools already allow to deal with dynamic optimisation
problems (differential algebraic equations) by following a
sequential approach [11]. However, these tools still fail in
solving with pure discrete or steady-state nonlinear mod-
els (presence of algebraic loops), as numerical integration
algorithms (e.g., [12]) only provide information about sen-
sitivities in systems with differential equations. Automatic-
differentiation tools [8][13][14] are therefore required for those
cases. Unfortunately, the lack of integration between such
tools and the software for modelling/simulation can make
the resolution of the overall problem a very tedious task.
Indeed, the difference between programming structures and
languages employed force the user to redefine almost the
whole optimisation problem each time there is a small change
on the process and/or the objective function. This issue is
addressed in this work in a preliminary way, proposing a two-
way communication interface integrating the commercial tool
EcosimPro R© (System Modeling and Simulation Software) with
an NLP optimisation framework implementing AD, as it is
CppAD together with IPOPT (optimisation solver for large-
scale nonlinear problems).

The rest of the paper is structured as follows: next section
explains the programmed communication interface, Section 3
shows the application of the combined tool to an industrial
evaporation process, the obtained results after optimising this
case study are shown in Section 4 and, finally, a conclusion
section closes the paper.

II. INTERFACE DESIGN

This work mainly focuses on the creation of a generic
interface for optimisation of stationary systems. This interface
will make the optimisation results accessible from external
software, like environments devoted to numerical integration.
Therefore, the interface will act as a communication system to
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provide information from the simulation tool to the NLP opti-
miser and vice versa. In this way, we will be able to initialise
or modify process variables and to recover the values obtained
when it is executed. Consequently, the code has to be compiled
as a dynamic-link library which can be executed later on inside
any simulation software, with the aim of testing performance
before implementing the real on-site control algorithms.

By using the inheritance provided by the object-oriented
paradigm, we can facilitate the coding of each optimisation
problem with a similar interface.

A. Software packages
In this work we decided to use EcosimPro R© as modelling

& simulation tool, therefore some decisions and developments
below are made particularly for this software. Nevertheless,
there is no loss of generality due to such choice, because
the underlying basic ideas are also valid with other software
implementations.

EcosimPro R© offers both; [A] a high-level programming
language in order to code dynamic models and [B] interfaces
to modern numerical integration algorithms. The modelling
can be done graphically or with a C++ alike text language.
The graphic programming option is only available for certain
systems, that have been already defined either by the software
development team, or by the user. Also, both styles can be
mixed with ease. It can use external functions and classes
definitions, with the only need of dynamic-link and static li-
braries and a header file for the classes definitions. In summary,
EcosimPro R© is a very powerful tool for modelling/simulation
which already incorporates algorithms for dynamic systems
optimisation, including the computation of exact gradients via
sensitivities. However, derivatives cannot be computed in an
exact way for optimisation of stationary models, resulting in a
loss of performance. This issue limits also the use of efficient
NLP solvers like IPOPT [6], which requires good information
about first and second derivatives as input.

In order to incorporate support for efficient optimisation
methods linked to stationary models, we suggest here the use
of the optimisation tool inside the simulator by using libraries.
In order to perform a stationary model-based optimisation,
we chose the interior-point NLP solver IPOPT for this work.
This package has been proven efficient in large-scale nonlin-
ear optimisations. It is supplied with public license (GPL)
under the project Coin-Or, that pretends to give free access
mathematical tools globally. Although IPOPT can be ran from
several ways, we will use its C++ interface in order to create
the files previously defined as needed.

IPOPT is able to reach a local optimum spending less
iterations than other gradient-based algorithms thanks to, not
only asking for the first derivatives with respect to the decision
variables, but also for the second ones. Therefore, it will obtain
faster and more accurate results if this information is given
with precision.

To efficiently compute and provide derivatives, we cho-
sen the tool CppAD [7], because it implements automatic
differentiation in C++ source and it is also maintained as
part of Coin-Or project. It provides matrix work functions
with derivatives, making the computations of Jacobians and
Hessians easier. This software implements AD by using an
internal data type to record the operations chain. Then, it

Figure 1. Overall resolution procedure.

can make the differentiation with forward or reverse direction.
Forward direction has a calculus time expended around three
times the number of variables. While, the reverse option is
related to three times the time expended in computing the
functions. This means that the appropriate choice will depend
on the kind of problem, i.e., for a small problem with a huge
number of variables it’s better to choose a reverse calculus
and for a large problem with very few decision variables is
better to work with the forward option. Although CppAD is
quite powerful, it doesn’t have interfaces to any numerical
integration algorithm. Therefore, it cannot be used to solve
dynamic problems as it is.

B. Model extraction
First, let the user generate a dynamic model with

EcosimPro R© in a very intuitive way: equations don’t need to
hold causality neither a syntax order. Then, once the model is
correctly finished, the simulation tool translates it internally
to a causal mathematical one. This last model is saved as
an html file. However, this file can’t be directly used by AD
tools; it needs a previous translation phase to be coded into
the proper programming language (e.g., C++). In this work
this translation is done almost completely by a command-line
translator, developed to implement the previously described
interface from the mathematical-view file. See Figure 1 for a
clearer representation of the overall procedure.

Our translator runs over the command line under a 64-bit
Windows R© OS. It was compiled in this way in order to take
advance of the improved memory-handling capabilities of 64
bits systems, however a 32-bit version can be compiled too.

The translator works as follows: first, all the model vari-
ables are found and classified as internal variables (the ones
that might be modified during the optimisation), data variables
(fixed values) or decision variables. Then, the equations are
translated into C++ language and, as EcosimPro R© already has
arranged them by type, the ones that have to be constraints
in the stationary model are chosen. The dynamics (if there
is any) is removed (by setting the derivatives to zero on the
corresponding state equations) to get a stationary model.

The auxiliary functions, which have been already coded
using the modelling software (i.e., those belonging to separate
libraries in EcosimPro R©), have to be translated to CppAD code
too. However, their code is not included in the main html file,
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Figure 2. Communication with the optimiser.

despite being used in the model equations. Only the function’s
name together with its corresponding library is included as
a label in the html file (e.g., the function maximum coded
inside the math library will be labelled as math.maximum).
This translation procedure can be done by slightly modifying
a plain C++ code that EcosimPro R© automatically creates each
time the functions are defined. However, due to the issue of
finding the particular path of these C++ files in each computer,
this step is not fully automatised yet.

C. Integrating the optimiser
In order to use IPOPT as a C++ coded program, the

methods for an already defined abstract class inside IPOPT
have to be implemented. It has to offer a function-call in
order to obtain the cost-function and constraints values, be-
sides the Jacobian and the Hessian. All these calculations
are implemented using the automatic differentiation algorithm
of CppAD, as shown in Figure 2. It will also provide the
automation kernel with other valuable information about the
problem, as the number of constraints or the limits for those
and decision variables. It also has to calculate the sparsity of
the Jacobian and Hessians. This is a very important point in
order to actually take advantage of all the IPOPT potential.

Therefore, once we have applied the translator to the dy-
namic model that EcosimPro R© previously generated, we have
to mix it with the solver interface. This class will be different
for each optimisation problem, as it may have different targets:
the cost function can’t be the same to optimise, for instance
the required power, than to execute a data-reconciliation pro-
cedure. Despite this, the general root class for each model can
be the same, modifying only the few different aspects that have
been listed before. In this way, we can state different particular
optimisation problems, all of them inheriting from the same
stationary model. This idea is summarized in the Figure 3.

Then, when the cost function and constraints are intro-
duced, the dynamic-link library has to be compiled with the
chosen compiler. In this particular case, we used MSVC++ R©.

As soon as we get the compiled code, we can execute it
inside external software. Before running the optimisation, in
order to obtain reasonable results, the initial guess for decision
variables plus upper and lower limits for them and the rest of
constraints have to be set up. They can be stated in the same
EcosimPro R© experiment and then read before calling IPOPT.
In order to facilitate this communication, all the variables are
addressed by strings in CppAD. The constraints can be labelled
also with strings, but by default they are indexed by their
position. Instead of using C++ index type, where the zero is

Figure 3. Full classes diagram.

TABLE I. MAIN RETURNED VALUES.

Value Meaning
1 Succesful operation.
2 Maximum iterations achieve.
3 The proggresion is too small.
4 Enough accurate solution.
5 Infeasible problem.
12 Not enough freedom degrees.

the first, we chosen one as the first to keep the EcosimPro R©

index style.
Henceforth, with all the initialisation done, the optimisation

can be executed and runs in a totally transparent way for
the end user. This procedure will return an integer depending
on the result of the internal computation. The more common
outputs are listed in Table I. If the problem finds a local
optimum, we can recover the decision-variables values in
order to use them in simulation to check if it approaches the
prediction given by the optimiser. In this way, we can pretend
the behaviour on a real plant by using the simulation variables
as sensor signals, changing model parameters or external input
disturbances and updating the control inputs with the decision-
variables values.

III. INDUSTRIAL APPLICATION

The software developments presented in the above section
have been applied in practice to optimise the hot steam
consumption in a multiple-effect evaporation process. This
process is formed by: two sets of evaporation chambers and
two sets of heat exchangers in serial connection, a barometric
condenser, a cooling tower and a saturator (see Figure 4). The
system receives and recirculates a liquid mixture of water plus
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several chemical components with the aim of concentrating it
by evaporating a certain amount of water (to partially recover
such chemicals by later crystallization).

A. Mathematical model
A grey-box model has been created to represent the process

in steady state. The main part is based on first principles:

• Energy and mass balances in the main equipment
(evaporators, heat exchangers and condenser):

ni∑
i=1

Fi =

no∑
j=1

Fj (1)

ni∑
i=1

Fi ×H(Ti, Ci)−
no∑
j=1

Fj ×H(Tj , Cj) =

= Kp × [T̄ − Tamb] (2)

Where Fi, Fj are the ni input or no output masic
flows from each equipment respectively, H(T,C) is
the specific enthalpy function, Tamb is the ambient
temperature, T̄ can be the average or maximum tem-
perature in each equipment and Kp is a coefficient
representing the heat loss to ambient.

• Density relationships between mass and volumetric
flows of the mixture, water and steam as a function
of temperature and/or pressure (omitted for brevity).

• Heat transmission between fluids inside the heat ex-
changers:

Q = UA× LMTD (3)

LMTD =

[
∆T1 ×∆T2

∆T1 + ∆T2

2

] 1
3

(4)

Where Q is the heat power, U is the heat transmis-
sion coefficient and the mean-logarithmic temperature
difference ∆T has been computed using the Chen’s
approximation [15].

• Chemical equilibrium relationships between pressure-
temperature-concentration of the mixture inside the
evaporation chambers:

P̄ = Pv(T̄mix, C̄), T̄steam = Tv(P̄ ) (5)

Where Pv(T,C) and Tv(P ) are functions to compute
the vapour pressure of the mixture and the saturated
steam temperature respectively, and T̄mix, C̄, T̄steam,
P̄ are averaged temperature and concentration of the
mixture and averaged temperature and pressure of the
saturated steam respectively, all inside a chamber.

Note that these temperatures and pressures to be used here do
not correspond to particular variables in the real plant, i.e.,
they are fictitious variables corresponding to a mixture of real
unknown ones.

In addition, and due to the fact that actual processes are
of high order and knowing all relationships between inter-
nal variables may be difficult, the above physical laws are
complemented with experimental patterns. Data reconciliation
techniques [16] have been used to identify model unknown
parameters, such as the heat-transmission coefficients, and

Figure 5. Schema of the data reconciliation procedure.

possible patterns/relationships between internal variables (non-
measurable) from a set of measurements with the following
procedure:

1) Data pretreatment of raw measurements in order
to exclude outliers (out-of-range values or sensor
failure).

2) Parameter and process variables estimation by solving
the data reconciliation problem with the model based
on first principles.

3) Experimental identification of patterns.
4) Complete model (physical and experimental laws)

validation by data reconciliation with a different set
of measurements.

With the aim of reducing the effect of an eventual presence of
gross errors in the measurements, robust estimators, like the so-
called fair function [17], have been used as objective function
for the data reconciliation instead of the standard least-squares
one.

Consequently with the above procedure, set of tests have
been done to collect data from the evaporator line in continuous
operation. The tests were executed by running the evaporator
either:

• each week choosing different pairings for the set
points of the control variables and waiting for the
steady state,

• at a constant level between two cleaning cycles.

Note importantly that each variable in the model (input,
output, state or parameter) is actually considered as decision
variable for the data-reconciliation setup (see Figure 5).

At the end stage, the proposed nonlinear stationary model is
formed by 46 equations (6 algebraic loops appearing) and has
been successfully validated with plant measurements recorded
during 8 months of normal operation.

B. Optimising the efficiency
The goal here is moving the process to an operation point

where the resource consumption (mainly the hot steam flow)
is minimised by the selection of optimal control set points. To
achieve this, 3 REIs have been defined for this process:

Definition 1. Denote by specific steam consumption (REI1)
to the overheated steam consumed by amount of evaporated
water. Then, the relative steam consumption will denote the
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Figure 4. Schema of the evaporation process with existent instrumentation.

Figure 6. Stated RTO problem.

actual specific steam consumption compared with an historical
reference case (REI2), or with the result of a model-based
optimisation (REI3).

REI2 =
Actual REI1
Hist REI1

100 REI3 =
Actual REI1
Opt REI1

100

The following RTO problem [3] has been stated to compute
the REI3. Minimise J(u) subject to:

• Evaporate a desired rate of water

• The model equations

• Saturation in the control actions

• A limit on the available cooling power

Where the objective function J(u) to minimise is the
overheated steam flow and the decision variables u are the
optimal set points to the controllers (see Figure 6).

The implementation of this modelling & optimisation prob-
lem is carried out by using the software tools & developments
presented in Section 2. Then, the idea is to periodically
perform an automatic RTO with adequate frequency, e.g., one
reasonable enough to update the control actions.

IV. RESULTS

With the aim of analysing the results given by the optimisa-
tion setup stated in the above section, a set of experimental data
has been recorded with the process in steady state in different
operation points. The optimiser has been fed with the recon-
ciled values of the process inputs (flow and temperature of the
input mixture, ambient temperature, pressure and temperature
of the overheated steam input, etc.), solving a RTO problem
for each one of the sample instants taken.

The computed optimal values for the control set points
show a clear trend: the higher the temperature and the lower
the circulating flow are, the better the process efficiency is.
Figure 7 shows a simulation of the dynamic response of
the process (obtained with a more detailed dynamic model,
different from the simplified stationary one for optimisation)
with a change of the current control set points to the optimal
ones predicted by the optimiser. The visualisation of REI1 for
different sample points out that average savings around a 3%
might be obtained (see Figure 8) with the optimal operation
(controller set points).

Be aware that the optimisation setup stated by means of the
proposed automatic-translation tool, reaches the same solution
than the one obtained by a manual programming approach.

Note that actual experimental data is not included due to
a confidentiality agreement with the industrial partner. Values

Figure 7. Evolution of the steam consumption before and after applying the
optimal control set points.
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Figure 8. Evolution of the specific steam consumption with sampling.

in Figures 7 and 8 are also scaled in % by the same reason.
Note on computational cost. The resulting NLP problem for
this case study has 21 decision variables and 39 constraints.
It is solved in less than 0.1s, running in an Intel R© CoreTM i3-
2310M under Windows 7 R© 64 bits. Therefore, as the transient
duration of the process is 45 minutes approximately, this RTO
problem can be periodically launched (e.g., each hour) in any
standard machine without compromising real-time constraints.

V. CONCLUSION

The high potential offered by the current software for
modelling and simulation makes the use of it desirable in other
advanced tasks, such as optimisation. In this sense, modern
NLP tools for numerical optimal control allow obtaining effi-
cient solutions for optimisation of actual industrial processes.

This work proposed a communication interface between
both specialised software tools in order to facilitate the model
translation into an optimisation problem and also to test the
proposed theoretically optimal solutions later in simulation. In
comparison with a manual procedure, this automatic translation
tool saves time in the initial model codification and its further
possible modifications. In addition, it avoids translation errors
and loss of data associated to the human factor. Furthermore,
the proposed interface, together with the powerful existent
software, opens the door to other demanding applications in
which solving large-scale problems in short periods of time is
required.

The developments in this work have been successfully
applied to address a problem of resource efficiency in an
evaporation process, very common in current industry. How-
ever, the obtained predictions of savings are, obviously, overly
optimistic (existence of mismodelling, etc.). Therefore, they
only give qualitative information about a possible right way
to improve. The proposed recommendations for the control
actions must be implemented in the control system to be
evaluated on site.

Obviously, one case study is not enough to completely
validate the proposed interface, as there may be complicated
process models leading to unexpected situations in the trans-
lation procedure. Nevertheless, this issue is very common in
software development, where further feedback and polishing
stages are needed after a product launch, and it does not detract
the usefulness of the approach.

Further work will be focused on increasing robustness
to mismodelling and external disturbances by implementing
stochastic optimisations and modifier-adaptation setups.
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