
Pricing the Cloud: An Adaptive Brokerage for Cloud Computing

Philip Clamp and John Cartlidge
Department of Computer Science

University of Bristol
Bristol, UK

Email: phil@clamped.me.uk, john@john-cartlidge.co.uk

Abstract—Using a multi-agent social simulation model to
predict the behavior of cloud computing markets, Rogers & Cliff
(R&C) demonstrated the existence of a profitable cloud brokerage
capable of benefitting cloud providers and cloud consumers
alike. Functionally similar to financial market brokers, the cloud
broker matches provider supply with consumer demand. This
is achieved through options, a type of derivatives contract that
enables consumers to purchase the option, but not the obligation,
of later purchasing the underlying asset—a cloud computing
virtual machine instance—for an agreed fixed price. This model
benefits all parties: experiencing more predictable demand, cloud
providers can better optimize their workflow to minimize costs;
cloud users access cheaper rates offered by brokers; and cloud
brokers generate profit from charging fees. Here, we replicate
and extend the simulation model of R&C using CReST—an open-
source, discrete event, cloud data center simulation modeling plat-
form developed at the University of Bristol. Sensitivity analysis
reveals fragility in R&C’s model. We address this by introducing
a novel method of Autonomous Adaptive Thresholding (AAT) that
enables brokers to adapt to market conditions without requiring a
priori domain knowledge. Simulation results demonstrate AAT’s
robustness, outperforming the fixed brokerage model of R&C
under a variety of market conditions. We believe this could
have practical significance in the real-world market for cloud
computing.

Keywords—CReST; simulation; cloud computing; brokerage

I. INTRODUCTION

Cloud computing is the latest step change in the delivery
of computing services as a utility—a model for enabling
ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources. Migration to the
Cloud involves users moving the location of local compute
infrastructure to the network, thereby reducing costs com-
monly associated with managing hardware and software assets,
and gaining from the economies of scale enjoyed by cloud
providers [1], [2].

The term “cloud computing” encapsulates both the applica-
tions delivered “as a Service” and the underlying hardware and
software infrastructure in the ultra-large scale data centers that
make the concept viable [3]. This infrastructure is commonly
known as a Cloud and can be public, private, or a hybrid of
the two, while a service application delivered to end users is
often referred to as Software as a Service (SaaS), Platform
as a Service (PaaS), or Infrastructure as a Service (IaaS),
depending on which level of the software stack is provided.
SaaS typically describes end user applications that are accessed
remotely over the internet and includes ubiquitous software
applications such as GoogleMail, Facebook, and Twitter. IaaS
describes lower-level applications that offer users access to the
underlying cloud hardware via a virtualization layer. Typically,
for IaaS, users purchase Virtual Machine (VM) instances that

are configured with an operating system and offer access to
virtual CPU, RAM, and hard disk storage. These VMs can then
be configured by the user to provide the specific functionality
required. From the user’s perspective, VM instances are exactly
the same as their own physical hardware accessed remotely.
Finally, at the intermediate level between SaaS and IaaS, PaaS
offers a suite of software tools and interfaces—a platform—
upon which users can build and integrate their own software
applications. Currently, the clear trend of providers offering
ever more bespoke infrastructure products, means that the
distinction between PaaS and IaaS is no longer clear (for exam-
ple, Amazon Web Services’ (AWS) RDS Database instance).
However, for clarity, in this paper, when we consider cloud
resources, we refer to IaaS VM instances and not the higher-
level software applications (Facebook, Twitter, etc.) that are
built on top.

The on-demand delivery model for cloud computing re-
sources offers a variety of benefits for business consumers [3].
The ability to start and stop VM instances almost instantly,
when required, gives enormous flexibility and scale-out op-
portunities. In addition, businesses no longer need to invest
capital resources in purchasing the often underutilized compute
infrastructure needed to cover peak business demand; including
all additional costs such as support staff and maintenance
[3]. However, the on-demand pricing model is not necessarily
ideal for cloud providers, as they attempt to adhere to strict
Service Level Agreements in the face of fluctuating demand.
If providers could accurately forecast future resource demand,
then they would have the opportunity to reduce costs by op-
timizing electricity purchases, engineering staff, and hardware
utilization, etc.

At present, most providers offer a fixed price model where
VM instances are purchased for a fixed time period (reserved
instances), or billed per hour of usage (on demand). Some
providers, e.g., AWS, offer an alternative spot price tariff that
varies in real-time based on current supply and demand [4].
However, of these methods, only long-term reserved instances
(maximum 36 months) aid the provider in capacity planning.
Several alternative pricing models have been proposed in aca-
demic research, most notably involving derivatives contracts,
such as (European) options [5]. Options contracts involve the
payment of an up-front fee that gives the buyer the legal
right, but not the obligation, to purchase a resource for an
agreed strike-price on some later delivery date [6]. These
types of financial instruments are commonly used in financial
commodities markets where their underlying assets range from
wheat and oil, to a suite of complex financial products.

In their investigation into cloud computing pricing models,
R&C used an agent-based simulation model to explore the
possibility of a cloud computing services broker delivering

113Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

derivative contracts to provide both cheaper resources to con-
sumers and aid providers in predicting future usage [4]. They
invariably found that not only was it possible to do this, but
that in addition the broker was able to generate a significant
profit. R&C’s result has the potential to significantly impact the
delivery and pricing of cloud services. As the market in cloud
resources matures and becomes more standardized, the promise
of a federated cloud—where cloud users can migrate between
providers seamlessly—will theoretically allow resources to be
traded as a commodity; eradicating existing concerns of vendor
lock-in. In turn, this will open opportunities for brokers to enter
the market, acting as intermediary market makers between
users and providers. In such a scenario, R&C’s result could
have practical as well as academic significance. In this paper,
we attempt to replicate and extend the work of R&C. We show
that R&C’s results are sensitive to model parameter settings
and require a priori information to maximize profitability. By
introducing a novel adaptive learning process, we offer a robust
solution to this problem, enabling the broker to automatically
maximize profit under a range of market conditions.

This paper is organized as follows. In Section II, we
introduce the cloud brokerage model [4] used by R&C to
demonstrate the possibility of a profitable broker acting as a
third-party mediator between cloud users and cloud providers.
In Section III, we briefly introduce CReST—a cloud simulation
platform that we use for our empirical simulations—and detail
our experimental assumptions and configuration. We then
perform three sets of experiments. Firstly, in Section IV we
replicate the work of R&C [4] to verify the validity of our
simulation model design. Then, to test the robustness of the
conclusions drawn by R&C, in our second set of experiments
(Section V) we perform a sensitivity analysis on R&C’s model.
Subsequently, having demonstrated the sensitivity of R&C’s
optimal threshold value, θopt, we extend the brokerage model
of R&C by introducing a novel method for automatically
adapting θ (AAT) during run-time. Our third and final set
of experiments (Section VI) demonstrates the performance of
AAT under a variety of market conditions. We show that AAT
is able to automatically find θopt under a variety of market
conditions with no a priori information. Finally, in Section VII
we conclude that AAT is a significant, robust extension to
R&C’s model and one that may have practical significance in
the real-world market for cloud computing resources.

II. BACKGROUND: R&C’S BROKERAGE MODEL

Typically, the role of a broker is to facilitate the matching of
supply and demand in a market. Brokerage services primarily
generate profit by charging commission fees, and/or making the
spread by buying at a lower price and selling at a higher price.
In the cloud brokerage model of R&C [4], the broker aims to
make a profit by purchasing long-term advanced obligations
on resources (36 month reserved instances), and repackaging
them as 1 month options contracts that they sell at a higher
price to users.

The brokerage model of R&C consists of two stages: (1)
each month, the broker takes orders from clients for future
resource needs by selling options, and determines how many
reserved instances to purchase; (2) in the following month,
clients can request instances from the broker by exercising their
options. If the broker has capacity available from previously

purchased reserved instances, they can sell it on to users at a
profit. Otherwise, the broker must purchase additional (more
expensive) on-demand instances from the provider to fulfill the
obligation of the client.

R&C’s brokerage model follows a pricing structure that
was initially developed at HP Labs by Wu, Zhang, and
Huberman (WZH) [5]. The WZH model financially rewards
clients that reveal the true likelihood that they will utilize a
resource in the future. Each month, every client, i, estimates
his own probability, pi, of using a resource in the following
month. Clients then submit their estimation, pi, to the broker
in order to purchase a resource option. In the following month,
the client is charged Used(pi) if the option is exercised (i.e.,
if the resource is used) and Unused(pi) if the option is not
exercised (i.e., if the resource is not used), such that:

Used(pi) = 1 +
k

2
− kpi +

kp2i
2

(1)

and
Unused(pi) =

kp2i
2

(2)

where k = 1.5 [5]. If users choose instead to purchase
resources directly from the provider, they will expect to pay
Opi, where O is the on-demand cost of a one-month instance
(in the original model, O = 2 [5]). We can consider this
contract as an options model if the broker charges clients
Unused(pi) to purchase the option contract and then a further
charge of Used(pi) − Unused(pi) in the following month if
the option is exercised (if the resource is used). The model
can be calibrated to real-world prices by multiplying Used(pi)
and Unused(pi) by a cost factor [4]. It has been proven that
this pricing model encourages users to truthfully submit their
honest estimate of resource usage, pi [5].

Each month, once the broker has sold options contracts
(and has thus received probability, pi, estimates from clients),
the broker must decide whether or not to purchase additional
long-term (36 month) reserved instances from the provider. If
the broker has previously purchased enough reserved instances
to cover the predicted demand, Σpi, no further instances are
purchased. However, if the broker does not own enough re-
served instances to cover expected demand, additional reserved
instances are purchased using the following algorithm [4].
Firstly, the broker observes historical resource demand, H =
[ht−36, . . . , ht], over the previous 36 month period, and com-
pares against the future resource capacity, F = [ft, . . . , ft+36],
(the number of reserved instances owned) over the forthcoming
36 month period. Using a simple forecasting mechanism that
assumes future demand will equal previous demand lagged
36 months, the broker then calculates an expected deficit
profile, D, for each forthcoming month by subtracting historical
demand, H, from future capacity, F, for each month, such that:

D = F - H. (3)

For each resource required, the Marginal Resource Uti-
lization (MRU) is the proportion of months in D > 0. The
MRU estimates the fraction of life (months/36) an additional
reserved instance is likely to be utilized over the next three
years, based on historical demand. Brokers then use a thresh-
old, θ, to determine whether or not to purchase a new 36-month

114Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

reserved instance. If MRU > θ, the broker buys a new instance,
estimating that it will be used in enough months to make a
profit. Alternatively, if MRU < θ, the broker does not purchase
a new instance, estimating that it will be underutilized and
that purchasing on-demand monthly instances, when necessary,
will be more profitable. Each month, the broker delivers 1-
month access to reserved instances to clients that exercise their
options. If the broker does not have the capacity to fulfill client
demand, they purchase additional on-demand instances directly
from the provider. In general, the monthly purchase cost of
on-demand instances is greater than the monthly cost of 36-
month reserved instances. R&C demonstrated that this model
can generate broker profits while also benefitting users and
providers [4]: users access cheaper monthly resource costs and
providers sell a greater proportion of 36-month reservations,
aiding in capacity planning to reduce provision costs. For more
detailed description of R&C’s brokerage model, we refer the
reader to [4].

III. SIMULATION METHODOLOGY

The Cloud Research Simulation Toolkit (CReST) was devel-
oped at the University of Bristol to address the need for a
robust simulation modeling tool for research and teaching of
data center management and cloud provision. CReST is a
stand-alone application, written in Java, and is freely available
open source under a GNU General Public License v3.0 [7].
Although alternative tools exist, CReST has a unique feature
set (see [8]) that enables simulation at multiple abstraction
levels: from physical hardware, energy usage and thermal flows
within a DC, to networked infrastructure and the virtualization
layer of application services supporting dynamic user demand.
For details on the architecture of CReST, refer to [8].

For all experiments reported in this paper, we use CReST
as the cloud simulation platform. CReST is designed as a set
of coupled modules that can be independently switched on
or off depending on the level of abstraction required. Here,
to optimize simulation performance, we disabled several of
the lower-level physical infrastructure modules, such as the
Thermal module that tracks air-flow in the data center. The
active modules used in all of the brokerage simulations that
we perform include: Brokerage, Pricing, Events, Services, and
Simulation. This enabled us to efficiently run experiments
that simulate decades of time, without compromising on the
abstraction level needed. All CReST code used to run the
experiments performed here, and associated Python scripts
used for data analysis and visualization, are available to
download in version 0.3.0 of CReST [7].

The parameter space used for all experiments, unless otherwise
stated, are detailed below:

• Running Time: Each simulation lasts 276 simulated
months. This time period is determined by the avail-
able demand data utilized by R&C (refer to Fig. 1).

• Number of User Agents: Following R&C, we set the
number of agents that demand resources to 1000.

• Pricing: Prices for cloud computing instances in the
real world undergo continual change due to underlying
factors such as hardware costs and competition. For
the R&C replication experiments (Section IV), we

follow the same pricing scheme as in [4]. In later
experiments (Sections V and VI), we use real-world
prices charged by AWS.

• Reservation and Learning Period Length: R&C ex-
plored 12 and 36 month reservations and demonstrated
similar results, but increased broker profits for 36
months [4]. Here, we use only 36 month reservations.

• Cost Factor: The WZH charging model [5] is based
on reservations with a cost of 1 or 2 and therefore
needs to be scaled in order to simulate AWS pricing.
In R&C’s previous work, the cost factor, C, has varied
(i.e., 35 [4] and 60 [9]). In Section IV, we use a
cost factor of C = 35 to replicate R&C. Then, in
Section V, we explore the sensitivity of R&C’s model
by varying this cost factor.

• Demand Profiles: Following [4], to simulate real-
istic demand for virtual machines, we consider four
demand profiles generated using real demand data
over the period 1988-2011 for a variety of IT-related
industries. This data set was collated by Owen Rogers,
using the UK Office for National Statistics’ database
of Non-Seasonally Adjusted Index of Sales. Fig. 1
displays the four demand profiles that we label using
R&C’s terminology: Rapid Growth (top-left), Steady
Growth (top-right), Recession & Recovery (bottom-
left) and Steady (bottom-right). These data were sup-
plied to us by Owen Rogers to enable us to perform
a strict replication of R&C’s experiments [4], [9]. For
further details on the collection and rationale of data,
refer to [4].

• MRU Thresholds: In Sections IV and V, we explore
a range of thresholds, θ, to determine the optimal
(most profitable) value, θopt, under a variety of market
conditions. In Section VI, as an extension to R&C’s
model, we introduce AAT, a novel technique that
automates the selection of θ during runtime.

Each experiment was repeated 30 times to enable statistical
hypothesis testing of the results. All code used for experiments
detailed in this paper is available to download in CReSTv0.3.0
at https://sourceforge.net/projects/cloudresearch/.

IV. REPLICATION OF R&C’S BROKERAGE MODEL

In [4], R&C use an exhaustive search to determine the optimal
MRU thresholds, θopt, for each of the four markets shown in
Fig. 1. They show that θopt varies between markets and that,
when using θopt, the broker maximizes the profit. They further
show that all values of θ < 1.0 generates a profit for the
broker in all markets, even when θ = 0; i.e., in the trivial case
where the broker will always purchase an additional reserved
36-month instance whenever there is a new unit of expected
demand. When θ = 1.0, the broker will never purchase a
reserved instance, hence profits are always 0.

In this section, we replicate the model of R&C as closely
as possible in order to: (1) determine whether R&C’s results
are repeatable; and (2) verify and validate our CReST im-
plementation of R&C’s model. To perform this replication, we
exhaustively tested a subset of MRU thresholds, 0.0 ≤ θ ≤ 1.0,
to determine the profitability of each strategy in each of the

115Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Fig. 1. Normalized demand profiles for the period 1988-2011, labeled: Rapid Growth (top-left); Steady Growth (top-right); Recession & Recovery (bottom-left);
and Steady (bottom-right). For details, refer to [4].

Fig. 2. Total broker profit in $Millions (mean ±95% CI, 30 runs) for each
market across different thresholds, θ, using 36 month reserved instances. The
resolution of θ between 0.0-0.8 is 0.1 and between 0.8-1.0 is 0.01.

four markets shown in Fig. 1. Results are plotted in Fig. 2.
To reduce the search space, eleven θ thresholds were initially

tested, such that θ ∈ {0.0, 0.1, . . . , 1.0}. Performing these
simulations using 4 market profiles and repeating each trial
30 times meant a total of 11 × 4 × 30 = 1320 simulation
runs. Then, having noticed that the turning point for many
of the profit curves in Fig. 2 was in the region of 0.9, an
additional set of runs were performed at a resolution of 0.01,
such that θ ∈ {0.81, 0.82, . . . 0.89, 0.91, 0.92, . . . 0.99}. This
led to additional 18× 4× 30 = 2160 simulation runs.

In Fig. 2, we see broker profits (mean of 30 runs ±95%
confidence interval displayed using vertical bars) for each
market, plotted as a function of θ. For Steady (blue dots),
Recession & Recovery (red dash), and Rapid Growth (green
dot-dash) markets we see broker profits increase with θ until
a turning point in the region θ ≈ 0.9. However, in the Steady
Growth market (yellow dash), profits gradually fall as θ rises,
until θ ≈ 0.8, after which profits rapidly decline. For all
markets, when θ = 1.0 brokers make no profit (as expected).
Further, for all markets, brokers make a profit for all values
in the range: 0.0 ≤ θ < 1.0. These results are qualitatively
similar to those published by R&C [4].

Table I presents a detailed quantitative comparison of
results against the original results of R&C [4]. For each market,
we tabulate: (1) the optimum threshold value (θopt); (2) the

116Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

TABLE I. COMPARISON OF BROKER PROFITS ($MILLIONS) ACROSS
MARKETS. R&C’S ORIGINAL RESULTS [4] ARE PARENTHESIZED.

Market θopt
36 Month Reservations Profit ($M)
θ = 0 θ = θopt (θopt − θ0)%

Rapid Growth 0.84 (0.72) 1.17 (1.15) 1.26 (1.27) 7.7% (10.4)
Steady Growth 0.00 (0.00) 1.89 (1.85) 1.89 (1.85) N/A (N/A)

Recession & Recovery 0.80 (0.80) 1.48 (1.48) 1.82 (1.80) 23.0% (21.6)
Steady 0.91 (0.82) 2.23 (2.22) 2.38 (2.45) 7.1% (10.4)

Fig. 3. Annualized broker-owned resources versus demand in a Recession &
Recovery market. When θ = 0.8 (blue-dot), the broker’s resource purchases
more closely track demand (black-line) than when θ = 0.0 (red-dash).

mean profit for brokers that always purchase an additional
reserved instance (θ = 0); (3) the mean profit for brokers
that use the optimum MRU threshold (θ = θopt); and (4)
the percentage difference in profit between brokers using the
optimum threshold value and brokers that always purchase
a new instance, i.e., the percentage difference between the
previous two columns (θopt − θ0). Values in parentheses are
the values obtained by R&C [4]. We see that there is a
strong quantitative similarity. All profits are within 5% of the
values presented by R&C (indeed, most are within 2.5%).
Furthermore, for the optimal threshold values, θopt, two are
identical (Steady Growth and Recession & Recovery), one is
within 10% (Steady) and one is within 20% (Rapid Growth).
As shown in Fig. 2, the profit gradient is very shallow in
Rapid Growth markets (green dot-dash), meaning that profit
is relatively insensitive to θ, hence this is the market that
we would expect the most discrepancy in results. Overall,
we believe that these results demonstrate a strong quantitative
replication of R&C.

In Fig. 3, we plot the annual broker-owned resource
capacity against market demand for two example simulation
runs in a Recession & Recovery market with MRU thresholds
θ = 0.0 (red dash) and θ = θopt = 0.8 (blue dots).
We see that the optimal θ value (blue dots) more closely
tracks actual resource demand (black line), resulting in a
greater utilization of purchased 36-month reserved instances.
When the broker always buys additional instances (red dash),
brokers end up purchasing too much capacity, which goes
largely underutilized—the area bounded by the red (dash) and
black lines from above and below, respectively. This figure
demonstrates how tuning the value of θ can enable broker
capacity to more closely match user demand, thus maximizing

TABLE II. BROKER PROFITS USING CURRENT AWS PRICING.

Market θopt
36 Month Reservations Profit ($M)
θ = 0 θ = θopt (θopt − θ0)%

Rapid Growth 0.4 1.50 1.51 0.67%
Steady Growth 0.1 1.93 1.93 0%

Recession & Recovery 0.6 2.19 2.21 0.91%
Steady 0.0 2.52 2.52 N/A

utilization and ultimately maximizing profits. In the majority of
markets (Steady Growth is the obvious exception), the optimal
thresholds, θopt, tend to be relatively high, falling in the region
> 0.8 (and in R&C’s original results, in the region > 0.72).
This suggests that it is more risky for the broker to purchase a
significant number of reserved instances that go underutilized,
than it is to purchase fewer and risk buying more expensive
on-demand instances. This is not true in the Steady Growth
market (θopt = 0.0), where it is always beneficial to buy an
additional instance since continual market growth guarantees
resource utilization.

In this section, we have demonstrated that the cloud
brokerage results of R&C are repeatable and verified that
our replication of R&C’s model using the CReST simulation
platform is valid. In the following section, we perform a
sensitivity analysis on the model to test the robustness of
R&C’s results.

V. SENSITIVITY ANALYSIS OF R&C’S
BROKERAGE MODEL

In this section, we perform a sensitivity analysis of R&C’s
brokerage model to determine the robustness of results. In the
previous section, we observed that the optimal MRU threshold,
θopt, varies with market demand profile. Here, we analyze
the sensitivity of θopt to other model parameters: (a) resource
prices; (b) cost factor; and (c) demand variance.

A. Sensitivity to Provider’s Resource Pricing

Here, we update the pricing of resources to reflect the current
pricing tariff used by AWS (March 2013):

• Monthly on Demand = $46.80

• Up-Front Reserved = $250.00

• Monthly Reserved = $13.68

We repeated the experiments from Section IV using the pricing
tariff presented above. All other configuration parameters were
unchanged, including the prices the broker charges clients
(the cost factor). Results are presented in Table II. We see
that across all markets the optimum threshold, θopt, is lower.
Further, the additional profit gained by using the optimal
threshold, θopt, rather than the zero threshold, θ = 0, is much
smaller, less than 1% in all markets (final column). This result
demonstrates that θopt is sensitive to the provider’s pricing
tariffs. In the scenario simulated here, the broker has lower
purchase costs (AWS’s prices have fallen since R&C’s original
model). However, the broker does not pass these savings on
to users. Hence, the broker’s profit in each market increases
(compare Table I with Table II). At the same time, the risk
of purchasing a reserved instance that will be underutilized is
lowered. Thus, across all markets θopt falls.

117Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Fig. 4. Optimal thresholds, θopt, as a function of cost factor.

B. Sensitivity to Broker’s Pricing

Here, we examine the effect of varying the prices that a broker
charges his clients. We control this by varying the cost factor,
C (refer to Section II). As one would expect, the cost factor
variable is directly related to broker profits, with higher cost
factor producing higher profits.

Fig. 4 shows the response of θopt to changes in C. We see
that in all markets, apart from Rapid Growth, θopt is sensitive
to C and that this relationship is nonlinear.

C. Sensitivity to Variation in Demand

Here, we examine the effect of adding variance (noise) to
the market demand profiles presented in Fig. 1. Results are
presented in Fig. 5. We see that, in all markets, θopt is sensitive
to variation in the demand profiles and that this relationship is
nonlinear.

We have demonstrated that θopt is highly sensitive to the
provider’s pricing tariff, to the broker’s pricing tariff, and
to variation in demand. This confirms that the selection of
an appropriate θopt value for the broker is a nontrivial task.
Therefore, we propose that the value of θ should be dynam-
ically adapted in real time in response to contemporaneous
market dynamics. In the following section, we propose a novel
method for such autonomous adaptive thresholding (AAT)
and empirically test its utility. For all experiments, unless
otherwise stated, we use the latest AWS pricing tariff presented
in Section V-A. We also use a cost factor C = 30, selected to
preserve the ratio between provider pricing and broker pricing
as used in the original brokerage model of R&C.

VI. EXTENSION OF R&C’S BROKERAGE MODEL: AAT

The evident sensitivity of the threshold parameter and its
intrinsic contribution to the overall performance of the model
presents a complication for the application in real world
scenarios. Selecting the optimal θ value enables the broker
to balance its asset exposure to the providers in a favorable
manner, ultimately reducing risk and maximizing profits. The
WZH Model leverages the data of past events in order to

Fig. 5. Optimal thresholds, θopt, as a function demand variance.

hedge risk appropriately. However, due to the nature of its
operating environment it is not known a priori if the market
will continue to follow the same pattern. Up to this point, the
experiments conducted have been based on real world past
data - however, the inherent unpredictability and vicissitudes
of the world markets could render forecasts made on previous
demand meaningless. A market shock where demand for a
resource in the community suddenly alters, perhaps caused by
a new entrant to a market, could lead to the broker operating
with a suboptimal threshold parameter, leaving it risk exposed
in the number of reservations currently owned. Doubtlessly,
therefore it would be advantageous for θ to be automatically
updated to reflect the current market circumstances during
operation. Here, a versatile technique is presented that enables
the broker to autonomously update θ online.

A. Formulation of AAT

The AAT mechanism utilizes the Widrow-Hoff delta rule [10]
to streamline the threshold selection between iterations (each
month) of the hedging process. The delta rule is a general
learning method that has been shown to be effective in a
variety of domains, such as Algorithmic Trading [11] and
coevolutionary optimization [12]. The delta rule is one of
the simplest rules in Machine Learning, forming the basis of
both adaptation algorithms [13] and reinforcement in classifier
systems [14], [15]. The delta rule attempts to minimize the
error between a real system output and a target output de-
termined by some domain-specific proxy. Using the projected
reservation utilization as a proxy, AAT updates the θ value in
each reservation stage of the model through the minimization
of the error between the current threshold and the determined
target. If there is no error between the system output and
the desired output, then no learning takes place. Conversely,
when there is an error, the system values update to reduce this
error. The approach can be described with the following set of
equations (the notation used is borrowed from [12], which in
turn followed from [11]).

Let At be the actual output at time t and At+1 be the actual

118Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

output on the following time step.

At+1 = At + ∆t (4)

where
∆t = α(Tt −At). (5)

∆t is the product of a learning rate (α) and the difference
between the actual output at t (At) and the target output (Tt).

If the target value remains constant, At will converge to
Tt at the rate determined by α. However, a moving target
can cause At to oscillate around the target value. In order to
dampen the oscillations, an additional variable known as the
momentum term (µ) can be introduced, transforming (5) to:

∆t = µ∆t−1 + α(1− µ)(Tt −At). (6)

The delta rules expressed above form the basis of the
update rule for the MRU threshold. However, as with [12], the
target threshold required at each time step is actually unknown
and therefore needs to be derived from the data available to
the broker. An additional associated variable in the form of
a normalized version of the projected resource utilization rate
is used, denoted τ . Remembering that a lower θ (close to 0)
encourages the purchasing of more reservations, while a higher
θ (close to 1) encourages purchasing fewer reservations, τ can
be determined:

τ =
reservationsOwned

summedDemand+ 1
(7)

where 1 is added to the denominator for cases of no demand.

The rationale for this approach lies with the ultimate aim
of the broker to maximize profit through the constant full
utilization of the reservations owned, in which case the more
expensive on-demand instances would not be purchased and
reservations would not go unused. The choice is not without
its complications, however. For instance, if the broker owns
a relatively large number of reservations, say 100, and the
demand for reservations is low, for example 10, the target
becomes 100

10+1 ≈ 9.1. This is clearly not a suitable target
threshold as it exceeds the maximum value of θ considerably.
The proposed solution for this involves normalizing the out-
putted value (see (8)) by keeping track of the largest recorded
raw target and normalizing the values between 0 and 1. In this
particular example, if 9.1 was the largest seen so far, it would
be normalized to 1. If a raw target of 10 had been seen in a
previous month, it would be normalized to 0.9, et cetera. We
normalize τ such that:

τ =
τ −minTarget

maxTarget−minTarget
(8)

where minTarget and maxTarget are updated over time to
determine the relative value of τ . Then, letting θt and θt+1 be
the threshold at time t and t+1, respectively and substituting in
τ as the target value, we derive the following AAT formulation
from (4) and (6):

θt+1 = θt + ∆t (9)

TABLE III. HIGHEST RANKING (µ, α) PAIRINGS ACROSS MARKETS

µ α Avg. Rank (440 max)

0.7 0.05 400
0.8 0.85 393.75
0.1 0.8 387.25

0.45 0.8 377.5
0.4 0.3 371.25

where
∆t = µ∆t−1 + α(1− µ)(τ − θt) (10)

and ∆0 = 0. The three parameter settings must all fall within
the range: 0 ≤ τ , α, µ ≤ 1.

B. Selecting Robust AAT Parameters

The reader will notice that AAT introduces new variables to the
brokerage model. The value of τ is calculated during run-time
using (7) and (8). However, the broker must select parameter
values for α and µ. Here, we aim to determine AAT parameter
settings that work well out of the box under a range of market
conditions. This configuration should then enable the broker to
maximize profit under a range of market conditions, by self-
adapting θ over time in response to variation in demand. In this
way, the broker no longer needs to determine θ using a priori
knowledge of the market they are operating in, thus enabling
a more robust brokerage model.

To determine appropriate AAT values, we trialed a range
of values for 0 ≤ α, µ ≤ 1 (at resolution 0.05), in a variety
of market conditions. Table III shows the average ranking of
pairwise (µ, α) combinations across the full series of trials.
We see that (µ, α) = (0.70, 0.05) consistently performs well
and generates the most profit across all markets. Thus, we use
these values to configure AAT for the remainder of experiments
performed here, and suggest this configuration as suitable for
using the AAT brokerage model out of the box. We test the
robustness of this configuration in each market, to observe:

1) Convergence behavior: does θAATt→∞ converge to θopt?
2) Initialization sensitivity: does the starting threshold value,

θAATt=0 , affect the convergence behavior?
3) Profitability: how does AAT compare with the known

static θopt for each market?

Three starting thresholds were tested: θAATt=0 ∈ {0, 1, θopt}.
Each experimental configuration was repeated 30 times.

Fig. 6 shows the yearly mean threshold value, θ, generated
by AAT in the Recession & Recovery market. It can be
clearly seen that, under each condition, the value of θ quickly
converges toward θopt = 0.8, but equilibrates slightly higher.
This demonstrates good convergence behavior and insensitivity
to the starting value θAATt=0 . In other markets, AAT convergence
is also insensitive to initial conditions (figures not shown, see
[16] for more details). However, in other markets, AAT tends
to converge to a value θAATt→∞ > θopt. Hence, AAT tends to be
more conservative than the static method, purchasing fewer
VM instances than θopt. Table IV tabulates the profitability
of AAT in each market, compared with the profitability of
the static threshold, θopt. We see that, in each market, AAT
performs well against the static θopt, at worst generating 1.64%
less profit (Steady market, θAATt=0 = 1), and at best generating

119Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Fig. 6. Yearly mean threshold value, θ, generated by AAT in the Recession
& Recovery market. Under each starting condition, θAAT

t=0 ∈ {0, 0.8, 1}, AAT
equilibrates near the optimum threshold value, θopt = 0.8.

TABLE IV. PROFITABILITY ($M) OF AAT ACROSS MARKETS

Market

Mean Profit ($M) Using Different Configurations

Static θ AAT

θ = θopt θAAT
t=0 = 0 θAAT

t=0 = 1 θAAT
t=0 = θopt

Rapid Growth 1.088 1.0765 (-1.06%) 1.0789 (-0.84%) 1.0765 (-1.06%)

Steady Growth 1.377 1.367 (-0.73%) 1.362 (-1.09%) 1.367 (-0.73%)

R & R 1.600 1.610 (+0.63%) 1.594 (-0.38%) 1.614 (+0.88%)

Steady 1.764 1.739 (-1.42%) 1.735 (-1.64%) 1.783 (+1.08%)

1.08% more profit (Steady market, θAATt=0 = θopt). Since
this spread of profits is very close to that achieved by the
static θopt, we can conclude that across all markets, AAT: (1)
converges toward the known optimal value θopt, or a more
conservative value greater than θopt; (2) is largely insensitive to
initial conditions, θAATt=0 ; and (3) can compete with the known
static optimum value, θopt. Since AAT requires no domain
knowledge and no a priori optimization in each market, we
therefore conclude that AAT is a robust extension to the static
thresholding technique introduced by R&C. Although we have
shown AAT to be largely insensitive to initialization, as a sim-
ple heuristic, we suggest initializing AAT to θAATt=0 = 0.5. This
should minimize the average distance to the market optimum,
θopt, and hence should accelerate time to convergence and
increase profit.

C. Market Shocks

Here, we perform a final set of experiments to test the utility of
AAT when there is a market shock, such that market demand
suddenly changes from one profile to another. Market shocks
occur in real markets when there is a rapid change in demand,
perhaps caused by a new market entrant (e.g., see [17] for
a discussion on adapting to market shocks). By testing AAT
in shocked markets, we aim to simulate more realistic market
dynamics. For these experiments, we use the values α = 0.45
and µ = 0.55. These were shown to perform well during a
series of preliminary experiments.

Fig. 7 shows threshold values, θAAT , over time (red dash)
in one simulation run of a market that is initially a Recession &
Recovery market and then shocked to become a Rapid Growth
market. The optimal static threshold value, θopt, is represented

Fig. 7. Market shock from Recession & Recovery to Rapid Growth market.

by the purple line. We see that θopt = 0.8 while the demand
profile is Recession & Recovery and then falls to θopt = 0.4
while the demand profile is Rapid Growth. Initialized with
θAATt=0 = 0.8, we see θAAT fluctuate around θopt = 0.8 during
the Recession & Recovery market phase, and then decline
during the Rapid Growth market phase, tending to a value
of θ ≈ 0.5. This value is greater than θopt = 0.4, but much
lower than the optimum value in the Recession & Recovery
market. This figure illustrates AAT adapting θ appropriately
when the market is shocked. However, in other experiments,
AAT is not so well behaved (results not shown, refer to [16]).
Overall, we conclude that in markets that are shocked, AAT
offers advantages over the static method employed by R&C,
which is unable to adapt. Yet, results are preliminary and
we believe that AAT should be further refined in order to
improve the performance. To achieve this, one method that
could be employed is “computational steering” [18]; where a
computational system is manually steered by a human pilot
during run time. Unlike a fully autonomous system that is
preconfigured and then left to run in isolation with no further
human intervention, a computational steering approach to
adaptive thresholding would enable the broker to steer the AAT
parameters over time as market dynamics change. In this way,
computational steering enables human input to the system that
is otherwise difficult, or impossible, to operationally define,
such as a domain expert’s tacit knowledge, or intuition.

The market shock experiments reveal the importance of
the early stages of reservation hedging for the broker’s overall
performance. As reservations are a long-term (36-month) in-
vestment and since the broker cannot see into the future, there
is little that can be done in the short term to circumvent a
situation where the broker suddenly owns significantly more
or less reserved instances than required. The reader should
note that R&C’s MRU threshold, θ, controls the proportion
of months that the broker is prepared to accept an estimated
resource deficit. This is calculated on a monthly basis based
on a three year history of demand data. Hence, when a market
shock occurs, the MRU technique is negatively disrupted as the
previous demand data becomes less relevant to future demand
forecasts. As a result, R&C’s MRU technique becomes weak
when the market is shocked. In contrast, AAT attempts to
overcome this problem by enabling the broker to adapt the
number of reservations purchased depending on the incoming

120Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

demand, even if it is historically atypical. However, the model
is still constrained by R&C’s demand estimation routine: that
future demand can be directly forecast from historical demand.
In future, we would like to try an alternative demand estimation
model, such as the statistical model presented in [19].

VII. CONCLUSION

We have replicated and extended the cloud brokerage simula-
tion model of R&C using CReST, an open-source, discrete
event, cloud data center simulation platform developed at
the University of Bristol. To our knowledge, this is the first
replication of R&C in the literature and we present our work
as validation of their model. However, sensitivity analysis has
revealed that R&C’s brokerage model is sensitive to configura-
tion parameters, such as: the pricing tariff providers charge for
resources, the pricing structure brokers charge their clients, and
the effect of noise in the market demand profiles. We present
this as evidence that R&C’s model requires modification before
it can be practically used in the real world. To overcome
this, we have introduced a novel extension to R&C’s model
that enables the broker to automatically adapt during run-time
to maximize profits, without the broker needing to provide
a priori knowledge of the market demand or other model
parameters. We have demonstrated that this AAT technique is
able to converge toward the known optimal value in all markets
and that it is robust to initial conditions. We present this as
evidence that AAT is a practical, robust extension to R&C’s
model. We believe this could have practical significance in the
real-world market for cloud computing.

ACKNOWLEDGMENT

Thanks to Owen Rogers for detailed discussions of his model
implementation and for supplying his demand data to enable
replication. Primary financial support for John Cartlidge comes
from EPSRC grant number EP/H042644/1.

REFERENCES

[1] B. Hayes, “Cloud computing,” Communications of the ACM - Web
Science, vol. 51, no. 7, Jul. 2008, pp. 9–11.

[2] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, U.S. Department of
Commerce, Tech. Rep. NIST Special Publication 800-145, Sep. 2011.

[3] M. Armbrust et al., “Above the clouds: A berkeley view of cloud
computing,” University of California, Berkeley, Tech. Rep. EECS-2009-
28, Feb. 2009.

[4] O. Rogers and D. Cliff, “A financial brokerage model for cloud com-
puting,” Journal of Cloud Computing: Advances, Systems and Applica-
tions, vol. 1, no. 2, Apr. 2012, pp. 1–12. doi:10.1186/2192-113X-1-2.

[5] F. Wu, L. Zhang, and B. A. Huberman, “Truth-telling reservations,”
Algorithmica, vol. 52, no. 1, 2008, pp. 65–79.

[6] S. H. Clearwater and B. A. Huberman, “Swing options: a mechanism
for pricing IT peak demand,” in 11th Int. Conf. on Computing
in Economics & Finance CEF-2005, Washington, D.C., Jun. 2005,
pp. 1–21. [Online] http://www.hpl.hp.com/research/idl/papers/swings
[retrieved: Aug, 2013].

[7] CReST, “CReST - the Cloud Research Simulation Toolkit,” [Online]
https://sourceforge.net/projects/cloudresearch/ [retrieved: Aug, 2013].

[8] J. Cartlidge and D. Cliff, “Comparison of cloud middleware protocols
and subscription network topologies using CReST, the cloud research
simulation toolkit,” in 3rd Int. Conf. Cloud Computing & Services
Science (CLOSER-2013), F. Desprez et al., Eds. Aachen, Germany:
SciTePress, May 2013, pp. 58–68.

[9] O. Rogers and D. Cliff, “Forecasting demand for cloud computing
resources: An agent-based simulation of a two tiered approach,” in 4th
Int. Conf. Agents & Artificial Intelligence, vol. 2 - Agents (ICAART-
2012), J. Filipe and A. L. N. Fred, Eds. Vilamoura, Algarve, Portugal:
SciTePress, Feb. 2012, pp. 106–112.

[10] B. Widrow and J. M. E. Hoff, “Adaptive switching circuits,” IRE
WESCON Convention Rec., vol. 4, Aug. 1960, pp. 96–104.

[11] D. Cliff and J. Bruten, “Minimal-intelligence agents for bargaining
behaviours in market-based environments,” Hewlett-Packard Labs.,
Tech. Rep. HPL-97-91, Aug. 1997. [Online] http://www.hpl.hp.com/
techreports/97/HPL-97-91.pdf [retrieved: Aug, 2013].

[12] J. Cartlidge and D. Ait-Boudaoud, “Autonomous virulence adaptation
improves coevolutionary optimisation,” IEEE Transactions on Evolu-
tionary Computation, vol. 15, no. 2, 2011, pp. 215–229.

[13] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, vol. 1: Foundations,
D. E. Rumelhart and J. L. McClelland, Eds. MIT Press, 1986, pp.
318–362.

[14] S. W. Wilson, “ZCS: A zeroth level classifier system,” Evolutionary
Computation, vol. 2, no. 1, 1994, pp. 1–18.

[15] ——, “Classifier fitness based on accuracy,” Evolutionary Computation,
vol. 3, no. 2, 1995, pp. 149–175.

[16] P. J. Clamp, “Pricing the cloud: An investigation into financial brokerage
for cloud computing,” Master’s thesis, Dep. Comp. Sci., Univ. Bristol,
UK, July 2013.

[17] S. Stotter, J. Cartlidge, and D. Cliff, “Exploring assignment-adaptive
(ASAD) trading agents in financial market experiments,” in 5th Int.
Conf. on Agents & Artificial Intelligence, Vol. 1 - Agents (ICAART-
2013), J. Filipe and A. L. N. Fred, Eds. Barcelona, Portugal:
SciTePress, Feb. 2013, pp. 77–88.

[18] S. Bullock, J. Cartlidge, and M. Thompson, “Prospects for
computational steering of evolutionary computation,” in Workshop
Proc. 8th Int. Conf. Artif. Life (ALife-VIII), E. Bilotta et al.,
Eds. Sydney, Australia: MIT Press, Dec. 2002, pp. 131–137.
[Online] http://eprints.ecs.soton.ac.uk/11459/1/Prospects.pdf [retrieved:
Aug, 2013].

[19] J. Cartlidge and S. Phelps, “Estimating demand for dynamic pricing in
electronic markets,” GSTF International Journal on Computing (JoC),
vol. 1, no. 2, 2011, pp. 128–133.

121Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

