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Abstract— In steel-making plants, there are many processes,
such as the blast furnace, in which the internal ste is not
directly observable. Automation of such processesaled on
process visualization is an urgent issue. Becaudeetnumber of
sensors is limited, the state estimation utilizingartial sensor
information is necessary. We developed a techniquehich
visualizes the whole temperature distribution of ashaft furnace
by combining the sensor information and a nonlineamodel
calculation. Assuming that the difference betweenhe model
calculation and actual data derives from the fluctation of
unknown parameters which cannot be measured onlinethe
parameters are estimated by a particle filter. Thisway, a
robust state estimation logic was established. Thigchnique
was implemented and evaluated in a ferro-coke piloplant at
JFE Steel Corporation. As a result, estimation acaacy
improved by 30 % compared with the model calculatia
without the state estimation.

Keywords-Particle Filter; Data Assimilation.

l. INTRODUCTION

In steel making plants, there are many processes, i

which the internal state cannot be measured dyreStich
processes are operated manually depending on #gratops
ability and experience. Hence, the automation basethe
process visualization is an urgent issue.

There have been many approaches to the visualizafi
internal state by physical model calculation. Fostance,
complicated models which take into account fluidtiom
reaction, and heat transfer have been developetiflyever,
because these models employ fixed parameters,ctirayot
deal with the transient phenomena caused by fltiotuaf
unknown parameters of materials characteristias saron.

In order to adapt to such situations, many stutiese
attempted to assimilate the model calculation ithpartial
information from the sensors, and compensate faletimg
errors. Examples of conventional techniques arek#iman
filter [2], which is based on a linear approximatiof the
model, and the particle filter with simplified mdsi®ased on
a lumped element approximation [3][4]. In the fietd
process control, there have been a small numbstudies
that retain the feature of the model, which directflects

element model, while making the best use of sensor
information.

On the other hand, in the field of meteorologyré¢heave
been numerous studies of data assimilation in whache
scale numerical simulations are assimilated witbeokation
data. Data assimilation can be classified into eetial type
and non-sequential type. The former includes theig
filter [5] and the ensemble Kalman filter [6]; araeple of
the latter is the adjoint method [7]. The formers hthe
advantages that the implementation is relativelyyeand
probability distribution of the state variable daa obtained.
In particular, the particle filter features robiesa and a clear
physical interpretation.

In this research, nonlinear models assuming various
unknown parameters are calculated online, basedhen
concept of the particle filter. The weight of eatlodel is
updated with the degree of coincidence with thealaiata,
and the unknown parameters are estimated onlinghisn
way, flexible modeling which can follow the plarthange
with a clear interpretation can be achieved.

The state estimation technique based on the pafifir
hs outlined above was implemented in a ferro-cokeatce
at JFE steel. Ferro-coke is a mixture of coal aon ore with
the ratio of 7 : 3 [8]. Owing to the catalytic effeof metallic
Fe, the coke gasification reaction starts at loweperature,
compared with normal coke [9]. This reduces the
temperature of thermal reserve zone in blast furhac
enabling low coke ratio operation. The ferro-coke
manufacturing process consists of mixing, moldiagd
coking. The target of this research is the heatepatof a
ferro-coke furnace during the coking process.

There are several constraints on the heat pattetheo
furnace, such as the temperature rising rate, gdakime, and
cooling condition. For example, a higher risingerahhances
the fluidity of coal grain, resulting in better pitect strength.
The holding time in coking zone should be contablia
order to improve the strength and reactivity.

In spite of the necessity of online control of hpattern,
the number of sensors is limited. In addition, wnkn
parameters exist in the process, such as thedssafrbm the
oven surface and the specific heat of the solid¢chvbannot
be detected online. Therefore, a state estimatigit based

nonlinear and complicated phenomena as a distdbute

Copyright (c) IARIA, 2014.  ISBN: 978-1-61208-371-1

183



SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

on online parameter estimation with a particleefilis a
proper approach.

The framework of this paper is as follows. In Satt2,
the mathematical modeling of the ferro-coke furnace the
design of the particle filter are explained. A siation study
of state estimation is presented in Section 3. valuation of
the estimation accuracy in the actual operatiora ipilot
plant is explained in Section 4. Finally, we cowguthis
paper in Section 5.

1. MODELING OF THE SHAFT FURNACE

A. Outline of the ferro-coke furnace

The structure of the ferro-coke furnace at thetplant
is shown in Figure 1. Several tuyeres for cokind aooling
are arranged symmetrically. There are three kifidsyeres,
which are termed low temperature tuyere, hot tuyaral
cooling tuyere. The low temperature tuyere is useddjust
the temperature rising rate. The holding time ikimg zone
is achieved by the hot tuyere. The cooling tuyerel a
discharge device are installed at the bottom ofuhesace.

Ferro-coke briquette are charged from the top ef th

furnace, and heated up by the heat exchange bettheen
solid and the gas. After the coking process near hbt
tuyere, the final product is released from thedyott

Thermocouples Tl (1)-TI (5) are arranged on thenove

wall, which can monitor the temperature continupu3ihe
thermocouples Tl (6)-TI (8) are embedded in a predech
is inserted in the furnace at appropriate times.

B. Mathematical modeling

For the visualization of temperature distributios,
transient 2D model was developed, which takesaatmunt
the reaction, the fluid motion, and heat transfdére details
of the model are as follows. The parameters atedisn
Table 1. The coordinate x-y is defined in FigureThe
material balance of the solid and the gas is ptedeas the
continuity equation,

%+%: R, (1)
ox oy

ovg

—==- 2
Ps oy )

Here, two kinds of reactions were considered asdign
Table 2. One is the gasification of the volatilenpmnent of
the coal, and the other is the reduction of the ibce, and
they were assumed to be irreversible reaction. rabe of
the reactions was a function of solid temperatéia. the
momentum of the gas flow, Ergun's equation [1] s@ised,

(Gl+GZ|ug|)’g :_aalxg )
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where
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In the case of the solid, the flow was simplifiesl a
vertical descent, as described by (2). Next, that transfer
model was developed to express the heat exchangedre
the solid and the gas, and the reaction heat ribteworthy
that the time evolution term of (5) is negligibbecause the
heat capacity of the gas is much smaller than tfiahe
solid.

0Ty , 9(CqlgTy) , 9(Cq¥yTy)

979 ot X dy (5)
= alT, - T,)+ RaH w7,
p.C, e + MO < afr, ~T)s R, (0)
TABLE I. PARAMETERS IN THEM ODEL

Symbol Notes Dimension
vy [Hemweheless | g
i | Nemettess | poims
yoR Density of the solid [kg/m®]

Vg Velocity of the solid [m/g]

R Reaction rate [kg/m’ (3]
Py Gas pressure [Pa]

Tg Gas temperature [K]

T, Solid temperature [K]

G, Specific heat of gas [J/kg K]
C, Specific heat of solid [J/kg K]
AH Reaction heat [J/kg]

n Reaction heat distribution rate (gas) [-]

n, Reaction heat distribution rate (solig)[ -]

Tout Atmosphere temperature [K]

h Heat radiation coefficient [3/m? BK]
a e e gE SR | [/ 51K]
&, Void ratio [-]

d, Diameter of the material [m]

Py Density of gas [kg/m’]

,Ug Viscosity of gas [Pals]

Cl Parameter of reaction [-1

02 Parameter of reaction [-1
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y Organizing the equations in this form is helpful emh
they are incorporated into the particle filter logas
Cooling X described in Section 3.
Tuyere

C. Algorithmof particlefilter

In this section, the algorithm of the particledilt which

assimilates the sensor information and model catian, is

TABLE II. REACTIONS IN THEMODEL explained. Summarizing the logic, various modesuasng
different parameter are prepared, and the temperatu

Figure 1. Structure of the ferro-coke furnace.

Reaction Notes Dimension distribution is calculated in parallel. Then, titedss of each
1 2Fe,0; + 32CO c, kol s model with the actual data is evaluated by theahaansor
_. Fe+ 32C0, 1+ exd- (T, —600/200 | tKmol/m" (sec] data, and the number of copies of the model fonthe time

step is determined by the fitness. As shown in feédd) the
procedure consisting of model prediction, evalugtiand
making copies is repeated at every time step.

C

Coal(s)- Coal(@) | 77 expl- (T, - 400)/100)

[kg/ m?® 3ec]

The furnace wall was modeled as a boundary comditio Thi h f th del i inede T
(7), where a heat exchange between the gas and the, . s way, the accuracy of the model is retain
atmosphere occurs. This heat sink was incorporatate etails of thg a'go“t.h.”? consist of five stepsfaiows.
gas heat calculation (5) as source term. Step (1):As the initial guess of the unknown parameters,

q=-h{T, -T ) various sets of the parameters are prepared. Werassume
g Tou that the fluctuating parameters are the specifiat loé the

These differential equations are discretized byfithige solid, and the heat radiation coefficient of thenace wall.
volume method. The discretization scheme was HybridHereafter, each set of the unknown parametershs talled
scheme [10]. The gas flow was solved by the SIMPLEparticle”. The number of the particles was 25.
algorithm, in which the pressure and the mass iglace The weight of the particles was set to be equat,ith
solved in a convergent calculation with (1), (3)44). Time w(@)=1/N (9)
marching was modeled by a first order implicit solee The . E ) )
time step was 10 minutes, considering the timeesogithe ~ Wherew, (k) is the weight ofi th particle at time ste,
phenomenon in the furnace.

. . ) . andN is the number of particles.
The discretized equations can be expressed irothe f

Step (2): Based on the unknown parameters of each

(Tolk +2), T4 (k +D) particle, the temperature distribution is predictesing the
- f(T (k) T, (K),u(k) A(k)) (8)  transient model as shown in (8),
s v lg ’ ’
whereT,(k), T,(k) are the temperature distribution of the (Tei () g ) (10)
solid and the gas at time st&p respectively,u(k) is the = 1T (k-2) 7, (k_l)’u(k_l)’Ai(k_l))

model input, such as the inflow gas volume and tamre, WhereT, (k) is the temperature distribution of the solid at

and A(k) is the set of unknown parameters, which wereime stepk, and T, (k) is the temperature distribution of the

assumed to fluctuate. solid at time stef, with respect td th particle.

Copyright (c) IARIA, 2014.  ISBN: 978-1-61208-371-1 185



SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

As this step is conducted independently for eactighs
it is helpful to organize the transient model itite form as
described in Section B-

of the particle filter was checked by confirmingaththe
change of the unknown parameters was identifieghgrtp,
and that the temperature distribution of the virplant was
Step (3): The fithess between the actual data hed t estimated.

The unknown parameters are assumed to be the heat
radiation coefficient of the oven surface and thectfic heat
of the solid. These parameters fluctuate in thes&irplant as
shown in Figure 4.

predicted temperature at the sensor locationsakiated for
each particle. First, the temperature predictiorthef model
of the i th particle at the sensor position can be obtaased

(k)=CT. . (k (11)
. y'(.) g".( ) . The partial information of the temperature disttibo at
whereC is the observation matrix, which extracts the valuethe sensor positions in Figure 1 was utilized @sitiput of

at the sensor positions from the calculated tenp@a ine particle filter logic. The model input, such te gas
distribution. In this case, we assumed that thentbeouples 0w temperature and volume are taken from theiac
measure the temperature of the gas, because t'&%eration data of the pilot plant.

thermocouples were embedded in the wall, and thaseno The estimation results of the surface temperatncetiae

direct contact with the material. _ internal temperature are shown in Figure 5. Thanesion
The definition of the fitness was defined as

with  assimilation corresponds to the temperature
|yi(k)_yact(k)|2 visualization result by particle filter in Figure and the
6, (k) = ex —— (12)  estimation without assimilation means the matherahti

g model calculation without using sensor informatiorfrigure
where the suffixact means the actual value from the sensors3. The temperature is scaled by the deviation ftbenset

ando is the assumed observation error of the sensors. point. The temperatures of the virtual plant, tiséneation
Step (4): The weight of each particle is updateth wie result without the data assimilation, and the tesith the

fitness, based on Bayes' theorem [5]. assimilation are compared. The particle filter togias set to
W(k) <—V\{(k)(9(k) be effective at time step 250. The upper two of ttree
1

13
(13) rows are the results of the surface temperaturéchvare
w; (k) w (k)

1

observable and used for the input of the partitterf The
zWi (k) bottom row is the result of the internal temperatuvhich is

| not observable. At all three position_s, the estadat

The Weightvvi(k) is updated by multiplication by the temperature gradually converges on the virtualtpdata.
fitnessei_(k) ,_and normalized so that the total weight is unity. o
The estimation of the unknown parameters and tesyoer

O (14)

Check if the temperature of

Virtual . . :
the virtual plant is estimated

distribution at time stefg can be expressed as the weighted

average of the particle.

Step (5): The copies of the particles are genenrafigd
the probability proportional to the weight of eaghrticle.
Thus, a particle with a larger weight has a greal@nce of
leaving more copies for the next time step. Afteatt the

unknown parameters are slightly adjusted with ramdo

numbers to avoid making completely identical péetic In
this case, an arbitrary number was selected frdd@850to

1.005, and the unknown parameters were adjusted by

multiplying the number. Then, the weight of eaclttipke is
set to be equal.

Online estimation of unknown parameters is posdiyle
conducting Step (2)-Step (5) at each time steprefbee,
higher accuracy is achievable, compared with theutzion
by fixed parameters.

I1l.  SIMULATION RESULT

This section describes a simulation study of the 0

assimilation logic, as discussed in Section 2-CreHeso
called twin experiment was carried out as showhigure 3.
In the virtual plant, the unknown parameters wdranged
dynamically. Then, using the particle filter, thertal
temperature information at the sensor positiorthénvirtual
plant was assimilated with the model calculationthoit
sensing the fluctuation of the parameters. Theopadnce
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Figure 3. Validation of the particle filter by sifation.
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Figure 6. Result of parameter estimation by parfidter.

The result of parameter estimation is shown in Fegi
The green lines show the result of 25 particlescah be
understood that each particle is searching the awkn
parameters around the true value after applyingptiricle
filter.

In this way, it was confirmed that the identificatiof the
unknown parameters, and the estimation of the nater
temperature, which cannot be measured online,
achievable with the particle filter logic.

IV.  EVALUATION IN THE ACTUAL OPERATION

In this section, the validation result of the segémation
logic at an actual plant is presented. The parfiltler logic
was implemented at the operation room of a ferieeqaant
at JFE steel. Four of the five thermocouples, whiehTI (1),
TI (3), Tl (4), TI (5) in Figure 1, were used fdret input of
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the particle filter. The remaining one, Tl (2) wased for
validation of the logic. As explained in Section Bg
assumed that the unknown parameters were heatioadia
coefficient and specific heat of the solid. Fitee estimation
results of the thermocouples used as the inpustaoen in
Figure 7. The temperature is scaled by the devidtimm the
set point. For the sake of comparison, this figlrews plots
of not only the model calculation with the statéireation,
but also the calculation without the assimilatiogit, which
was conducted offline. The estimation accuracy owpd by
more than 50 % on average by the assimilation.

Next, the result of the validation thermocouple
explained. This result is shown in Figure 8. Siasémation
accuracy improved by 40%, an over-fitting probleoesl not
occur in this case. The estimation result of theerial
temperature, which are TI (6)-TI (8) in Figure 4 presented
in Figure 9, where the actual temperature was nedsoy
the probe in Figure 1. The estimated temperatureeggwell
with the actual temperature. In this case, estonagiccuracy
improved by 30 %. In comparison with the case ofame
temperature, the performance of the assimilatiodlimks
because of the phenomenon which cannot be expréssed
the assumed unknown factors, such as the fluctuatidghe
reduction reaction rate. The reaction rate gredtjyends on
the coal grain size inside the Ferro-coke briquettéch
cannot be detected online. Another unknown factothe
heat exchange ratio between gas and solid, which is
influenced by the shape of the briquette.
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Figure 7. Estimation result of the temperature.
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Figure 10. Estimation result of the unknown paramset

The estimation result of the unknown parameters is

shown in Figure 10. The blue line shows the estonat
result, and the black dotted line shows the vabfesffline
calculation with fixed parameters. The fluctuatioh the
specific heat reflects the type of material andehthalpy of
the reaction. The heat radiation coefficient chandee to
the contact between the material and oven wall, ted
condition of the oven surface.

In this way, the performance of the state estimatio

technique based on the particle filter was validate the
actual operation. The performance of the partitierfcan be
enhanced further by adding other unknown factarsh sas
heat exchange rate, reduction reaction rate, andrso
However, in such case, the number of the partstesild be
increased, and shortening the calculation timéefahysical
model is necessary. Considering the limit of thieudation
time, identifying the unknown factors which mainly
contribute to fluctuation of the temperature disition in the
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actual plant is the key element for the practiggili@ation of
this method.

V.  CONCLUSION AND FUTURE WORK

In this research, online state estimation logiecdamn the
particle filter logic was developed. An estimatiogic of the
whole temperature distribution of a shaft furnacasw
established by combining the partial sensor infdionaand
a nonlinear model calculation. The performance loé t
estimation logic was confirmed in a simulation studs a
result of an evaluation in actual operation, thénegion
accuracy improved by more than 30 % compared with t
model calculation without the state estimation.

As future work, the temperature control logic based
state estimation will be developed. The state edton logic
enables the control of inner temperature distrdsuf the
furnace, which cannot be observed directly. Possibl
manipulated variables are the gas temperature ergts
volume of the tuyeres.
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