
A CC2420 Transceiver Simulation Module for ns-3 and its Integration into the

FERAL Simulator Framework

Anuschka Igel and Reinhard Gotzhein

Networked Systems Group

University of Kaiserslautern, Germany

{igel,gotzhein}@cs.uni-kl.de

Abstract—Simulation is a common approach to assess the
functional and non-functional behavior of protocols in wireless
sensor networks. In these networks, the CC2420 transceiver is a
frequently used communication platform. To make this platform
available for simulation purposes, we have developed a CC2420
simulation module for ns-3, a well-known discrete-event network
simulator targeted primarily for research and educational use,
using an existing CC2420 module for its predecessor ns-2 as
starting point. In this paper, we report on this development and,
in particular, several functional enhancements of the existing
CC2420 module. Furthermore, we present the integration of
ns-3 and the CC2420 module into FERAL, a generic simulator
framework for the rapid coupling of diverse simulators. Finally,
we present results of simulation experiments where we have
used the CC2420 module, both stand-alone ns-3 simulations
and simulations where ns-3 is a simulator component of the
FERAL framework. These experiments show that the CC2420
simulation module is fully operational in the ns-3 context, and
that the integration into FERAL provides additional degrees
of freedom especially in the early development stages, where
abstract models, e. g., Simulink or SDL models, are used to
specify system behavior.

Keywords-CC2420 simulation module; ns-3; net device; simula-
tor framework

I. INTRODUCTION

Nowadays, Mobile Ad-hoc NETworks (MANETs) consist-

ing of wireless sensor nodes become more and more important.

Common application areas are the collection of environmental

data in inaccessible areas or health monitoring. These networks

are characterized by a lack of fixed infrastructure. Due to node

mobility, they are usually restricted concerning power supply.

Therefore, the use of energy-efficient hardware is crucial. A

common transceiver module used for such nodes is TEXAS-

INSTRUMENTS’ CC2420 transceiver [1], which is compliant

with the IEEE 802.15.4 standard [2]. This standard defines

wireless transmissions in low-cost networks, with devices that

have a low data rate and low power.

Protocols running on nodes in MANETs can be quite

complex and therefore should be evaluated before deployment.

Since testbeds are expensive and time-consuming to build,

simulations are often used to verify functional as well as

non-functional behavior of these protocols. Therefore, simu-

lation capabilities for MANETs whose nodes communicate

via CC2420 transceivers are desirable. Network simulators

suitable for MANETs already exist, including the well-known

network simulator 2 (ns-2) [3] and its successor, the net-

work simulator 3 (ns-3) [4]. A CC2420 module for ns-2 has

been developed in [5] and integrated into the simulator C-

PartsSim (see also [6]); however, ns-2 is no longer actively

developed and has several drawbacks compared to ns-3 (see

[7]). For example, ns-2 uses a combination of C++ and

the Tool Command Language (TCL), while ns-3 is written

entirely in C++. Besides, the existing CC2420 module does

not realize important features (e. g., changing certain settings

of the transceiver). Therefore, we have developed a CC2420

simulation module with several functional enhancements for

ns-3, taking the existing module for ns-2 as a starting point.

The decision for ns-3 was especially taken because of its

modularity and clean design, which allows using many of the

existing simulation components – including applications, pro-

tocol implementations, and mobility, loss and delay models –

together with the CC2420 simulation module.

In addition to this, we have integrated ns-3 and the CC2420

module (and other ns-3 components) into the Framework for

the Efficient simulator coupling on Requirements and Archi-

tecture Level (FERAL) [8], thus drawing benefit from using

it in combination with other simulators such as Simulink. In

this paper, we will use a simulation component for the interna-

tionally standardized Specification and Description Language

(SDL) [9] to simulate the behavior of nodes, while ns-3 and

the CC2420 module are used to simulate the behavior of the

medium.

The remainder of this paper is structured as follows: In

Section II, we survey related work. In Section III, we describe

the development and enhancement of the CC2420 simulation

module. Section IV reports on the integration of ns-3 and

the CC2420 module into the simulator framework FERAL.

Section V presents results of simulation experiments using

the CC2420 module. In Section VI, we draw conclusions and

elaborate on future work.

II. RELATED WORK

Related work can be divided into two categories, namely

simulation approaches for the CC2420 transceiver and the

development of simulation modules for ns-3. In this paper,

we combine these two aspects and report on the development

of a CC2420 simulation module for ns-3.

Several simulation approaches for the CC2420 transceiver

are described in the literature. The authors of [10] extended

the TinyOS SIMulator (TOSSIM) by an improved wireless

propagation model and a radio frequency physical stack based

on the CC2420 transceiver. TinyOS is a popular operating
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system for wireless sensor networks. Its source code can be

directly utilized for TOSSIM, which also considers operat-

ing system overhead. Amongst other features, the proposed

CC2420 model uses Clear Channel Assessment (CCA), mea-

sures the received signal strength and allows configuration of

transmission power and channel. The results obtained with

this simulator are independent of a concrete processor, but are

bound to the TinyOS operating system. Therefore, it cannot

be used to evaluate protocols independently of a concrete

operating system.

In [11], AvroraZ is presented, which extends the Avrora

simulator by a module for simulating the CC2420 transceiver.

Avrora is a cycle-accurate instruction-level simulator for AVR

microcontrollers. The simulation module includes address

recognition, frame acknowledgement, CCA, and several other

features. A similar work is presented in [12], where an

instruction-level sensor network simulator using a detailed

CC2420 simulation model is introduced. This simulator pro-

vides a cycle-accurate processor emulation of the ATmega128,

which is independent of the operating system, and also models

the internal structure of the CC2420 transceiver, e. g., registers

and main memory. However, the paper does not provide

much detail about the CC2420 implementation. Both of these

approaches provide instruction-level simulators, which are not

suitable for large networks, because simulations are very

time-consuming. Furthermore, these simulators are tied to

special processors and are therefore not usable for the generic

evaluation of protocols on higher layers.

Numerous simulation modules for ns-3 have been developed

by third parties. Among these are routing protocols, e. g.,

the Ad-hoc On-Demand Distance Vector (AODV) protocol,

which was implemented for ns-3 in [13]. A module for

the Destination-Sequenced Distance Vector (DSDV) routing

protocol was introduced in [14], while [15] presents an IPv6

stack for ns-3. Besides this, an ns-3 framework usable for

spectrum-aware simulations was described in [16]. The au-

thors implemented spectrum-aware channel and physical layer

models, which provides the possibility to analyze how the

performance of protocols on higher layers is affected by the

frequency-related aspects of communication on the physical

layer.

III. CC2420 TRANSCEIVER SIMULATION MODULE

The CC2420 transceiver developed by TEXASINSTRU-

MENTS is a 2.4 GHz IEEE 802.15.4 compliant transceiver

with a data rate of up to 250 kbps and 16 channels [1]. It

is low-cost, configurable, energy-efficient and works in the

unlicensed ISM band. Therefore, it can be used to build up

sensor networks.

A. Functionality

The CC2420 simulation module adopts the state machine

described in the data sheet [1]. We abstract from aspects like

resetting and switching the transceiver on and off as well as

the acknowledgement mechanism and overflow respectively

. . . . . . . . .

. . .

All RX states

TX_FRAME

TX_PREAMBLE

TX_CALIBRATE

RX_WAIT

RX_FRAME
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Transmission completed
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12 symbol periods later

Frame received

or failed address

Figure 1. Simulated part of the CC2420 transceiver [1].

underflow detection. Figure 1 shows an excerpt of the CC2420

state machine used for the simulation module.

The transceiver starts in state RX_CALIBRATE. This phase

has a duration of 12 symbol periods, after which the state

RX_SFD_SEARCH is entered. Since each symbol encodes

4 bits and the data rate of the transceiver is 250 kbps, one

symbol period has a duration of 16 µs. The transceiver uses

a synchronization header for symbol synchronization of a

received frame. This synchronization header consists of a

preamble sequence and a so-called Start of Frame Delimiter

(SFD) (the frame format is depicted in Figure 4). The default

preamble sequence consists of 4 bytes with value 0x00, while

SFD is 0xA7, both compliant with the IEEE 802.15.4 standard

[2]. The so-called sync word consists of the last preamble byte

(which should be zero for compliance with IEEE 802.15.4) and

the SFD byte. Preamble length (i. e., the number of leading

zero bytes) and sync word can be configured via special

registers, but changing the default values makes the transceiver

non-compliant with IEEE 802.15.4. When receiving a frame,

the transceiver synchronizes to the zero-symbols and searches

for the SFD sequence (the preamble length does not matter

here; it is only relevant for sending). The reception of an SFD

causes the transceiver to switch to the state RX_FRAME. As

soon as the frame is received completely, the state RX_WAIT

is taken. When the transceiver is ready to receive another

frame, it goes again to the state RX_SFD_SEARCH.

Transmission requests are allowed in all RX states. It is

possible to transmit with clear channel assessment (signal

STXONCCA) or without (signal STXON). [2] defines three

different CCA modes, which are all supported by the CC2420

transceiver. Mode 1 means that the channel is clear when the

received signal strength (energy on the medium) is below a

programmable threshold. Mode 2 signals a clear channel when

the transceiver does not receive valid IEEE 802.15.4 data.

Mode 3 is a combination of the modes 1 and 2. Furthermore,

a hysteresis is defined, which has the purpose of avoiding too

frequent CCA changes in modes 1 and 3. By signaling a clear
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channel only when the energy falls below threshold minus

hysteresis, minimal fluctuations do not lead to CCA changes.

A transmission request brings the transceiver to the state

TX_CALIBRATE. This phase has a duration of 8 or 12

symbol periods. A parameter named TX_TURNAROUND de-

fines which one is used. A duration of 12 symbol periods

is compliant with IEEE 802.15.4. Afterwards, preamble and

SFD are transmitted (state TX_PREAMBLE), and finally the

rest of the frame, taken from a special FIFO memory (state

TX_FRAME). After transmitting the frame, the transceiver

goes to state RX_CALIBRATE.

B. Integration into ns-3

The simulator ns-3 [4] is a discrete-event network simulator

usable for, but not limited to, Internet systems. It is the

successor of the well-known ns-2 [3], which is still used in

academic research, but is no longer actively developed and has

several drawbacks concerning its design.

Figure 2 shows the overall structure of an ns-3 simulation.

Applications (for generating and processing traffic), proto-

col stacks (e. g., UDP / IP), and net devices (which provide

Medium Access Control (MAC) functionality and define an

interface for the network layer to access a physical device)

are installed on nodes. The protocol stack can also be omitted,

since applications can be defined in such a way that they

communicate directly with net devices. The nodes are then

connected by channels. Mobility models can be installed on

wireless nodes, determining the positions and movements of

these nodes. Besides this, ns-3 provides several loss and delay

models, which can be attached to (wireless) channels.

The actual simulation is driven by events, which are

delivered to a scheduler. Initially, such events are created by

applications running on the nodes. Further events are either

created by applications as well or result from the simulation

flow (e. g., a send event triggers a receive event at nodes in

range).

The part of a simulation system covered by the CC2420

simulation module is marked in Figure 2. By developing the

module as a part of ns-3, one can benefit from existing ns-3

components. Existing propagation loss and delay models are

used for the CC2420 channel, and predefined mobility models

Protocol

Stack

Node

Application

NetDevice

Protocol

Stack

Node

Application

NetDevice

Channel

Socket-like

API

CC2420 

Simulation Module

Figure 2. Overall structure of an ns-3 simulation [4].
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Figure 3. Structure of the CC2420 simulation module.

as well as applications and protocol stacks such as UDP / IP or

TCP / IP can be installed on nodes using a CC2420 net device.

A first version of the CC2420 simulation module for ns-3

has been developed in [17] and is based on an existing ns-2

simulation module [5]. Its structure is shown in Figure 3. The

classes NetDevice, Channel, Packet, Tag, Header and Trailer

and the accordant relations between them are provided by ns-3.

For each node communicating via CC2420, CC2420Helper

creates a CC2420NetDevice or CC2420InterfaceNetDevice.

Together with the net device, a physical layer is cre-

ated, which is connected with an existing or newly created

CC2420Channel.

CC2420NetDevice provides an interface for the sim-

ulation module to interact with higher protocol layers.

CC2420InterfaceNetDevice provides an extended interface,

which allows not only sending and receiving of data, but

also configuration of the transceiver, etc. (see Section III-C).

CC2420NetDevice uses a ReceiveCallback whose interface is

defined in the NetDevice class to forward received packets to

higher protocol layers. CC2420InterfaceNetDevice addition-

ally provides a MessageCallback. While a ReceiveCallback

only allows the reception of regular messages (i. e., ns-3 pack-

ets), a MessageCallback is used to receive specific messages

according to the extended interface.

CC2420Phy holds the configurable parameters of the

transceiver (e. g., preamble length, sync word, transmission

power, and channel number) and adds an accordant header and

trailer (see below) to the ns-3 packets representing the frames

of the transceiver. Furthermore, the physical layer controls the

CC2420FSM, which realizes the state machine described in

Section III-A.
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CC2420Header

CC2420Trailer

Figure 4. Frame format of the CC2420 transceiver [1].

The state machine used in the simulation module combines

the state of the transceiver with the one of the simulated

medium. This is the only part which was nearly completely

reused from the ns-2 simulation module.

PacketMetaData is a helper class for storing the currently

received, currently colliding or currently transmitted frame

(represented by an ns-3 packet) together with its received

respectively transmitted signal power and its starting time.

CC2420Channel manages the 16 channels of the 2.4 GHz

band as subchannels and calculates when a transmitted frame

arrives at a node and the signal power. To do this, the mobility

models of sender and receiver as well as the transmission

signal power are considered. The actual calculations are done

by the delay model and the loss model, respectively.

Tags are a possibility to add simulation information to an

ns-3 packet without actually extending its length, i. e., its

duration on the medium. Source and destination address of

a CC2420 frame are stored in an AddressTag. The addresses

are not encoded in the accordant packet directly, because

the CC2420 net device is primarily designed for broadcast

transmissions. The actual addressing is done by a higher

protocol layer and therefore already encoded in the MAC

Protocol Data Unit (MPDU). Therefore, we do not include this

information in the packet header, but, for compliance with the

ns-3 NetDevice, provide it as tag.

CrippleTag is used for marking packets which could not be

received correctly, either due to a channel change or because

they have an other sync word and are therefore not recognized

by the transceiver.

The frame format of the CC2420 transceiver is shown in

Figure 4. Preamble Sequence, Start of Frame Delimiter and

Frame Length are encapsulated by the class CC2420Header

and are added to the ns-3 packet. Frame Length denotes the

length of the MPDU in bytes; its maximal value is 127, since

the highest bit is reserved [1]. Therefore, the MPDU can

contain 127 bytes at most. The MAC Header (Frame Control

Field, Data Sequence Number and Address Information) is not

simulated. Since in the simulation 2 bytes are reserved for the

Frame Check Sequence (FCS), the maximal payload size is

125 bytes. The FCS is an additional CRC checksum, which

is realized by the class CC2420Trailer. It can be configured

if this checksum shall be added to the packet. If it is added,

the packet is marked with a CrcTag, because otherwise, the

receiver cannot determine if the checksum is added or not.

The process of successfully sending a message with the

CC2420NetDevice is as follows: Messages are sent from

higher protocol layers in the form of ns-3 packets to the

net device, which forwards them to the physical layer. This

layer is responsible for registering the send request in the

state machine, which causes the physical layer to forward the

packet to the channel, when the calibration time has expired.

The channel puts the packet to the accordant subchannel and

schedules a reception event for all receivers attached to this

subchannel by using a timer and an accordant callback. When

the timer expires, the scheduler triggers the reception of the

packet in the physical layer. A reception request is then sent

to the state machine. After reception, the packet is forwarded

to the physical layer, which forwards it to the net device. The

ReceiveCallback is used to deliver it to higher protocol layers.

C. Enhancements

In ns-3, a standard net device only provides the possibility to

send and receive packets. But for the CC2420 simulation mod-

ule, further signals for configuration and information purposes

shall be provided. For example, a received packet shall carry its

signal strength, CCA changes or the end of a transmission shall

be signaled, and changing channel and transmission power

shall be supported. In addition, it should be possible to get

information about the current configuration of the transceiver.

Therefore, we designed the CC2420InterfaceNetDevice, which

inherits from the standard CC2420NetDevice and uses the

extended message interface shown in Figure 5.

RawDataMessage provides a generic class to repre-

sent payload data. CC2420Message provides a unified

interface for all messages sent to or received from

the CC2420InterfaceNetDevice. The messages CC2420Send,

CC2420Setup, CC2420Config and CC2420StatusReq are

sent from upper protocol layers to the simulation mod-

ule, while CC2420Recv, CC2420Cca, CC2420Sending,

CC2420SendFinished and CC2420StatusResp are sent from

the simulation module to upper layers.
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Figure 5. Extended message interface for CC2420 simulation module.

The CC2420NetDevice can be used with existing appli-

cations and protocol stacks provided by ns-3 without any

modifications, since it sends and receives regular ns-3 packets.

However, the CC2420InterfaceNetDevice requires adaptations

in the upper layer(s), i. e., ns-3 applications and ns-3 protocol

stacks, because the CC2420Messages are to be constructed,

and CC2420Messages to be received.

The CC2420Send message is used to send a packet. It

can be configured explicitly if CCA shall be considered

or not, i. e., if the medium shall be checked before send-

ing (the standard send method implicitly sends with CCA).

CC2420Recv contains the received data and additionally pro-

vides information on CRC correctness and Received Signal

Strength Indicator (RSSI). CC2420Sending delivers informa-

tion about the start of a transmission. The parameter is

true if the transmission could be started successfully, and

false if not (e. g., if the medium is busy and sending with

CCA is requested). CC2420SendFinished has no parameters

and is returned when the transceiver has finished a trans-

mission. CC2420Cca provides information about the current

CCA status and is sent whenever the CCA status changes.

CC2420Setup and CC2420Config are used for configuring

the transceiver from higher protocol layers. CC2420Setup

is used to adjust channel and transmission power, while

CC2420Config carries values for CCA mode, CCA hysteresis,

CCA threshold, TX turnaround, automatic CRC, preamble

length and sync word. For the CCA mode, there is no

check for valid IEEE 802.15.4 data at the moment. The

CC2420StatusReq message can be used to get information

about the current transceiver configuration. The transceiver

module then sends a CC2420StatusResp message up, which

contains the values of all configuration parameters.

Compared to the CC2420 simulation module for ns-2, we

have added the possibility to request the current transceiver

configuration. Further, configuration of CCA hysteresis, TX

turnaround, automatic CRC, preamble length and sync word

are supported, and information on CRC and RSSI is provided.

Finally, we have implemented the use of different CCA modes.

IV. SIMULATOR FRAMEWORK FERAL AND INTEGRATION

OF NS-3

In this section, we present the integration of ns-3 and

the CC2420 simulation component into FERAL, a simulator

framework for the rapid coupling of diverse simulators, such

as simulators for Simulink and SDL models.

A. Outline of FERAL

FERAL is a Java-based framework for rapid simulator

coupling with the objective to evaluate functional and non-

functional requirements of networked systems [8]. A FERAL

simulation system consists of a set of simulation components,

which are executed by specialized simulators. In particular,

existing simulators supporting different kinds of models and

targeting different hardware platforms or communication tech-

nologies can be used together. Thereby, system components

on different levels of abstraction can be simulated, which can,

for instance, be applied for early prototyping. One example

for this is the use of an SDL simulator together with ns-3

and our CC2420 module, which will be utilized in Section V.

Thus, one can simulate existing SDL specifications on a high

abstraction level together with a concrete medium model.

The execution of simulation components is controlled by

directors, which support time-triggered as well as event-

triggered semantics. Interaction between simulation compo-

nents is realized by messages (e. g., event notification).

Three adaptation steps are necessary to build a simulation

system with FERAL (see [8]). First, existing simulators, e. g.,

ns-3, to be used in the simulation system are integrated into

FERAL. This is achieved by implementing the Simulation-

Component control interface of FERAL, which needs to be

done only once per simulator. Second, for each integrated

simulator and type of simulation component, the FERAL

component-specific interface is adapted and implemented.

Third, simulation components are instantiated by choosing

a simulator integrated into FERAL and by specifying and

inserting an accordant behavior or communication model.

B. Integration of ns-3 into FERAL

Since FERAL is written in Java and ns-3 in C++, the

integration consists of a Java part and a C++ part, which

are connected by the Java Native Interface (JNI). Although

ns-3 is an event-based simulator, our component has a time-

triggered execution model. This approach was chosen because

ns-3 already offers the possibility to execute the simulation for

a specified time span. Therefore, no modifications concerning

the clock and internal scheduler of ns-3 are necessary.

Figure 6 shows a class diagram of the Java part of the ns-3

simulator component for FERAL. The connection to the C++

part is realized by NS3Interface and NS3Connector. For each

communication medium to be simulated with ns-3, a corre-
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Figure 6. The ns-3 simulator component (Java part).

sponding NS3CommunicationMedium is instantiated. For wire-

less media, an NS3MobilityConfig is defined, which determines

positions and movements of the nodes attached to this medium.

Here, we focus on the CC2420 medium and neglect other

media such as Ethernet or WLAN, which are also supported

by the simulator component. NS3CommunicationEndpoints

connect simulation components for functional behavior to the

communication medium. On C++ side, these endpoints are

represented by special applications.

In a stand-alone ns-3 simulation, applications installed on

nodes are used to generate and process traffic. When incorpo-

rating ns-3 into FERAL, virtual applications are defined, i. e.,

applications that have no real behavior but rather serve as com-

munication counterparts for the Java endpoints on C++ side.

Communication between endpoints and virtual applications is

realized via message exchange.

The counterpart of the NS3CommunicationMedium is the

ns-3 channel, which simulates the actual communication

medium. We have introduced a communication mode de-

termining the type of communication used for a medium.

Currently, the protocols TCP and UDP and communication

without using a protocol stack, by sending broadcasts directly

via net device are supported as communication modes. When

using TCP or UDP, an NS3IPConfig must be provided for each

endpoint, defining IP address and other parameters of the node.

We have implemented one generic message type for all of

these modes, which can be used independently of the concrete

medium. For each mode, a generic virtual application exists,

which transforms the messages to ns-3 packets and sends them

according to the communication mode. For TCP and UDP,

an accordant protocol stack is installed on the nodes during

the initialization. Besides these universal modes, a medium-

specific communication mode exists, which is currently only

supported for the CC2420 medium.

C. Integration of the CC2420 Simulation Module into FERAL

Besides the integration of ns-3 into FERAL, two further

steps are necessary for integrating the CC2420 simulation

module. First, a medium class must be provided in order to

create a CC2420 medium from a FERAL simulation system.

With this medium, it is already possible to use the CC2420

module with the generic message interface described above.

To use the CC2420-specific message interface described in

Section III-C, the medium-specific communication mode –

currently only available for CC2420 – had to be introduced. To

use this message interface from FERAL simulation systems, it

has to be represented in the framework. Therefore, an (almost)

equivalent Java interface has been defined, which mirrors the

one from Figure 5. Since communication between the FERAL

framework and the ns-3 simulator is done via JNI, accordant

code had to be provided to transfer the Java messages to the

respective C++ messages.

If the medium-specific communication mode is chosen

in combination with the CC2420 medium, a CC2420-

specific virtual application is installed on the ns-3 nodes.

This application forwards the messages directly to a

CC2420InterfaceNetDevice, which processes the data and calls

the accordant methods. The use of a protocol stack (e. g., IP) is

not possible in this case, since communication is done directly

via net device.

V. SIMULATIONS USING THE CC2420 MODULE

In this section, we present results of several simulation

experiments, which show that the CC2420 simulation module

is fully operational. In particular, we present the use of the

CC2420 module in stand-alone ns-3 simulations, and in sim-

ulations where ns-3 is a simulator component of the FERAL

framework.

A. Stand-alone ns-3 Simulations

In our stand-alone ns-3 simulations, simulation systems con-

sist of two nodes acting as sender and receiver, respectively.

An OnOffApplication, which sends values during configurable

time intervals, is installed on the sender node, while a Packet-

Sink is installed on the receiver node. Both applications are

provided by ns-3. The structure is shown in Figure 7.

By default, the OnOffApplication repeatedly pauses for one

second and afterwards sends packets for one second. We

start this application at two seconds simulation time and

simulate five seconds on the whole, which means that packets

are sent in the interval between three and four seconds. By

varying application data rate and packet size, we obtain three

simulation systems. An excerpt of the first simulation system

is shown in Listing 1. UDP sockets are used for sending

and receiving (see lines 12 and 17), and the IP address of

PacketSink is used as destination address for OnOffApplication

(line 12). The first simulation uses an application data rate of

70 kbps and a packet size of 20 bytes (lines 13 and 14).

UDP

IP

Sender

OnOffApplication

CC2420NetDevice

Receiver

PacketSink

CC2420NetDevice

CC2420Channel

UDP

IP

Figure 7. Structure of stand-alone ns-3 simulation systems.
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1 NodeConta ine r nodes ; nodes . C r e a t e ( 2 ) ;

2 CC2420Helper cc2420 ;

3 N e t D e v i c e C o n t a i n e r d e v i c e s ;

4 d e v i c e s = cc2420 . I n s t a l l ( nodes , . . . ) ; / / CC2420NetDevice

5 I n t e r n e t S t a c k H e l p e r s t a c k ; s t a c k . I n s t a l l ( nodes ) ;

6 M o b i l i t y H e l p e r m o b i l i t y ;

7 . . .

8 I p v 4 A d d r e s s H e l p e r addr ;

9 addr . Se tBas e ( " 1 0 . 1 . 1 . 0 " , " 2 5 5 . 2 5 5 . 2 5 5 . 0 " ) ;

10 I p v 4 I n t e r f a c e C o n t a i n e r i n t e r f a c e s = addr . As s ign ( d e v i c e s ) ;

11

12 OnOffHelper o n o f f ( " ns3 : : UdpSocke tFac to ry " ,

I n e t S o c k e t A d d r e s s ( i n t e r f a c e s . Ge tAddre s s ( 1 ) , 9 ) ) ;

13 o n o f f . S e t A t t r i b u t e ( " Da taRa te " , S t r i n g V a l u e ( " 70 kbps " ) ) ;

14 o n o f f . S e t A t t r i b u t e ( " P a c k e t S i z e " , S t r i n g V a l u e ( " 20 " ) ) ;

15 A p p l i c a t i o n C o n t a i n e r s ende rApps =

o n o f f . I n s t a l l ( nodes . Get ( 0 ) ) ;

16

17 P a c k e t S i n k H e l p e r p k t S i n k ( " ns3 : : UdpSocke tFac to ry " , . . . ) ;

18 A p p l i c a t i o n C o n t a i n e r r e c e i v e r A p p s =

p k t S i n k . I n s t a l l ( nodes . Get ( 1 ) ) ;

Listing 1. Excerpt of simulation system for first simulation.

With these values, all packets reach their destination, which

is shown in Listing 2. The total number of bytes sent by

OnOffApplication equals the number of bytes received by

PacketSink, which means that all packets have reached their

destination.

At t ime 3 . 00229 s on−o f f a p p l i c a t i o n s e n t 20 b y t e s t o

1 0 . 1 . 1 . 2 p o r t 9 t o t a l Tx 20 b y t e s

At t ime 3 . 00427 s p a c k e t s i n k r e c e i v e d 20 b y t e s from

1 0 . 1 . 1 . 1 p o r t 49153 t o t a l Rx 20 b y t e s

. . .

At t ime 3 . 99886 s on−o f f a p p l i c a t i o n s e n t 20 b y t e s t o

1 0 . 1 . 1 . 2 p o r t 9 t o t a l Tx 8740 b y t e s

At t ime 4 . 00084 s p a c k e t s i n k r e c e i v e d 20 b y t e s from

1 0 . 1 . 1 . 1 p o r t 49153 t o t a l Rx 8740 b y t e s

Listing 2. Output of the first simulation (all packets received).

In the second simulation, an application data rate of 90 kbps

instead of 70 kbps is configured. Since UDP and IP headers as

well as the CC2420 header and trailer have to be added to the

application data rate, and the transceiver calibration time has

to be considered, this data rate is too high for the transceiver.

Therefore, not all packets can be transmitted, as shown in

Listing 3.

The application sends all packets down the protocol stack,

but since the CC2420 transceiver can only handle a new

transmission request after the current one is finished, some

of the packets are discarded by the transceiver. Therefore, we

have identified a bottleneck in the system. This behavior can

also be identified by additional log outputs of the CC2420

module not shown in the listing.

At t ime 3 . 00178 s on−o f f a p p l i c a t i o n s e n t 20 b y t e s t o

1 0 . 1 . 1 . 2 p o r t 9 t o t a l Tx 20 b y t e s

. . .

At t ime 3 . 99911 s on−o f f a p p l i c a t i o n s e n t 20 b y t e s t o

1 0 . 1 . 1 . 2 p o r t 9 t o t a l Tx 11240 b y t e s

At t ime 3 . 99932 s p a c k e t s i n k r e c e i v e d 20 b y t e s from

1 0 . 1 . 1 . 1 p o r t 49153 t o t a l Rx 5620 b y t e s

Listing 3. Output of the second simulation.

In the third simulation, the application data rate is set to

70 kbps as in the first one, but the packet size is extended

to 150 bytes. This is more than the maximal payload of the

transceiver, which is 125 bytes (UDP and IP headers and the

CC2420 header and trailer even increase the packet size of

the application). Therefore, an IP fragmentation takes place,

which means that the IP packet is split into several subpackets

to match the Maximum Transmission Unit (MTU) of the

CC2420NetDevice. However, this does not work with the

CC2420 transceiver, because it can handle a new transmission

request only after the current one is finished. Because of this,

only the first subpacket of each IP packet can be transmitted

successfully. Since incomplete IP packets are discarded on

network level, PacketSink receives no packets at all (see

Listing 4).

At t ime 3 . 01714 s on−o f f a p p l i c a t i o n s e n t 150 b y t e s t o

1 0 . 1 . 1 . 2 p o r t 9 t o t a l Tx 150 b y t e s

. . .

At t ime 3 . 99429 s on−o f f a p p l i c a t i o n s e n t 150 b y t e s t o

1 0 . 1 . 1 . 2 p o r t 9 t o t a l Tx 8700 b y t e s

Listing 4. Output of the third simulation.

Next, we have repeated these simulations with slightly mod-

ified OnOffApplication and PacketSink in order to illustrate the

use of the extended CC2420 message interface (see Figure 5).

Instead of installing a protocol stack on the nodes, messages

are directly forwarded from the application to the net device,

which is now a CC2420InterfaceNetDevice, and vice versa.

This also means that the transmitted packets are smaller, since

UDP and IP protocol headers are omitted.

In the modified simulation systems, we have used

the extended interface of the CC2420 module to change

the channel from the default value 11 to 12 before

message exchange is started (in OnOffApplication as well

as PacketSink). A CC2420StatusReq message and the

corresponding CC2420StatusResp message are used to check

that the channel change has taken place.

The first of these modified simulations produces nearly the

same result as the one with original OnOffApplication and

PacketSink. Since the packets are smaller, they are received

slightly earlier. In addition, there are further messages from the

CC2420InterfaceNetDevice, which are received by the applica-

tion (see Listing 5). For example, the CC2420Sending message

with value true, which is sent up immediately, indicates a

successful transmission start.

At t ime 3 . 00229 s on−of f−cc2420 a p p l i c a t i o n s e n t 20 b y t e s

t o t a l Tx 20 b y t e s

At t ime 3 . 00229 s on−of f−cc2420 a p p l i c a t i o n r e c e i v e d

CC2420Sending message wi th v a l u e t r u e

At t ime 3 . 00257 s p a c k e t s i n k cc2420 r e c e i v e d CC2420Cca

message wi th v a l u e f a l s e

At t ime 3 . 00337 s on−of f−cc2420 a p p l i c a t i o n r e c e i v e d

CC2420SendFinished message

At t ime 3 . 00337 s p a c k e t s i n k cc2420 r e c e i v e d 20 b y t e s

wi th CRC= t r u e and RSSI=−67; t o t a l Rx 20 b y t e s

At t ime 3 . 00341 s p a c k e t s i n k cc2420 r e c e i v e d CC2420Cca

message wi th v a l u e t r u e

. . .

Listing 5. Output of the modified first simulation.

In the second modified simulation, all packets are now

successfully transmitted. Since there are no UDP and IP

headers, the application data rate of 90 kbps can be handled

by the transceiver.
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In the third modified simulation, the packet size of 150 bytes

now exceeds the MTU size of the net device, since no IP

fragmentation takes place. Therefore, no packet is transmitted.

B. Simulations with FERAL and SDL

ITU-T’s SDL [9] is a formal specification language designed

for distributed and reactive systems. System behavior is de-

fined by extended finite state machines, which are connected

through channels and communicate by exchanging signals

asynchronously. Channels are also used to connect a system to

its environment, e. g., the simulator framework FERAL. The

integration of an SDL simulator component into FERAL has

been presented in [8]. We use SDL to specify the behavior of

nodes in the simulation systems on a high abstraction level,

and ns-3 to simulate the medium by means of the CC2420

module.

In the following experiments, simulation systems consist

of three nodes, two senders and one receiver, which are

specified in SDL and executed by an SDL simulator. These

nodes communicate over a wireless medium accessed through

a CC2420 simulation module executed by ns-3. The structure

is shown in Figure 8. The topology is chosen such that the

receiver is positioned between the senders with the same

distance to each of them. The extended CC2420 message

interface is used for communication with the CC2420

module. The first sender begins transmission at 2,0001

seconds of simulation time and then sends one value every

100 milliseconds. The second sender begins at 3 seconds

simulation time and sends one value every 200 milliseconds.

In the first simulation system, the standard configuration

of the CC2420 module is applied. In particular, this means

that the transceiver transmits at full power. Between 2 and 3

seconds of simulation time, only one sender is active, which

means that all signals can be correctly received. Afterwards,

every second signal of the first sender collides with a signal of

the second sender, which means that only half of the signals

of the first sender and none of the signals of the second sender

can be received. This behavior is shown in Listing 6.

First, both senders transmit almost simultaneously (lines

2 and 3). Although CCA is used, both transmissions take

place, because the calibration time for the first sender has

not expired when the second sender begins its transmission.

Therefore, the frames collide. The receiver detects that the

medium is busy (line 6), but cannot receive a valid frame.

Since medium occupancy is only detected by nodes which

<<SDL Component>>

Sender 1

<<SDL Component>>

Receiver

<<SDL Component>>

Sender 2

FERAL

<<NS3 Component>>

CC2420 Medium

Figure 8. Structure of simulation systems using FERAL.

1. . .

23 , 0 0 0 0 : Sende r 2 : Sen t CC2420Send wi th v a l u e 0x20 0 x00

0x00

33 , 0 0 0 1 : Sende r 1 : Sen t CC2420Send wi th v a l u e 0x10 0 x00

0 x0a

43 , 0 0 0 2 : Sende r 2 : Rece ived CC2420Sending wi th v a l u e t r u e

53 , 0 0 0 3 : Sende r 1 : Rece ived CC2420Sending wi th v a l u e t r u e

63 , 0 0 0 4 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e f a l s e

73 , 0 0 0 7 : Sende r 2 : Rece ived CC2420SendFinished

83 , 0 0 0 8 : Sende r 1 : Rece ived CC2420SendFinished

93 , 0 0 0 8 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e t r u e

103 , 0 0 1 0 : Sende r 2 : Rece ived CC2420Cca wi th v a l u e t r u e

113 , 0 0 1 1 : Sende r 1 : Rece ived CC2420Cca wi th v a l u e t r u e

12. . .

133 , 1 0 0 1 : Sende r 1 : Sen t CC2420Send wi th v a l u e 0x10 0 x00

0x0b

143 , 1 0 0 3 : Sende r 1 : Rece ived CC2420Sending wi th v a l u e t r u e

153 , 1 0 0 5 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e f a l s e

163 , 1 0 0 6 : Sende r 2 : Rece ived CC2420Cca wi th v a l u e f a l s e

173 , 1 0 0 8 : Sende r 1 : Rece ived CC2420SendFinished

183 , 1 0 0 8 : Sende r 2 : Rece ived CC2420Cca wi th v a l u e t r u e

193 , 1 0 0 8 : R e c e i v e r : Rece ived CC2420Recv wi th v a l u e 0x10

0x00 0x0b , CRC t r u e , RSSI −67

203 , 1 0 0 8 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e t r u e

213 , 1 0 1 1 : Sende r 1 : Rece ived CC2420Cca wi th v a l u e t r u e

22. . .

Listing 6. Output of the first SDL simulation.

are not in transmission mode, the senders do not detect

it here. Since the second sender only transmits every 200

milliseconds, the next frame of the first sender (line 13) can

be received successfully (line 19).

In the second simulation system, we use a CC2420Setup

message to reduce the transmission power of the first sender,

while the power of the second sender remains unchanged.

Since the distance to the receiver is equal, the signal of the

second sender is stronger than the one of the first when arriving

at the receiver. This way, a capturing effect can be observed,

which means that the reception of the signal from the second

sender is not disturbed by the interfering signal of the first

sender. This behavior is shown in Listing 7.

1 . . .

2 3 , 0 0 0 0 : Sende r 2 : Sen t CC2420Send wi th v a l u e 0x20 0 x00

0x00

3 3 , 0 0 0 1 : Sende r 1 : Sen t CC2420Send wi th v a l u e 0x10 0 x00

0 x0a

4 3 , 0 0 0 2 : Sende r 2 : Rece ived CC2420Sending wi th v a l u e t r u e

5 3 , 0 0 0 3 : Sende r 1 : Rece ived CC2420Sending wi th v a l u e t r u e

6 3 , 0 0 0 4 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e f a l s e

7 3 , 0 0 0 7 : Sende r 2 : Rece ived CC2420SendFinished

8 3 , 0 0 0 7 : R e c e i v e r : Rece ived CC2420Recv wi th v a l u e 0x20

0x00 0x00 , CRC t r u e , RSSI −67

9 3 , 0 0 0 8 : Sende r 1 : Rece ived CC2420SendFinished

10 3 , 0 0 0 8 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e t r u e

11 3 , 0 0 1 0 : Sende r 2 : Rece ived CC2420Cca wi th v a l u e t r u e

12 3 , 0 0 1 1 : Sende r 1 : Rece ived CC2420Cca wi th v a l u e t r u e

13 . . .

14 3 , 1 0 0 1 : Sende r 1 : Sen t CC2420Send wi th v a l u e 0x10 0 x00

0x0b

15 3 , 1 0 0 3 : Sende r 1 : Rece ived CC2420Sending wi th v a l u e t r u e

16 3 , 1 0 0 5 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e f a l s e

17 3 , 1 0 0 6 : Sende r 2 : Rece ived CC2420Cca wi th v a l u e f a l s e

18 3 , 1 0 0 8 : Sende r 1 : Rece ived CC2420SendFinished

19 3 , 1 0 0 8 : Sende r 2 : Rece ived CC2420Cca wi th v a l u e t r u e

20 3 , 1 0 0 8 : R e c e i v e r : Rece ived CC2420Recv wi th v a l u e 0x10

0x00 0x0b , CRC t r u e , RSSI −72

21 3 , 1 0 0 8 : R e c e i v e r : Rece ived CC2420Cca wi th v a l u e t r u e

22 3 , 1 0 1 1 : Sende r 1 : Rece ived CC2420Cca wi th v a l u e t r u e

23 . . .

Listing 7. Output of the second SDL simulation.

As in the first simulation, both senders transmit almost
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simultaneously (lines 2 respectively 3). Since the frame of

the second sender is stronger, it can be received successfully

(line 8). This is only possible because the reception of the

frame of the second sender begins before the frame of the first

sender, since the transceiver cannot switch from a currently

received frame to a stronger one. The next frame of the first

sender (line 14) can be received successfully (line 20), since

the second sender only sends every 200 milliseconds, which

means that there is no colliding frame.

The simulation experiments show that our CC2420 module

is fully operational, for stand-alone ns-3 simulations as well

as simulations with the framework FERAL. Using simu-

lator components already integrated into FERAL provides

additional possibilities for specifying the behavior of nodes

compared to stand-alone ns-3 simulations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have developed a medium simulation

module for TEXASINSTRUMENTS’ CC2420 transceiver. As

starting point, we have used an existing module for ns-2. By

integrating the new module into ns-3, we can use existing

ns-3 protocol stacks and applications to model the behavior

of nodes using this transceiver and draw benefit from the

active development of ns-3. We have then provided several

enhancements for the CC2420 simulation module, which are

accessible through an extended interface.

To use the simulation module in combination with other

simulators, we have developed an integration into the simulator

framework FERAL. Therefore, a general simulator component

for integrating ns-3 into FERAL has been provided. This

component also supports other ns-3 media, such as Ethernet

or WLAN. Next, we have integrated the CC2420 module into

this simulator component by providing a Java class for the

medium and accordant elements to use the extended CC2420

message interface.

The CC2420 simulation module was first used to simulate

stand-alone ns-3 systems. Then, the FERAL simulator compo-

nent was used to simulate SDL systems which communicate

via an ns-3 simulated CC2420 medium. These experiments

have shown that the CC2420 simulation module is fully

operational in the ns-3 context, and that the integration into

FERAL provides additional degrees of freedom especially in

the early development stages, where abstract models, e. g.,

Simulink or SDL models, are used to specify system behavior.

In our future work, we plan to further enhance the simulated

state machine. At the moment, interference is not accumulated,

which would be desirable for a more precise simulation of

collisions. Energy consumption is also an interesting aspect to

integrate into the state machine. Besides, we will implement

further features of the transceiver, e. g., a check for valid IEEE

802.15.4 data in CCA modes 2 and 3. Furthermore, we will

use the CC2420 module to evaluate realistic protocols for

mobile ad-hoc networks, e. g., MAC and routing protocols. In

addition, we are planning to perform real-world measurements

with the CC2420 transceiver, in order to assess how accurate

its behavior is simulated by our CC2420 module.
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