
ComCAS: A Compiled Cycle Accurate Simulation for Hardware Architecture

Adrien Bullich, Mikaël Briday, Jean-Luc Béchennec and Yvon Trinquet
IRCCyN - UMR CNRS 6597

Nantes, France
Email: {first name.last name}@irccyn.ec-nantes.fr

Abstract—This article is in the context of real-time embedded
systems domain. These critical systems require an important
effort in validation and verification that can be done at many
abstraction levels, from high-level application model to the actual
binary code using an accurate model of the processor. As the
development of a handwritten simulator of a processor at a
cycle accurate level is a difficult and tedious work, we use
HARMLESS, a hardware description language that can generate
both a functional and a cycle accurate simulators. The latter gives
a temporal information of the simulation execution, but at the
cost of a heavy computation overhead. This paper applies the
compiled simulation principles to a cycle accurate simulator. It
shows that this simulation mechanism can reduce computation
time up to 45%, preserving timing information.

Keywords—Cycle Accurate Simulation; interpreted simulation;
compiled simulation; HADL

I. INTRODUCTION
Verification of a real-time application is a huge and difficult

problem. It must be led throughout the development cycle
on functional and extra-functional aspects (temporal aspects,
safety, etc.). Our work takes place in the last stages of the
development process, when the actual binary code of the
application is available, just before the final test on the real
target.

A simulation scheme should be chosen according to the
studied field, pursued objectives, and the abstraction level
required. The lower is the abstraction level, the higher is
the simulator complexity. For hardware simulation, the im-
plementation is complex, time consuming, and errors are
difficult to avoid. To alleviate this complexity, a Hardware
Architecture Description Language (HADL) may be used.
With such a language, the complexity remains partly hidden.
For the work presented herein, HARMLESS [1] has been used
to build the simulators. The HARMLESS compiler can generate
both functional simulators, i.e., Instruction Set Simulator (ISS),
and temporal simulators, i.e., Cycle Accurate Simulator (CAS)
from a common description. We consider here especially CAS,
as timings of the application should be taken into account for
real-time systems.

A CAS simulator requires much more computation time
than an ISS. In [1], the CAS is about 7 times slower than
the functional one on a simple PowerPC processor with a 5-
stages pipeline. So, CAS related computation has room for
improvement. Here, we propose to explore a technique to
improve the speed of CAS, which is a compiled simulation
for CAS.

The paper is organized as follows: Section II presents
the related works; Sections III and IV explain the current
model of interpreted simulation and the new approach using
the compiled simulation; Section V evaluates the model size
and Section VI presents some results on a set of benchmarks;
Section VII concludes this paper.

II. RELATED WORKS
Many HADLs have been proposed in the literature. Some

of these HADLs only focus on the functional aspects of the
instruction set they describe. So, the associated toolset is only
able to generate an ISS. nML [2] and ISDL [3] are examples
of this kind of HADLs. Other HADLs add a micro-architecture
description from which a temporal behavior is constructed. For
instance, LISA [4], MADL [5] and HARMLESS [6], [7] have
the ability to generate an ISS and a CAS.

An interpreted simulator simulates the execution of a
binary executable by doing the same steps as the hardware
it simulates. So, for each binary instruction an ISS does
the following steps: instruction fetch, instruction decode, and
instruction execution. In addition, a CAS computes instruc-
tions dependencies, controls concurrent accesses to the buses,
register files, and generally any computing resource of the
architecture.

A compiled simulator is customized to execute a particular
binary executable. Knowing the binary executable at the com-
pilation stage, it allows to remove from the execution stage all
the tasks that depend on the executed instruction only. As a
result, a compiled simulator exhibits better performance than
an interpreted one, but it has a longer compilation time. Since
compilation is done less times than execution, classically one
compilation for several executions, a compiled simulator offers
a global gain of time. However, a compiled simulator is less
flexible because it is attached to a particular program: if the
user wishes to simulate another program, he needs to compile
again.

For an ISS, compiled simulation consists in Binary Transla-
tion (BT) ([8] or [9]). First, the binary executable one wants to
simulate is translated to a native binary of the host simulation
platform. Then, the native binary is executed on the host
simulation platform.

For a CAS, few methods exist for compiled simulator
generation. The technique of BT cannot easily be adapted to
CAS, but solutions exist [10], coupling interpreted parts and
translated parts. We also find statistic approaches, called Cycle
Approximate Simulator, based on the sampling of instructions
[11]. However, it is not exactly equivalent to a CAS, because
of errors margin.

To the best of our knowledge, the technique of compiled
simulation has not yet been employed to speed CAS up,
because of the restrictions it implies: it is difficult to determine
statically the evolution of the micro-architecture. However, this
is the main contribution of the paper.

III. INTERPRETED SIMULATION MODEL
The contribution of the compiled simulation must be as-

sessed in comparison with the associated interpreted approach.
In this section, we present the interpreted model of the Cycle
Accurate HARMLESS-based simulator [1], that is the base of
our ComCAS model.

137Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

In the interpreted model, instructions of the application
code are decoded and executed during the simulation. The
model of a cycle accurate processor includes the instruction
set and the memory model for functional execution and all the
micro-architecture related parts that alter timings, as presented
in the development chain in Figure 1.

Memory
model

Micro-architecture
model

Instruction Set
model

Compiler CAS CAS

Scenario

Results

Program

Fig. 1. The development of a CAS requires the modeling of the instruction
set, the memory and the micro-architecture

One important micro-architecture unit is the processor
pipeline: it has an influence on timings of the processor and
this is the most expensive in computation time. Ideally, each
instruction in each pipeline stage progresses to the next stage
at each processor cycle. Actually, an instruction can be blocked
in a pipeline stage because of hazards. Hazards are classified
into three categories [12]: structural hazards are the result of
a lack of hardware resources; data hazards are caused by
data dependencies between instructions (for example between
stages W and D in Figure 2); and control hazards, which
occur when a branch is taken in the program (one or more
instructions that just follow the branch according to the branch
delay that should be flushed). When a hazard is encountered,
it is solved by stopping a part or all parts of the pipeline. This
is called a pipeline stall.

Sequential pipelines are considered in this paper (i.e., there
are neither pipelines working in parallel, nor forking pipelines).
The pipeline behavior is modeled in HARMLESS using an
automaton, where a state represents the pipeline state at a
particular time (see Figure 2).

In [1], the authors use the model of finite automata, because
the system can be considered as a discrete transition system,
a transition being taken at each cycle, as in Figure 2. The

state 1

state 2

state 3

state 4

...

...

D
F

E
W

E
D

W

W
D
F

E
D
F

F D E W
F D E WD

F D E
F D

F D E W
F D E W

i-1
i-2

t-4t-5

sta
te

 1

sta
te

 2

sta
te

 3

sta
te

 4

sta
te

 1

i

i+2
i+1

i+3

instructions

time

(cycles)

t-3 t-2 t-1 t t+1 t+2

Fig. 2. A state of the automaton represents the state of the pipeline at a given
time. Here, the pipeline has 4 stages. F: instruction is fetched, D: instruction
is decoded and registers are read, E: instruction is executed, and W: the result
is written into a register.

contribution of this paper is based on this definition. A state
represents the system in a particular cycle. A state is defined
by:
• which instruction is in each stage of the pipeline;
• the state of internal resources.
Internal resources are elements of the micro-architecture

that are used only by the pipeline. Their availability allows or

not the progression of an instruction in the pipeline. Stages of
the pipeline themselves are considered as internal resources.

Instructions that use the same resources in the same
pipeline stage are grouped together to form instruction classes.
This is the case for instance for arithmetic instructions that
read two registers, make a calculation, and write the result
into a third register. Since internal resources depend only on
the instruction class and on the pipeline stage, they are not
needed at run time.

As a result, a transition represents a discrete event that
brings the system from a state to another. It is determined by
the state of external resources and the next instruction class
that enters the first stage of the pipeline.

External resources are elements that are not used only
by the pipeline, i.e., their state is defined in other micro-
architecture parts such as memory caches. The availability of
these external resources has an influence on the evolution of
instructions in the pipeline, too. Moreover, as they are external
of the pipeline model, their availability is determined during
the execution.

The content of states is abstracted, and information re-
quired for the simulation is gathered on transitions. For this
reason, transitions are labeled with notifications (signaling if
a particular event happens or not).

We can now formalize the model. Let AI be an automaton
defined by {S, s0, ER, IC,N, T}, where:
• S is the set of states;
• s0 is the initial state (empty pipeline) in S;
• ER is the first alphabet of actions (external resources);
• IC is the second alphabet of actions (instruction

classes);
• N is the alphabet of labels (notifications);
• T is the transition function in S×ER× IC×N ×S.

[____] [b___] [bb__]

[abb_]

0:b(0)

0:
a(
0)

1:
a(
0)

1:b(0)

0:b(1)

0:
a(
1)

1:
a(
1)

1:b(1)

0:
a(
0)

1:
a(
0)

0:b(0)

1:b(0)

...

...

...

...

Fig. 3. Automaton in interpreted simulation: 0:b(1) means that the external
resource is free (0), that the instruction b may enter the pipeline and that the
notification happens (1)

In the example of Figure 3, the notation [b_a_] represents
the state of the 4-stages pipeline: it means that instruction
of class b is in the first stage and instruction of class a is
in the third stage. There are no other instruction classes for
readability. We have only one notification that represents the
entry of an instruction in the second stage of the pipeline.
There is one external resource. The instruction class b needs
to take the external resource to enter the pipeline.

During the simulation, both the state of external resources
and the instruction class of the next instruction that will enter
the pipeline are required to determine the next state of the
automaton. When a transition is taken, notifications related to
the transition are given to the simulation engine to interact
with other micro-architectural parts.

138Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

IV. COMCAS MODEL
In this section, we adapt the interpreted model to be a

compiled one: the ComCAS model.
The compiled simulation differs from the interpreted sim-

ulation in the repartition of tasks between compilation and
execution. We recall that, in our case, the task is the analysis
of the program. An interpreted simulator analyzes the program
during the execution. A compiled simulator analyzes the
program during the compilation.

Because of this change, the compiled simulation has a
faster execution than the interpreted simulation. However,
the compiled simulation has a longer compilation time than
the interpreted simulation. This is not necessarily a problem:
usually, the compilation is done only once, while the execution
is performed several times.

A compiled simulation is run for a special architecture
and for a special program. Consequently, the simulator is less
flexible, attached to a particular program. If the need is to
simulate several programs, the interpreted simulation will be
more efficient. But, if the need is to simulate only one program
with different scenarios, the compiled simulation will be more
efficient.

In Figure 1 and Figure 4, we can see the difference between
the development chain of the interpreted simulation and the
compiled simulation, respectively. We notice especially that
for the interpreted simulation the program is at the end of
the development chain and at the beginning for the compiled
simulation.

Memory
model

Micro-architecture
model

Instruction Set
model

Program

Compiler ComCAS ComCAS

Scenario

Results

Fig. 4. The development of a compiled CAS requires to move the program
analysis in the compilation

To transform the interpreted model into a compiled model,
we need to add some information about the program. We first
need its memory mapping, i.e., the location of each instruction
in memory, the corresponding Program Counter (PC) and the
stack of called function (a stack of PC, in order to return to
previous functions). Then, the determination of our system is
given by:
• which instruction is in each stage of the pipeline;
• the state of internal resources;
• the position in the program (the Program Counter);
• and the stack of called functions.
With this model, instructions become labels on the au-

tomaton and no more actions are needed. Indeed, we only
determine the evolution of the system with external resources
and instructions become an information we get out of this
run. However, it cannot be reduced to a simple notification (a
boolean information), so we add the PC on the transition label.

We can formalize our ComCAS model as it follows.
Let AC be an automaton defined by {S, s0, ER, I,N, T},

where:
• S is the set of states;

• s0 is the initial state (empty pipeline, initial PC, empty
stack) in S;

• ER is the alphabet of actions (external resources);
• I is an alphabet of labels (instructions);
• N is an other alphabet of labels (notifications);
• T is the transition function in S ×ER× I ×N × S.

[____]
pc0
stack

[a___]
pc1
stack

[_a__]
pc1
stack

[b_a_]
pc2
stack

10:pc1(0)

00
:p
c1
(0
)

01
:p
c1
(0
)

11:pc1(0)

10:-(1)

00
:p
c2
(1
)

01
:p
c2
(1
)

11:-(1)

00
:p
c2
(0
)

01
:p
c2
(0
)

10:-(0)

11:-(0)

...

...

...

...

Fig. 5. Automaton in compiled simulation: 10:pc1(0) means that the first
external resource is free and the second taken (10), that the instruction with
PC pc1 enters the pipeline and that the notification does not happen (0)

In the example from Figure 5, we have only one notification
that represents the entry of an instruction in the second stage of
the pipeline. There are two external resources. The instruction
b, with PC pc2, needs to take the second external resource to
enter the pipeline.

The management of branches uses a specific external
resource. If this resource is taken, the branch is taken and
conversely. The use of an external resource is mandatory
because in the general case, the branch target can only be
computed at runtime. During the simulation, we can detect
if a branch is taken and define dynamically the value of this
resource. In order to represent the latency of the branching,
according to the branching policy, another specific external
resource could be employed to model control hazards. If the
micro-architecture uses a branch predictor, the simulator would
emulate this branch predictor and define dynamically the value
of the corresponding external resource. While the resource is
defined to be taken, the instruction that follows could not enter
the pipeline.

An example is given in Figure 6. The first external resource
represents the branch management (used in this case for the
branch b to pc3). If it is taken, then the model goes to the
target PC (pc3), else it goes to the next PC (pc1). The second
resource represents the branching latency. As long as it is
taken, no instruction can enter the pipeline.

[b___]
pc0
stack

[cb__]
pc1
stack

[db__]
pc3
stack

[_db_]
pc3
stack

[e_db]
pc4
stack00

:p
c1
()

01
:p
c1
()

10:pc3()

11:pc3()

00
:p
c4
()

01
:-
()

10:pc4()

11:-()

00
:p
c4
()

01
:-
()

10:pc4()

11:-()

...

...

...

...

Fig. 6. The second external resource specifies if a branch (like b) is taken or
not. The first external resource is used to model branching latency (delaying
in this case the entry of instruction e in the pipeline).

139Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

The compiled simulation needs to compute statically the
control flow of the program, in order to model it during the
compilation. In the case of indirect branches or code self-
modifying, this computation is impossible unless we execute
the different scenarios of the program. This is the main
restriction of our model. Without the possibility to determine
statically the target of indirect branches, the solution is to
plan the different possibilities. Unfortunately, it leads to a
considerable increase of the automaton’s size.

Indirect branches are unavoidable if we want to model
functions calls, because of RETURN instructions. This specific
problem is solved with a PC stack that is added in states.
The stack in states allows to memorize original PC when a
CALL instruction is executed. When a RETURN instruction is
executed, this stack allows to determine the target PC of the
branch, during the compilation.

The process is the following: when a CALL instruction
enters the pipeline, we push the next PC onto the stack, and
we branch to the target PC. When a RETURN instruction enters
the pipeline, we pop a PC from the stack, and we branch on
it. An example is given in Figure 7.

pipeline
pccall
[]

pipeline
pcf

[PCcall+4]

pipeline
pcret

[pccall+4]

pipeline
pccall+4

[]

Fig. 7. A CALL function pushes the original PC onto the stack, and a
RETURN function pops the PC from the stack

The main advantage of the compiled simulation is to move
a computation part from the runtime to the compile time. This
is the case for data hazards that are handled in the interpreted
simulator using an external resource. This is a costly task that
could be solved at compile time in ComCAS: the instructions
in the pipeline are known, so we can determine all the registers
that are read and written statically.

V. VALUATION OF THE NUMBER OF STATES
In order to give an idea of the complexity of ComCAS

model, we propose to evaluate the number of states.
A state is composed of the pipeline state, the PC corre-

sponding to the last instruction read and the stack of called
functions. In a first step, we will consider there is no stack
in states, and we will add this feature afterwards. The global
method consists in counting pipeline states for a given PC.
We find three different situations in the control flow: linear
configuration, beginning of the program and branching con-
figuration.

In a linear configuration, for a given PC, one past exists.
Consequently, the state of the pipeline is only determined by
pipeline stalls. The problem is reduced to a combinatory one:
if s is the number of stages, we count Ck

s (k among s) possible
pipeline states with k instructions inside (k ∈ [0; s]). Thus, the
total number of pipeline states is

∑s
k=0 C

k
s .

If the PC points at the beginning of the program, pcn with
n < s, it is impossible to put more than n instructions in
the pipeline. So, in this case, the previous value is truncated
to

∑n
k=0 C

k
s . To simplify computation, from now on, we use

fs : n→
∑n

k=0 C
k
s . And we know that fs(s) = 2s.

At this step of our computation, we can valuate the number
of states in a perfect linear program (with no branch). Let i
be the number of instructions. The first s instructions are in

the second case (beginning of the program), and others i − s
instructions are in the first case (endless linear configuration).
It gives:

∑s−1
k=0 fs(k) + (i− s).2s.

This value is a maximum, and it is reached if every pipeline
states is explored. It is the case when an external resource
manages the entry of instructions in the first stage (bus access
or cache miss), allowing all stalls arrangements.

The number of pipeline states is larger if we include
branches in the control flow. Let us consider the case in Figure
8, with k < s. In this situation, if we put j instructions
in the pipeline with j ≤ k, the branch is not visible in the
pipeline. Thus, we remain in the same previous situation: Cj

s
pipeline states. But, if we put j instructions in the pipeline
with j > k, then for each pipeline stalls arrangement two
pipeline states exist, with two different pasts. So, we count
2.Cj

s pipeline states. The total number of pipeline states is∑k
j=0 C

j
s +

∑s
j=k+1 2.C

j
s It is equivalent with 2s+1 − fs(k).

pcn−k−1pc′
n−k−1

pcn−k

pcn−1

pcn

Fig. 8. A branch configuration in the control flow. If k < s then in PC pcn
the pipeline can remember two pasts.

For one branch situation, we have k varying in [0; s− 1].
Let b be the number of branch targets. So, the total number of
states becomes:

s−1∑
k=0

fs(k) + (i− s− s.b).2s + b.(s.2s+1 −
s−1∑
k=0

fs(k)) (1)

It is equivalent to:

(1− b).

s−1∑
k=0

fs(k) + (i− (1− b).s).2s (2)

The expression is valid if branch configuration is the same
as the one we give in Figure 8. It means that two conditions
arrise:
• branch targets are separated by more than s instruc-

tions;
• no branch is less than s instructions after a branch

target.
In fact, we can confirm that the first condition does not degrade
our valuation. The second condition is more important and
precludes too small loops.

The analysis of our valuation reveals that the number of
states is linear with the number of instructions, and exponential
with the number of stages. We can compare the expression
with the number of states in interpreted simulation: (ic+ 1)s,

140Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

which is more exponential considering s, ic being the number
of instruction classes.

In our valuation, we have not yet considered the use of PC
stack in states. We can see in Figure 9 the effect on the control
flow of the add of PC stacks.

pccall

pccall + 4

pc
call′

pc
call′ + 4

pcf

pcret

pccall[]

pccall + 4[]

pc
call′ []

pc
call′ + 4[]

pcf [pccall + 4]

pcret[pccall + 4]

pcf [pc
call′ + 4]

pcret[pccall′ + 4]

Fig. 9. Stack consideration consists in an inline in the control flow. These
two automata are equivalent.

It can be regarded as inlining: functions’ code is duplicated.
If we consider this new control flow, our reasoning is the same.
Let us call i′ the number of couple of instruction and PC stack,
and b′ the new number of branch targets. Thus, the number of
states simply becomes:

(1− b′).

s−1∑
k=0

fs(k) + (i′ − (1− b′).s).2s (3)

The influence of this inlining is very dependent on the code
(see Table I). For example, we observe that programs using
software floating point numbers increase significantly the size
of the automaton, and make difficult the construction of the
model.

VI. TESTS AND PERFORMANCE
In this section, we present experimental results about

performance of ComCAS model in comparison with the in-
terpreted simulation.

The architecture simulated in these tests is similar to
a PowerPC 5516 from Freescale, with a e200z1 core. The
pipeline has been resized from 4 to 5 to increase the size
of the model. We ran the benchmarks of Mälardalen [13].
Simulations are made with an Intel Core i7@3,4Ghz computer.
We execute 50 000 times each program.

We give in Table I an illustration of the influence of the
inlining and the number of states, obtained by ComCAS tool.
This allows to confirm that if a function is called once during
the execution, PC stack has no influence on the size of the
model. We note that the number of states is smaller than
the valuation we can compute, because the model does not
explore every pipeline states. With particular external resources
(making every pipeline states possible) we get the same result
than our valuation. To allow a comparison, with the same
configuration the interpreted model gets 1 024 states. Smaller
is the code, smaller is our model.

Figure 10 represents the performance of ComCAS model
in comparison with the interpreted method for the execution
time. In the compiled approach, the generation of the simulator
is more complex, as it requires to generate the ISS, analyze

TABLE I. INFLUENCE OF THE INLINING: i IS THE NUMBER OF
INSTRUCTIONS, b THE NUMBER OF BRANCH TARGETS, i’ THE NUMBER OF

INSTRUCTIONS WITH THE INLINING AND b’ THE NUMBER OF BRANCH
TARGETS WITH THE INLINING

Program i b i’ b’ States
adpcm 2 243 79 3 308 79 75 588
bs 84 4 84 4 2 061
compress 867 40 1 027 43 24 586
cover 145 7 145 7 3 434
crc 322 11 584 19 13 022
duff 88 3 88 3 2 101
expint 185 8 185 8 4 544
fdct 692 3 692 3 14 638
fibcall 58 3 58 3 1 447
fir 144 5 144 5 3 398
insertsort 131 3 131 3 2 961
janne complex 76 6 76 6 1 974
jfdctint 551 4 551 4 11 605
lcdnum 74 4 74 4 1 768
matmult 203 7 274 8 6 844
ndes 1 009 31 1 377 47 32 976
ns 116 8 116 8 2 907
nsichneu 12 511 626 12 511 626 275 322
prime 147 8 268 9 6 706

the program (using the ISS) and build the simulator. This time
consuming compilation step is largely counterbalanced by a
faster execution time, which is done several times.

10 20 30 40 50 60

bs

compress

cover

duff

expint

fdct

fibcall

insertsort

janne complex

jfdctint

lcdnum

ns

prime

Fig. 10. Comparison of execution time in seconds for 50 000 executions.
Gray is for interpreted simulation, and black is for compiled simulation.

The main impact of our model comes from the ability
to manage analysis tasks when compiling. In particular, the
treatment of the data dependency control in the compilation
phase has been implemented in ComCAS. It reduces the
execution time by 45,1% on average as we can see on Figure
10, and up to 49,5% with prime benchmark. This significant
benefit shows the interest for the compiled simulation for the
validation of real-time embedded systems.

VII. CONCLUSION
In this paper, we have discussed the different techniques

to implement high speed Cycle Accurate Simulator. We have

141Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

developed a model to adapt the compiled simulation approach
to Cycle Accurate Simulator and implement it in the ComCAS
tool. We have studied the maximum theoretical size of our
model and compared performance of our model with the
associated interpreted method. These results show that the
computation time is reduced by 45% in comparison with the
interpreted simulator.

Compiled simulation is efficient because it allows to re-
move some analysis tasks from the execution step. Even if this
technique does not currently handle indirect branches, function
calls are taken into consideration to simulate a major part of
embedded systems programs.

Future work aims at improving the efficiency of the Com-
CAS model by using macro-instructions. A macro-instruction
gathers the behavior and the timing of a set of successive
instructions provided there is no external resource used by
these instructions. However, an external resource attached to
the fetch stage is needed and precludes the construction of
macro-instructions. The solution could be to take the cache
behavior into account to remove this external resource. With
this improvement, the size of the automaton would be reduced
and the performance of the simulator would be increased.

Another path of improvement would be to use the Com-
CAS model in a Just In Time simulator. In this case, the inter-
preted simulator would reduce the automaton on the fly when
a loop is encountered and would switch its execution to the
reduced automaton to improve performance dynamically. This
could bring a solution for the problem of indirect branches.

REFERENCES

[1] R. Kassem, M. Briday, J.-L. Béchennec, G. Savaton, and Y. Trinquet,
“HARMLESS, a hardware architecture description language dedicated
to real-time embedded system simulation,” Journal of Systems Archi-
tecture - doi: http://dx.doi.org/10.1016/j.sysarc.2012.05.001 [retrieved:
august, 2013], September 2011, pp. 318–337.

[2] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set
processors using nml,” EDTC’95: Proceedings of the 1995 European
Conference on Design and Test, March 1995, pp. 503–507.

[3] G. Hadjiyiannis, S. Hanono, and S. Devadas, “Isdl: an instruction set
description language for retargetability,” DAC’97: Proceedings of the
34th annual conference on Design automation, 1997, pp. 299–302.

[4] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Meyr, “Lisa - machine
description language for cycle-accurate models of programmable dsp
architectures,” DAC’99: Proceedings of the 36th ACM/IEEE conference
on design automation, 1999, pp. 933–938.

[5] W. Qin, S. Rajagopalan, and S. Malik, “A formal concurrency model
based architecture description language for synthesis of software devel-
opment tools,” in Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES’04), 2004, pp. 47–56.

[6] R. Kassem, M. Briday, J.-L. Béchennec, G. Savaton, and Y. Trinquet,
“Simulator generation using an automaton based pipeline model for
timing analysis,” in International Multiconference on Computer Science
and Information Technology (IMCSIT’08), Wisla, Poland, October
2008, pp. 657–664.

[7] R. Kassem, M. Briday, J.-L. Béchennec, Y. Trinquet, and G. Savaton,
“Instruction set simulator generation using HARMLESS, a new hardware
architecture description language,” Simutools ’09: Proceedings of the
2nd International Conference on Simulation Tools and Techniques,
2009, pp. 24:1–24:9.

[8] C. Cifuentes and V. Malhotra, “Binary translation: Static, dynamic,
retargetable?” Proceedings International Conference on Software Main-
tenance, 1996, pp. 340–349.

[9] F. Bellard, “Qemu, a fast and portable dynamic trans-
lator,” Translator, vol. 394, 2005, pp. 41–46. [On-
line]. Available: http://www.usenix.org/event/usenix05/tech/freenix/
full papers/bellard/bellard html/[retrieved:august,2013]

[10] D. Jones and N. Topham, “High speed cpu simulation using ltu dynamic
binary translation,” Proceedings of the 4th International Conference on
High Performance and Embedded Architectures and Compilers, January
2009, pp. 50–64.

[11] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe, “Smarts:
Accelerating microarchitecture simulation via rigorous statistical sam-
pling,” Proceedings of the 30th annual international symposium on
Computer architecture, June 2003, pp. 84–95.

[12] J. L. Hennessy and D. A. Patterson, Computer Architecture A Quanti-
tative Approach-Second Edition. Morgan Kaufmann Publishers, Inc.,
2001.

[13] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The Mälardalen
WCET benchmarks – past, present and future,” in WCET2010,
B. Lisper, Ed. Brussels, Belgium: OCG, July 2010, pp. 137–147.

142Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

