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Abstract— In steel-making plants, there are many processes, 
such as the blast furnace, in which the internal state is not 
directly observable. Automation of such processes based on 
process visualization is an urgent issue. Because the number of 
sensors is limited, the state estimation utilizing partial sensor 
information is necessary. We developed a technique which 
visualizes the whole temperature distribution of a shaft furnace 
by combining the sensor information and a nonlinear model 
calculation. Assuming that the difference between the model 
calculation and actual data derives from the fluctuation of 
unknown parameters which cannot be measured online, the 
parameters are estimated by a particle filter. This way, a 
robust state estimation logic was established. This technique 
was implemented and evaluated in a ferro-coke pilot plant at 
JFE Steel Corporation. As a result, estimation accuracy 
improved by 30 % compared with the model calculation 
without the state estimation.  

Keywords-Particle Filter; Data Assimilation.  

I.  INTRODUCTION       

In steel making plants, there are many processes, in 
which the internal state cannot be measured directly. Such 
processes are operated manually depending on the operator’s 
ability and experience. Hence, the automation based on the 
process visualization is an urgent issue. 

 There have been many approaches to the visualization of 
internal state by physical model calculation. For instance, 
complicated models which take into account fluid motion, 
reaction, and heat transfer have been developed [1]. However, 
because these models employ fixed parameters, they cannot 
deal with the transient phenomena caused by fluctuation of 
unknown parameters of materials characteristics, and so on.     

In order to adapt to such situations, many studies have 
attempted to assimilate the model calculation with the partial 
information from the sensors, and compensate for modeling 
errors. Examples of conventional techniques are the Kalman 
filter [2], which is based on a linear approximation of the 
model, and the particle filter with simplified models based on 
a lumped element approximation [3][4]. In the field of 
process control, there have been a small number of studies 
that retain the feature of the model, which directly reflects 
nonlinear and complicated phenomena as a distributed 

element model, while making the best use of sensor 
information.  

On the other hand, in the field of meteorology, there have 
been numerous studies of data assimilation in which large 
scale numerical simulations are assimilated with observation 
data. Data assimilation can be classified into sequential type 
and non-sequential type. The former includes the particle 
filter [5] and the ensemble Kalman filter [6]; an example of 
the latter is the adjoint method [7]. The former has the 
advantages that the implementation is relatively easy and 
probability distribution of the state variable can be obtained. 
In particular, the particle filter features robustness and a clear 
physical interpretation.  

In this research, nonlinear models assuming various 
unknown parameters are calculated online, based on the 
concept of the particle filter. The weight of each model is 
updated with the degree of coincidence with the actual data, 
and the unknown parameters are estimated online. In this 
way, flexible modeling which can follow the plant change 
with a clear interpretation can be achieved. 

The state estimation technique based on the particle filter 
as outlined above was implemented in a ferro-coke furnace 
at JFE steel. Ferro-coke is a mixture of coal and iron ore with 
the ratio of 7 : 3 [8]. Owing to the catalytic effect of metallic 
Fe, the coke gasification reaction starts at lower temperature, 
compared with normal coke [9]. This reduces the 
temperature of thermal reserve zone in blast furnace, 
enabling low coke ratio operation. The ferro-coke 
manufacturing process consists of mixing, molding, and 
coking. The target of this research is the heat pattern of a 
ferro-coke furnace during the coking process.   

There are several constraints on the heat pattern of the 
furnace, such as the temperature rising rate, coking time, and 
cooling condition. For example, a higher rising rate enhances 
the fluidity of coal grain, resulting in better product strength. 
The holding time in coking zone should be controlled in 
order to improve the strength and reactivity.  

In spite of the necessity of online control of heat pattern, 
the number of sensors is limited. In addition, unknown 
parameters exist in the process, such as the heat loss from the 
oven surface and the specific heat of the solid, which cannot 
be detected online. Therefore, a state estimation logic based 
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on online parameter estimation with a particle filter is a 
proper approach. 

The framework of this paper is as follows. In Section 2, 
the mathematical modeling of the ferro-coke furnace and the 
design of the particle filter are explained. A simulation study 
of state estimation is presented in Section 3. An evaluation of 
the estimation accuracy in the actual operation in a pilot 
plant is explained in Section 4. Finally, we conclude this 
paper in Section 5. 

II.  MODELING OF THE SHAFT FURNACE  

A. Outline of the ferro-coke furnace 

The structure of the ferro-coke furnace at the pilot plant 
is shown in Figure 1. Several tuyeres for coking and cooling 
are arranged symmetrically. There are three kinds of tuyeres, 
which are termed low temperature tuyere, hot tuyere, and 
cooling tuyere. The low temperature tuyere is used to adjust 
the temperature rising rate. The holding time in coking zone 
is achieved by the hot tuyere. The cooling tuyere and 
discharge device are installed at the bottom of the furnace. 

Ferro-coke briquette are charged from the top of the 
furnace, and heated up by the heat exchange between the 
solid and the gas. After the coking process near the hot 
tuyere, the final product is released from the bottom. 

Thermocouples TI (1)-TI (5) are arranged on the oven 
wall, which can monitor the temperature continuously. The 
thermocouples TI (6)-TI (8) are embedded in a probe, which 
is inserted in the furnace at appropriate times.  

B. Mathematical modeling 

For the visualization of temperature distribution, a 
transient 2D model was developed, which takes into account 
the reaction, the fluid motion, and heat transfer. The details 
of the model are as follows. The parameters are listed in 
Table 1. The coordinate x-y is defined in Figure 1. The 
material balance of the solid and the gas is presented as the 
continuity equation, 
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Here, two kinds of reactions were considered as listed in 
Table 2. One is the gasification of the volatile component of 
the coal, and the other is the reduction of the iron ore, and 
they were assumed to be irreversible reaction. The rate of 
the reactions was a function of solid temperature. For the 
momentum of the gas flow, Ergun's equation [1] was solved,  
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In the case of the solid, the flow was simplified as a 
vertical descent, as described by (2). Next, the heat transfer 
model was developed to express the heat exchange between 
the solid and the gas, and the reaction heat.  It is noteworthy 
that the time evolution term of (5) is negligible, because the 
heat capacity of the gas is much smaller than that of the 
solid. 
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TABLE I.  PARAMETERS IN THE MODEL 

Symbol Notes Dimension 

gu  Mass velocity of the gas 
(Horizontal component) ]/[ 2 smkg ⋅  

gv  Mass velocity of the gas 
(Vertical component) ]/[ 2 smkg ⋅  

sρ  Density of the solid ]/[ 3mkg  

sv  Velocity of the solid ]/[ sm  

R  Reaction rate ]/[ 3 smkg ⋅  

gp  Gas pressure  ][ Pa  

gT  Gas temperature ][ K  

sT  Solid temperature ][ K  

gC  Specific heat of gas ]/[ KkgJ ⋅  

sC  Specific heat of solid ]/[ KkgJ ⋅  

RH∆  Reaction heat ]/[ kgJ  

1η  Reaction heat distribution rate (gas) ][ −  

2η  Reaction heat distribution rate (solid) ][ −  

outT  Atmosphere temperature ][ K  

h  Heat radiation coefficient ]/[ 2 KsmJ ⋅⋅  

α  Heat exchange coefficient 
 between gas and solid ]/[ 3 KsmJ ⋅⋅  

gε  Void ratio ][ −  

pd  Diameter of the material ][ m  

gρ  Density of gas ]/[ 3mkg  

gµ  Viscosity of gas ][ sPa ⋅  

1c  Parameter of reaction ][−  

2c  Parameter of reaction ][ −  
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Figure 1.  Structure of the ferro-coke furnace. 
 

TABLE II.  REACTIONS IN THE MODEL 

Reaction Notes Dimension 

2

32

CO23Fe
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+→
+  
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The furnace wall was modeled as a boundary condition 

(7), where a heat exchange between the gas and the 
atmosphere occurs. This heat sink was incorporated in the 
gas heat calculation (5) as source term. 

( )　　　 outg TThq −−=                                   (7) 

These differential equations are discretized by the finite 
volume method. The discretization scheme was Hybrid 
scheme [10]. The gas flow was solved by the SIMPLE 
algorithm, in which the pressure and the mass velocity are 
solved in a convergent calculation with (1), (3) and (4). Time 
marching was modeled by a first order implicit scheme. The 
time step was 10 minutes, considering the time-scale of the 
phenomenon in the furnace. 

The discretized equations can be expressed in the form 
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where ( )ksT , )(kgT  are the temperature distribution of the 

solid and the gas at time step k , respectively, )(ku  is the 
model input, such as the inflow gas volume and temperature, 
and )(kA  is the set of unknown parameters, which were 
assumed to fluctuate.  

 
 

Figure 2. Algorithm of the particle filter. 
 

Organizing the equations in this form is helpful when 
they are incorporated into the particle filter logic as 
described in Section 3.  

 

C. Algorithm of particle filter 

In this section, the algorithm of the particle filter, which 
assimilates the sensor information and model calculation, is 
explained. Summarizing the logic, various models assuming 
different parameter are prepared, and the temperature 
distribution is calculated in parallel. Then, the fitness of each 
model with the actual data is evaluated by the actual sensor 
data, and the number of copies of the model for the next time 
step is determined by the fitness. As shown in Figure 2, the 
procedure consisting of model prediction, evaluation, and 
making copies is repeated at every time step. 

 
 This way, the accuracy of the model is retained. The 

details of the algorithm consist of five steps, as follows. 
Step (1): As the initial guess of the unknown parameters, 

various sets of the parameters are prepared. Here, we assume 
that the fluctuating parameters are the specific heat of the 
solid, and the heat radiation coefficient of the furnace wall. 
Hereafter, each set of the unknown parameters is to be called 
“particle”.  The number of the particles was 25.  

The weight of the particles was set to be equal, that is, 
　Nwi /1)1( =                                  (9)  

where )(kwi  is the weight of i th particle at time step k, 

andN is the number of particles. 
Step (2): Based on the unknown parameters of each 

particle, the temperature distribution is predicted using the 
transient model as shown in (8),  
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where ( )kis,T  is the temperature distribution of the solid at 

time step k, and ( )kig ,T  is the temperature distribution of the 

solid at time step k, with respect to i th particle. 
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As this step is conducted independently for each particle, 
it is helpful to organize the transient model into the form as 
described in Section 2-B.   

Step (3): The fitness between the actual data and the 
predicted temperature at the sensor locations is evaluated for 
each particle. First, the temperature prediction of the model 
of the i th particle at the sensor position can be obtained as, 

( ) )(, kk igi CTy =                             (11)  

where C is the observation matrix, which extracts the value 
at the sensor positions from the calculated temperature 
distribution. In this case, we assumed that the thermocouples 
measure the temperature of the gas, because the 
thermocouples were embedded in the wall, and there was no 
direct contact with the material.  

The definition of the fitness was defined as  
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where the suffix act means the actual value from the sensors, 
andσ is the assumed observation error of the sensors.  

Step (4): The weight of each particle is updated with the 
fitness, based on Bayes' theorem [5]. 
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The weight ( )kwi  is updated by multiplication by the 

fitness ( )　kiθ , and normalized so that the total weight is unity. 
The estimation of the unknown parameters and temperature 
distribution at time step k can be expressed as the weighted 
average of the particle. 

Step (5): The copies of the particles are generated with 
the probability proportional to the weight of each particle. 
Thus, a particle with a larger weight has a greater chance of 
leaving more copies for the next time step. After that, the 
unknown parameters are slightly adjusted with random 
numbers to avoid making completely identical particles. In 
this case, an arbitrary number was selected from 0.995 to 
1.005, and the unknown parameters were adjusted by 
multiplying the number. Then, the weight of each particle is 
set to be equal.  

Online estimation of unknown parameters is possible by 
conducting Step (2)-Step (5) at each time step. Therefore, 
higher accuracy is achievable, compared with the calculation 
by fixed parameters. 

 

III.  SIMULATION RESULT 

This section describes a simulation study of the 
assimilation logic, as discussed in Section 2-C. Here, so 
called twin experiment was carried out as shown in Figure 3. 
In the virtual plant, the unknown parameters were changed 
dynamically. Then, using the particle filter, the partial 
temperature information at the sensor positions in the virtual 
plant was assimilated with the model calculation without 
sensing the fluctuation of the parameters. The performance 

of the particle filter was checked by confirming that the 
change of the unknown parameters was identified properly, 
and that the temperature distribution of the virtual plant was 
estimated. 

The unknown parameters are assumed to be the heat 
radiation coefficient of the oven surface and the specific heat 
of the solid. These parameters fluctuate in the virtual plant as 
shown in Figure 4. 

The partial information of the temperature distribution at 
the sensor positions in Figure 1 was utilized as the input of 
the particle filter logic. The model input, such as the gas 
inflow temperature and volume are taken from the actual 
operation data of the pilot plant.   

The estimation results of the surface temperature and the 
internal temperature are shown in Figure 5. The estimation 
with assimilation corresponds to the temperature 
visualization result by particle filter in Figure 3, and the 
estimation without assimilation means the mathematical 
model calculation without using sensor information in Figure 
3. The temperature is scaled by the deviation from the set 
point. The temperatures of the virtual plant, the estimation 
result without the data assimilation, and the result with the 
assimilation are compared. The particle filter logic was set to 
be effective at time step 250. The upper two of the three 
rows are the results of the surface temperature, which are 
observable and used for the input of the particle filter. The 
bottom row is the result of the internal temperature, which is 
not observable. At all three positions, the estimated 
temperature gradually converges on the virtual plant data. 
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Figure 3. Validation of the particle filter by simulation. 
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Figure 4. Assumed unknown parameters change. 
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Figure 5. Estimation result of the temperature distribution. 

 

 
Figure 6. Result of parameter estimation by particle filter. 
 

The result of parameter estimation is shown in Figure 6. 
The green lines show the result of 25 particles. It can be 
understood that each particle is searching the unknown 
parameters around the true value after applying the particle 
filter. 

In this way, it was confirmed that the identification of the 
unknown parameters, and the estimation of the internal 
temperature, which cannot be measured online, are 
achievable with the particle filter logic. 
 

IV. EVALUATION IN THE ACTUAL OPERATION 

In this section, the validation result of the state estimation 
logic at an actual plant is presented. The particle filter logic 
was implemented at the operation room of a ferro-coke plant 
at JFE steel. Four of the five thermocouples, which are TI (1), 
TI (3), TI (4), TI (5) in Figure 1, were used for the input of 

the particle filter. The remaining one, TI (2) was used for 
validation of the logic. As explained in Section 3, we 
assumed that the unknown parameters were heat radiation 
coefficient and specific heat of the solid. First, the estimation 
results of the thermocouples used as the input are shown in 
Figure 7. The temperature is scaled by the deviation from the 
set point. For the sake of comparison, this figure shows plots 
of not only the model calculation with the state estimation, 
but also the calculation without the assimilation logic, which 
was conducted offline. The estimation accuracy improved by 
more than 50 % on average by the assimilation. 

Next, the result of the validation thermocouple is 
explained. This result is shown in Figure 8. Since estimation 
accuracy improved by 40%, an over-fitting problem does not 
occur in this case. The estimation result of the internal 
temperature, which are TI (6)-TI (8) in Figure 1, is presented 
in Figure 9, where the actual temperature was measured by 
the probe in Figure 1. The estimated temperature agreed well 
with the actual temperature. In this case, estimation accuracy 
improved by 30 %. In comparison with the case of surface 
temperature, the performance of the assimilation declines 
because of the phenomenon which cannot be expressed by 
the assumed unknown factors, such as the fluctuation of the 
reduction reaction rate. The reaction rate greatly depends on 
the coal grain size inside the Ferro-coke briquette which 
cannot be detected online. Another unknown factor is the 
heat exchange ratio between gas and solid, which is 
influenced by the shape of the briquette.  

 

 
Figure 7. Estimation result of the temperature. 
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Figure 8. Temperature estimation at the validation point. 
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Figure 9.  Estimation result of the internal temperature. 
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Figure 10. Estimation result of the unknown parameters. 
 

The estimation result of the unknown parameters is 
shown in Figure 10. The blue line shows the estimation 
result, and the black dotted line shows the values of offline 
calculation with fixed parameters. The fluctuation of the 
specific heat reflects the type of material and the enthalpy of 
the reaction. The heat radiation coefficient changes due to 
the contact between the material and oven wall, and the 
condition of the oven surface. 

In this way, the performance of the state estimation 
technique based on the particle filter was validated in the 
actual operation. The performance of the particle filter can be 
enhanced further by adding other unknown factors, such as 
heat exchange rate, reduction reaction rate, and so on.  
However, in such case, the number of the particles should be 
increased, and shortening the calculation time of the physical 
model is necessary. Considering the limit of the calculation 
time, identifying the unknown factors which mainly 
contribute to fluctuation of the temperature distribution in the 

actual plant is the key element for the practical application of 
this method. 
 

V. CONCLUSION AND FUTURE WORK 

In this research, online state estimation logic based on the 
particle filter logic was developed. An estimation logic of the 
whole temperature distribution of a shaft furnace was 
established by combining the partial sensor information and 
a nonlinear model calculation. The performance of the 
estimation logic was confirmed in a simulation study. As a 
result of an evaluation in actual operation, the estimation 
accuracy improved by more than 30 % compared with the 
model calculation without the state estimation.  

As future work, the temperature control logic based on 
state estimation will be developed. The state estimation logic 
enables the control of inner temperature distribution of the 
furnace, which cannot be observed directly. Possible 
manipulated variables are the gas temperature or the gas 
volume of the tuyeres. 
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