
A Flexible Analytic Model for a Dynamic Task-Scheduling Unit for
Heterogeneous MPSoCs

Oliver Arnold, Benedikt Noethen, and Gerhard Fettweis
Vodafone Chair Mobile Communications Systems

Technische Universität Dresden
Dresden, Germany

{oliver.arnold, benedikt.noethen, fettweis}@tu-dresden.de

Abstract— In this paper, a heterogeneous Multiprocessor
System-on-Chip (MPSoC), controlled by a dedicated task
scheduling unit, is presented. This unit, known as
CoreManager, is responsible for dynamic data-dependency
checking, task scheduling, processing element allocation and
data-transfer management. Three different CoreManager
approaches are analyzed and compared. An analytical model is
derived for each CoreManager implementation. The
configuration parameters for the models are determined
through system analysis. For this purpose, a tool flow has been
developed to build the MPSoC and generate data traces. For
the benchmarks employed, the relative error of the analytical
model was shown to be lower than 6.3 % on component and
6.9 % on system level compared to the measurements.

Keywords-Heterogeneous MPSoC, Dynamic Task
Scheduling, CoreManager, Analytical Model

I. INTRODUCTION

Multiprocessor System-on-Chips (MPSoCs) are
composed of several types and numbers of processing
elements (PEs) and allow increasing performance and energy
efficiency. In order to cope with the stringent performance-
efficiency requirements, architectures exploiting parallelism
and data locality both at system and core level [1] are
required. Even though data-level and instruction-level
parallelism within the PEs is essential, the main focus of this
work is in the functional, i.e., task-level parallelism, based on
the data flow model [2].

Increasing the system complexity in terms of application
parallelism and number and types of resources may lead to a
dramatic increase of system management costs, thus causing
performance degradation. For this reason, the efficient
implementation of the management unit becomes a major
issue in system design. Therefore, an analytical model is
necessary to predict and analyze the runtime behavior of the
management unit and the heterogeneous system.

This work compares the performance and capabilities of
a dedicated task scheduling unit, called CoreManager. Three
different implementation approaches are regarded: a RISC-
based solution (CM-RISC), an approach with Very Long
Instruction Words (CM-VLIW) and an implementation
based on an extended instruction set architecture (CM-EIS).
A flexible analytical model has been derived for each
implementation approach. Furthermore, a tool flow has been

developed to build a heterogeneous MPSoC and to generate
data traces. The configuration parameters for the models
have been analytically derived and the obtained results
compared to the measurements.

Some examples of heterogeneous hardware platforms are
the Cell Broadband Engine [3] and Sandbridge SB3011 SDR
platform [4]. The Tomahawk MPSoC was developed to
execute applications from the multimedia as well as the
signal processing domain [5]. It includes a dedicated task
scheduling unit. In [6], a comparison between a software and
a hardware scheduling approach is presented. The
programming model used in this work is similar to CellSs
[7]. Further programming models are, e.g., Cilk [8], Sequoia
[9], and Ct [10].

The extension of the instruction set of standard
processors is available in many areas [11][12]. In this work,
a RISC core is extended by several newly introduced
instructions to improve task scheduling performance as well
as energy consumption. A similar approach was presented
in [13].

According to the taxonomy given in [14], the used
dynamic task scheduling is centralized and applies complete
information exchange to schedule aperiodic tasks. Complete
information exchange refers to the collection of events from
all processing elements. The platform used in this work can
be understood as a distributed system due to the separate
address spaces of the processing elements [15].

The remainder of the paper is organized as follows. In
section II, the hardware system and the programming model
are presented. In the following section, the tool flow is
described. Section IV presents the components of the task
scheduling unit, called CoreManager. It is analytically
described in the next section. Section VI shows the results of
the system. The parameters of the analytical models are
presented. Furthermore, a comparison of the analytical
model and the measurements is given.

II. SYSTEM MODEL

A. Hardware Model

A heterogeneous MPSoC is depicted in Fig. 1. It consists
of several functional blocks, which are connected by a
Network-on-Chip (NoC). A router is available for each
system component, which is connected to its neighbors by
point-to-point data links. The routers are responsible for

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

packet scheduling and arbitration. XY routing is applied.
Further details about the integrated NoC can be found in
[16].

The Application Processor (APP) is formed by a
Tensilica 570t core and has 2-way set-associative instruction
and data caches, each 16 Kbyte in size. It is placed next to an
off-chip memory interface for fast data access. The data
plane of the system is composed of several types and
numbers of processing elements (PEs), which are controlled
by the CoreManager. The CoreManager is responsible for
task scheduling, PE allocation, and data transfer
management. The CoreManager presents an interface which
allows connecting to the application running on the APP.

Three off-chip global memories are included (MEM_0,
MEM_1 and MEM_2), each one having 256 MB. Each PE
has its own dedicated direct memory access controller
(DMAC) to perform data transfers between the global
memories and their local memories. Furthermore, data can
be fetched from local memories of other PEs.

Two types of PEs are integrated in the system: a digital
signal processor (DSP) and a RISC processor. For each type,
ten processors are instantiated. In the proposed approach, a
PE can solely operate on its local on-chip memory. No cache
misses can occur. Task execution time is consequently
deterministic, which leads to a better predictability at system
level. PEs’ instruction and data memory size is 32 Kbyte
each. Prefetching of data is possible for the next two tasks,
but must be explicitly annotated by the CoreManager.
Similar to the PEs, the CoreManager solely works on local
on-chip memories. Its instruction and data memory size are
32 Kbyte each. Data transfers to the local memories of the
PEs and task execution can be performed concurrently. A
clock frequency of 333 MHz is applied for all components.

B. Programming Model

 The used programming model, called taskC, is based on
tasks as a main entity [15]. A task is a collection of
instructions which are atomically executed. In Fig. 2, a
source code example is shown. For each task input and
output, data transfers are specified with IN, OUT and
INOUT operators. For each transfer, a pointer and a size are
specified at runtime. 2-dimensional data transfers are
supported. For example, in software defined radio systems,
the data locations of a task are specified after the header is
processed. No static data analysis is possible for these kinds
of applications.

The task execution is not done by the APP itself. The
APP only sends the task description, which is composed of
the task name and the data information, to the CoreManager.
In Fig. 2, two task descriptions are transferred, either
taskType1 and taskType2 or taskType1 and taskType3. The
APP is additionally responsible for evaluating control-code
dependencies, e.g., the if-else clause in Fig. 2. Data-
dependencies between tasks are evaluated by the
CoreManager at runtime. The taskSync command is a barrier
and synchronizes the APP and the data plane execution.
After the APP returns from this function it is assured that all
tasks are finished and all output transfers have been
completed.

III. TOOL FLOW

A newly developed tool flow is used to specify the
system configuration and to generate the simulation
environment. An overview of all components is shown in
Fig. 3. The hardware architecture is specified in a
configuration file containing two parts. The first part is
responsible for the system level. The second part specifies
the capabilities of the CoreManager. By using the Tensilica
Xtensa Processor Generator (XPG) the CoreManager as well
as the PEs are created [17]. RTL code and suitable
Compilers are generated as well. The InstGenerator and the
TaskCompiler are responsible for the compilation of tasks
and their extraction into a separate data array. The
application itself is compiled with the Tensilica 570t
Compiler. Binaries for the PE and the CoreManager are
linked into the APP binary. These binaries are loaded at
runtime to the corresponding cores.

Three types of hardware designs are generated: A
Tensilica-based cycle-accurate simulation environment
(XTSC), a FPGA prototype, and an ASIC prototype. The
TaskVisualizer allows visualization of results. In particular,
it shows task execution and data transfers. More information
on the TaskVisualizer can be found in [15]. The
CoreManager Profiler and the DebugVisualizer allow an
offline and online analysis of the CoreManager. More
information on these tools can be found in [18].

APP

PE_0
(Type A)

Core‐
Manager

R

MEM_0 PE_1
(Type A)

PE_2
(Type A)

PE_4
(Type A)

PE_5
(Type A)

PE_6
(Type A)

PE_11
(Type B)

PE_10
(Type B)

PE_13
(Type B)

PE_14
(Type B)

PE_15
(Type B)

R R R

R R R R

R R R R

R R R R

PE_3
(Type A)

PE_8
(Type A)

PE_9
(Type A)

MEM_1

PE_7
(Type A)

MEM_2

PE_12
(Type B)

PE_16
(Type B)

PE_17
(Type B)

PE_18
(Type B)

PE_19
(Type B)

R

R

R

R

R R R R R

Figure 1. System Model: heterogeneous MPSoC

1: task(task1, IN(in1, 256), IN(in2, 128), OUT(out1,512), OUT(out2, 256));

2:

3:

4: if (random1 == random2)

5: task(task2, IN(in3, 256), IN(out1, 128), OUT(out3,512));

6: else

7: task(task3, IN(out1+512, 512), OUT(out4,512));

8: someFunction();

9: taskSync();

data dependency

Control code
dependency

Task name Input data Output data

Figure 2. Programming model example

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

R
TL

C/C++
Application

Task
Definitions

TaskCompiler

XTSC
Simulation

570t
Compiler

CoreManager
Source Code

CoreManager
Binary

APP Binary HW Platform

XPG

CoreManager
Compiler

PE
Specifications

PE Compiler

Platform
Specification

PE Cores CoreManager

TaskVisualizer DebugVisualizer

InstGenerator

‐ User specification

‐ Task Tools

‐ Tensilica

CoreManager
Specification

PE Boot
Binaries

Task
Binaries

CoreManager
Profiler

FPGA
Prototype

570t

ASIC
Prototype

Figure 3. Tool flow

IV. COREMANAGER STRUCTURE AND BEHAVIOR

The major components and the internal data flow of the
CoreManager are depicted in Fig. 4. The operational
sequence is as follows. Firstly, the APP retrieves the ID of an
empty task slot by reading the CM_2_APP first-in first-out
(FIFO) memory (step 1). Afterwards, the APP writes the task
description (e.g., the task name and the input and output
data) to the task buffer in the corresponding task slot (step 2).
As soon as writing the task buffer is finished, the same task
slot ID is written to the APP_2_CM FIFO (step 3). The
CoreManager reads this FIFO. It firstly performs a data-
dependency checking among all tasks which are currently in
the system. For this purpose, (1) must be evaluated for each
transfer for all tasks. The array formed by pointer p1 and size
s1 of task 1 is compared with the array formed by p2 and s2 of
task 2. p1, p2, s1 and s2 are assumed to be greater or equal to
zero. The equation is valid if a dependency is found.

1 2 2

2 1 1

 ||

dep unsigned p p s

unsigned p p s

 (1)

In the particular case of the CM-EIS processor, the
operations shown in (1) are merged into one instruction,
which is thus executed in a single clock cycle. Furthermore,
the application of 4-SIMD vectorization enables the
execution of four parallel dependency checks. A more
detailed explanation of the dynamic data-dependency
checking of the CM-EIS processor can be found in [18].

If no data-dependency is found, the task is included in the
ready task list. Otherwise, the task is annotated at the
corresponding preceding tasks descriptions (step 4-6).

In the next step, the task-scheduling module selects the
most suitable task from the ready task list (step 7). Two
scheduling approaches are currently available. An as-soon-
as-possible scheduling approach prioritizes the tasks
according to their time of arrival in the CoreManager. The
second possibility is an earliest-deadline-first approach,
which favors tasks with the closest deadline. The scheduling
is only performed if a suitable PE is available for the task.

After the scheduling process, a PE is allocated and local
memory for the necessary data is reserved (steps 8-9). The
implemented PE allocation approach is depicted in Fig. 5.
The PE allocation is based on two bit masks: One
corresponding to the PEs currently available and one
corresponding to the PEs annotated as suitable for a task.
The number of PEs determines the number of necessary bits
(a dedicated bit is reserved for each PE). A value of one
represents an available or suitable PE. An AND operation is
performed on the bit masks representing the currently
available and the suitable PEs. The PE associated to the first
bit with a value of one (i.e., the first available and suitable
PE) is subsequently allocated. In addition to this, for each
task type the preferred and suitable PEs can be specified. The
implemented PE allocation approach prioritizes preferred
PEs accordingly. In order to increase data locality, a task can
be scheduled on the same PE as its predecessor task, thus
allowing the reuse of its output data. The number of memory
transfers is hence reduced and the performance is improved.

A StartupUp Code is subsequently generated (step 10) by
the CoreManager. It contains all necessary information to
configure the PE (e.g., pointers to the instruction code) and
all task data. It is transferred by two additional DMACs
situated next to the CoreManager (step 11-12).

As soon as the task is finished, a packet is sent over the
NoC and stored in the PE Finished FIFO (step 13). The
CoreManager can evaluate this information (14-16). All
successors of the executed tasks are put in the ready task list
if no further dependencies are annotated (step 17). Finally,
the corresponding task slot is made available for the APP by
writing the task slot ID in the CM_2_APP FIFO (step 18).

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Ta
sk
 B
u
ff
er

APP

Dependency
Checking

NoC Interface

Task
Scheduling

PE
Allocation

Memory
Allocation

Dependency
Clean Up

Start Up
Code

Successor
Tasks

Ready
Tasks

PE_0
(Type A)

FI
FO

s

C
M
_2

_A
P
P

A
P
P
_2
_C

M

…

Ta
sk
 S
lo
t
0

Ta
sk
 S
lo
t
1

Ta
sk
 S
lo
t
(N
‐1
) DMA

Unit 0
DMA
Unit 1

…

2
1

3

45

6 7

P
E
Fi
n
is
h
ed

8

9

10

11

12
13

14

15

17

16

18

Finish Task

PE_19
(Type B)

Figure 4. CoreManager structure and data flow

0x60000000

0xC0000000

&

0x40000000

Possible PEs

Available PEs

Ready PEs

PE: 1

PE0 PE1

PE0 PE1 PE2 PE3

PE1Allocated PE

Figure 5. PE allocation

In the following, three versions of the CoreManager are

compared and analyzed. The first one, called CM-LX4, is
based on a Tensilica LX4 RISC core. The second solution
integrates a Very Long Instruction Word approach in the
CoreManager (CM-VLIW). The third version extends this
processor with an improved instruction-set architecture
especially suitable for the needs of a task scheduling unit
(CM-EIS).

In Table I, the newly introduced instructions for the task
scheduling are shown and shortly described. 16 task slots are
always concurrently processed and can be hence evaluated in
a single clock cycle. For each task slot, a validity bit is
present. If it is set to a value of one the corresponding task
slot is valid and can be used for the evaluation. The
evaluation of the valid bit is included in the processing time
of one clock cycle. In Fig. 6, the new instruction for finding
the smallest values out of the ready task list is additionally
shown. In this example, a minimum operator is applied.
Nevertheless, it can be adapted at runtime to determine the
maximum value. For each task slot, a 16-bit value must be
defined. It can be flexibly used to specify, e. g., deadlines
and priorities. The evaluation of all task slots is done in
parallel.

TABLE I. TASK SCHEDULING INSTRUCTIONS

Instruction Explanation

SCHED_SET(slot, val) Value of a specified slot is set.

SCHED_SET_ALL(val)
All tasks slots are set to a specific
value.

SCHED_MIN(slot, val)
Retrieves the smallest valid task slot.
The task slot ID and its value are
returned.

SCHED_MAX(slot, val)
As above, but the highest value is
returned.

SCHED_INC(val)
Adds a value to all task slots. Task
slot values saturates at 65535.

SCHED_DEC(val)
Subtracts a value from all task slots.
Task slot values saturates at 0.

<value0> <value1> <value2> <value15>…
slot 0 slot 1 slot 2 slot 15

ASM_SCHED_MIN

position value

<0/1> <0/1> <0/1> <0/1>…
slot 0 slot 1 slot 2 slot 15

position validity

1 bit

16 bit

Result: <slot X, valueX>

min

Figure 6. Instruction set architecture extension for task scheduling

V. ANALYTICAL MODEL

The developed analytical model depends on the
following input parameters:

-
INn : Number of input transfers

-
OUTn : Number of output transfers

-
Transfersn :

IN OUTn n

-
TISn : Tasks currently available in the system

-
PE IDn

 : Allocated PE number (starting with 0)

-
Successorn : Number of successor tasks

In the following, all components of the CoreManager will
be analyzed and described using analytical methods. The
timing is described in clock cycles. The CoreManager solely
works on its local memory. Consequently, no external
memory accesses are required and its processing time is
hence independent of the clock frequency of the remaining
system.

A. Dynamic Data-Dependency Checking

 Equation (2) describes the necessary time for the
dynamic data-dependency checking stage on the CM-LX4
and CM-VLIW processors. A quadratic dependence on the

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

number of output transfers is present. IN-IN transfer
comparisons are not performed. In the case of independent
tasks, no data dependencies have to be checked. Thus,

,varDept can be directly set to 0.

, , ,* *

* 2* *

DepCheck Dep init Dep TIS TiS Dep Transfer TiS

IN OUT OUT

t t t n t n

n n n

 (2)

In the case of the CM-EIS processor, the processing time
of the dynamic data-dependency checking can be described
by (3). IN and OUT transfers are not distinguished.
Nevertheless, IN-IN transfers are not considered as a
dependency. A quadratic dependence on the number of
transfers is present.

, , ,

2

,

*

* *

DepCheck CM EIS Dep init Dep TIS TIS

Dep Transfer TIS Transfers

t t t n

t n n

 (3)

B. Task Scheduling

The task scheduling finds the most suitable task from the
ready task list. In the case of the CM-LX4 and CM-VLIW
processor, the ready task list is sequentially searched for the
smallest or largest value. For each task slot, the valid bit is
evaluated. Equation (4) can be used to describe the
processing time of this stage.

, ,var *Scheduling Scheduling const Scheduling TISt t t n (4)

In the case of the CM-EIS processor, the task scheduling
time for up to 16 task slots is constant. Hence, (4) can be
transformed to (5).

, , ,var *
16

TIS
Scheduling CM EIS Scheduling const Scheduling

n
t t t

 (5)

C. PE Allocation

Equation (6) determines the necessary time for the PE
allocation.

, ,var *PE Alloc PE Alloc const PE Alloc PE Idt t t n (6)

For the CM-EIS core up to 32 PEs can be evaluated in a
single cycle. Hence, (6) can be modified as:

, ,

,var * 1
32

PE Alloc CM TIS PE Alloc const

PE Id
PE Alloc

t t

n
t

 (7)

D. Local Memory Allocation

Three different allocation approaches for the local
memories are available. The single-space allocation occupies
the whole memory for one task. The top-down allocation
allows two tasks to use the same local memory. The most
sophisticated mode of operation is the block-based
allocation. The whole local memory is divided in equally
sized blocks. In this case, eight blocks are used. The

necessary processing time for the allocation of local memory
is determined by (8).

, , *Mem Alloc Mem Alloc Init Mem Alloc Transfer Transferst t t n (8)

E. DMAC configuration

The configuration time of the DMACs for transferring
the Start Up Code is always the same. It can be described
with (9).

,DMAC Config DMAC Config constt t (9)

F. Clean Up

The processing time after a task is finished depends on
the number of successors per tasks. Additionally, the task
slot ID must be written to the CM_2_APP FIFO. The
processing time of the Clean Up stage can be expressed with
(10).

, , *Clean Up Clean Up const Clean up Successor Successort t t n (10)

G. System Level

A combination of the processing times of the components
of the CoreManager leads to a system-level latency point of
view. The processing time of the CoreManager for each part
can be separated in a processing time before and after task
execution. Equation (11) describes this behavior.

PrTask oc Task Start Task Endt t t (11)

Both terms on the right side of (11) can be individually
expressed with (12) and (13), respectively. By using these
equations it is possible to predict the performance of the
CoreManager and determine its influence on the system.

Task Start DepCheck Scheduling PE Alloc

Mem Alloc DMAC Config

t t t t

t t

 (12)

Task End Clean Upt t (13)

VI. RESULTS

In the first part of this section, the measured results of the
CoreManager components are presented. Configurable task
descriptions are used to measure the processing time.
Especially corner cases are regarded. The FPGA prototype is
used for all measurements. The integrated DebugUnit is
responsible for generating traces at runtime. The DebugUnit
is a dedicated component placed next to the CoreManager. It
is used to observe the dynamic decisions of the
CoreManager. The analysis of the traces is done with the
DebugVisualizer. The processing time of the CoreManager
components is deterministic due to the instruction and data
fetch solely from its local memories. The same input leads to
the same result and the same processing time. Due to this
deterministic behavior, the presented results are valid for
RTL and Netlist simulation as well as the ASIC prototype.

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

In the second part of this section, the previous results are
analyzed to obtain the parameters of the analytical model.
The last part of this section presents a comparison of the
analytical model with the measurements of real applications.

In Fig. 7, the results of the dynamic data-dependency
checking stage are depicted. All transfers are divided in 50 %
input and 50 % output transfers. In the case of one transfer,
an INOUT type is used. In the analytical model an INOUT
transfer is regarded as an OUT transfer.

TISn is varied

between 7, 15, and 31. The number of transfers is set to 1, 2,
4, and 8. A difference in the processing time of over one
order of magnitude can be observed between the CM-LX4
and the CM-EIS CoreManager. In Fig. 8, the processing time
of the task scheduling is shown. The number of tasks in the
ready task list is varied between 1 and 32. In Fig. 9, the
results for the PE allocation are depicted. It is distinguished
between the annotation of possible and possible/preferred
PEs per task. The results for the local memory allocation are
shown in Table II. The processing time depends on the
already allocated blocks and on the number of transfers. The
configuration of the DMA controller of the CoreManager
needs a constant processing time of 12 cycles per task. In
Table III, the processing time of the Clean Up stage is
shown. For each successor task the necessary time is
increased.

1 2 4 8 1 2 4 8 1 2 4 8

CM‐EIS 313 317 383 519 553 557 679 943 1033 1037 1271 1791

CM‐VLIW 592 939 2093 6373 1152 1891 4349 13493 2272 3795 8861 27733

CM‐LX4 806 1239 2693 8036 1558 2471 5557 16948 3062 4935 1128534772

100

1000

10000

P
ro
ce
ss
in
g
Ti
m
e
 (
cy
cl
es
)

#Transfers

Tasks in the System: 7 15 31

Figure 7. Dynamic data-dependency checking results. The
 available tasks in the system and the number of

 transfers are varied.

1 2 4 8 16 32

CM‐EIS 4 4 4 4 4 6

CM‐VLIW 28 41 65 113 209 401

CM‐LX4 31 44 68 116 212 404

1

10

100

1000

P
ro
ce
ss
in
g
T
im

e
 (
cy
cl
e
s)

#Tasks

Figure 8. Task Scheduling results. The number of tasks in

 the ready list is varied.

TABLE II. LOCAL MEMORY ALLOCATION: PROCESSING TIME
(IN CYCLES)

Avail.
Blocks

#Transfers CM-EIS CM-VLIW CM-LX4

0x0 2 10 51 66

 4 20 56 78

 8 34 64 92

0x1 2 10 51 65

 4 20 56 77

 8 34 64 91

0x3 2 10 52 67

 4 20 57 79

 8 34 65 93

0x7 2 10 56 72

 4 20 61 84

 8 34 69 98

0x9 2 10 55 62

 4 20 55 74

 8 34 63 88

0x12 2 10 53 60

 4 20 53 72

 8 34 61 86

TABLE III. CLEAN UP: PROCESSING TIME (IN CYCLES)

#Successor
Tasks

CM-EIS CM-VLIW CM-LX4

1 44 124 190

2 54 150 228

4 72 186 276

8 108 306 400

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

0 7 15 23 31 0 7 15 23 31

CM‐EIS 4 4 4 4 4 6 6 6 6 6

CM‐VLIW 18 33 49 65 81 21 36 52 68 84

CM‐LX4 30 52 76 100 124 31 53 77 101 125

0

20

40

60

80

100

120

P
ro
ce
ss
in
g
Ti
m
e
 (
cy
cl
e
s)

PE‐ID

PE Allocation: possible PEs preffered and possible PEs

Figure 9. PE allocation results. PE-ID is varied.

In order to obtain the parameters described in section V
the minimum mean square error is used. The resulting values
for all parameters are presented in Table IV. The superior
performance of the CM-EIS core, which was already
observed in the first part of this section, is also noticed here.
Especially

,Dep Transfert ,
,Scheduling constt ,

,varSchedulingt ,
,PE Alloc constt

 and

,Mem Alloc Initt
 are significantly lower compared to those of the

CM-LX4 and CM-VLIW cores. In the case of the local
memory allocation, the parameter

,Mem Alloc Transfert
of the CM-

VLIW core is smaller in comparison to the CM-EIS core due
to constant processing time of the CM-EIS core. The data
dependent processing time of the CM-VLIW core leads in
average to a smaller value for parameter

,Mem Alloc Transfert
.

Nevertheless, the overall processing time of the CM-VLIW
core is still 2 to 5 times higher (see Table II).

The corresponding relative errors are presented in Table
V. The highest relative error corresponds to the dynamic data
dependency checking stage. In the case of the CM-EIS core
it is 6.3 %. These errors result from the data dependent
execution time, .i.e., a dependency must be annotated at the
predecessor of a task. Hence, an additional amount of
processing time is needed. The DMAC configuration is for
all cores perfectly predictable. Furthermore, the task
scheduling and PE allocation models of the CM-EIS
CoreManager have no error.

The relative errors for three real-world applications are
depicted in Table VI. For each CoreManager approach the
measured traces are compared with the prediction of the
developed analytical models. The first two applications
belong to the signal processing domain. In particular, the
physical layer of a Global System for Mobile
Communications (GSM) and Universal Mobile
Telecommunications System (UMTS) are employed.

The third application is a JPEG decoding application. It
decodes a picture with a resolution of 2560 by 1440 pixels.
No data dependency checking is applied in the JPEG
decoding application. Therefore,

,Dep Transfert is set to 0. Hence,

no successor tasks are present in the Clean Up Stage. Each
application is dynamically started several times.

All versions of the CoreManager have been synthesized
with Synopsys Design Compiler for a 65 nm low power
TSMC process using worst case conditions (125 °C, 1.08 V).
For a target frequency of 333 MHz the occupied silicon area
is 0.140 mm2 (CM-LX4), 0.180 mm2 (CM-VLIW) and
0.284 mm2 (CM-EIS), respectively. Only logic area is
evaluated, disregarding local memory area but including the
memory interfaces (for timing correctness).

TABLE IV. MODEL PARAMETER

#Successor Tasks CM-EIS CM-VLIW CM-LX4

,Dep initt 118 107 110

,Dep TISt 32 68 92

,Dep Transfert 0.4 12.8 16.2

,Scheduling constt 2.0 16.9 20

,varSchedulingt 2.0 12 12

,PE Alloc constt
 2.0 22.0 32.0

,varPE Alloct
 2.0 2.0 3.0

,Mem Alloc Initt
 2 46.4 57.5

,Mem Alloc Transfert
 4 2.4 4.2

,DMAC Config constt
 12.0 12.0 12.0

,Clean Up constt
 34.9 99 161

,Clean up Successort
 9.2 25.5 29.7

TABLE V. MEAN RELATIVE ERROR COMPARED TO MEASURED
 VALUES FOR CONFIGURABLE TASKS FOR

 PARAMETER EXTRACTION

CoreManager Component CM-EIS CM-VLIW CM-LX4

Data-Dependency Checking 6.3 % 3.6 % 2.5 %

Task Scheduling 0 0.8 % 0.9 %

PE Allocation 0 1.2 % 0.8 %

Local Memory Allocation 3.3 % 3.3 % 4.3 %

DMAC Configuration 0 0 0

Clean Up 0.6 % 2.4 % 1.3 %

TABLE VI. RELATIVE ERROR COMPARED TO MEASURED VALUES FOR
 REAL WORLD APPLICATIONS IN PERCENT

 (CM-EIS/CM-VLIW/CM-LX4)

CoreManager
Component

Application

GSM UMTS JPEG

Data-Dependency
Checking

3.6/3.2/3.9 6.9/4.3/2.6 0/0/0

Task Scheduling 0/0.2/0.4 0/0.3/0.6 0/0.3/0.3

PE Allocation 0/1.2/1.0 0/0.9/1.2 0/0.2/0.2

Local Memory
Allocation

0/0/0 0/0/0 0/0/0

DMAC
Configuration

0/0/0 0/0/0 0/0/0

Clean Up 0.4/0.2/0.4 0.3/0.9/0.4 0/0/0

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

VII. CONCLUSION AND FUTURE WORK

In this paper, a central scheduling unit called
CoreManager is analyzed. An analytical model has been
derived from system analysis. A tool flow was introduced to
generate the system and to obtain data traces. Parameters for
all three CoreManager approaches have been derived from
the analyzed data. It has been shown that the relative error on
component level is less than 6.3 % compared to the
measurements. On system-level with real application
benchmarks, the relative error was shown to be lower than
6.9 %.

Future work aims at implementing a silicon prototype of
the CoreManager in a heterogeneous MPSoC. Further
optimizations of the architecture and the algorithms will be
performed, especially regarding performance, area and
power consumption.

ACKNOWLEDGMENT

The major part of this research work has been funded by
the DFG through the cluster of excellence Center for
Advancing Electronics Dresden and the European Union and
the state of Saxony through the IMData project. A minor part
was funded by the German Federal Ministry of Education
and Research within the scope of the CoolBaseStations
project.

Furthermore, we would like to thank Synopsys, Tensilica
and Xilinx for sponsoring Software, IPs and prototyping
FPGAs.

REFERENCES
[1] K. Asanovic et al., “The landscape of parallel computing

research: a view from Berkeley,” Technical Report
UCB/EECS-2006-183, Electrical Engineering and Computer
Sciences, University of California, Berkeley, Long Beach,
CA, USA, Dec. 2006.

[2] E. A. Lee and D.G. Messerschmitt, “Synchronous data flow,”
Proceedings of the IEEE, Vol.75, No.9, Sept. 1987, pp. 1235–
1245, doi: 10.1109/PROC.1987.13876.

[3] C. R. Johns and D. A. Brokenshire, "Introduction to the Cell
Broadband Engine Architecture," IBM Journal of Research
and Development , Sept. 2007, vol.51, no.5, pp. 503-519.

[4] J. Glossner et al., "The sandbridge SB3011 SDR platform,"
Mobile Future, 2006 and the Symposium on Trends in
Communications, SympoTIC '06, Joint IST Workshop, June
2006, pp. 2-5, doi: 10.1109/TIC.2006.1708006.

[5] T. Limberg et al., “A Fully Programmable 40 GOPS SDR
Single Chip Baseband for LTE/WiMAX Terminals,” 34th
European Solid-State Circuits Conference (ESSCIRC'08),
Edinburgh, Great Britain, Sept. 2008, pp. 466-469, doi:
10.1109/ESSCIRC.2008.4681893.

[6] J. Lee, V. J. Mooney III, A. Daleby, K. Ingström, T. Klevin,
and L. Lindh, “A comparison of the RTU hardware RTOS
with a hardware/software RTOS,” ASP-DAC '03,
Proceedings of the Asia and South Pacific Design Automation
Conference, 2003, pp. 683-688, doi: 10.1109/
ASPDAC.2003.1195108.

[7] P. Bellens, J.M. Perez, R.M. Badia, and J. Labarta, "CellSs: a
Programming Model for the Cell BE Architecture," in SC’06,
Proceedings of the Supercomputing conference, 2006, p. 86.

[8] M. Frigo, C. E. Leiserson, and K. H. Randall, “The
implementation of the Cilk-5 multithreaded language,”
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, June
1998, pp. 212- 223, doi: 10.1145/277652.27772.

[9] K. Fatahalian et al., “Sequoia: Programming the memory
hierarchy,” IEEE Conference on Supercomputing, 2006, p. 4,
doi: 10.1109/SC.2006.55.

[10] A. Ghuloum, E. A. E. Sprangle, and J. Fang, “Flexible
parallel programming for Terascale Architectures with Ct,”
Intel Technology Journal, vol. 11, no. 3, Aug. 2007, pp. 185-
196.

[11] A. Wang, E. Killian, D. Maydan, and C. Rowen, "Hardware/
software instruction set configurability for system-on-chip
processors," Design Automation Conference, 2001, pp. 184-
188, doi: 10.1109/DAC.2001.156132.

[12] A. Chormoviti, N. Vassiliadis, G. Theodoridis, and S.
Nikolaidis, "Enhancing Embedded Processors with Specific
Instruction Set Extensions for Network Applications,"
Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, 2005, IDAACS 2005,
Sept. 2005, pp.199-203, doi: 10.1109/IDAACS.2005.282969.

[13] J. Castrillon, D. Zhang, T. Kempf, B. Vanthournout, R.
Leupers, and G. Ascheid, “Task Management in MPSoCs: An
ASIP Approach,” International Conference on Computer-
Aided Design, San Jose, California, USA, 2009, pp. 587-594.

[14] H. G. Rotithor, "Taxonomy of dynamic task scheduling
schemes in distributed computing systems," Computers and
Digital Techniques, IEE Proceedings, Jan 1994, vol.141, no.1,
pp.1-10, doi: 10.1049/ip-cdt.19949630.

[15] O. Arnold and G. Fettweis, "Power Aware Heterogeneous
MPSoC with Dynamic Task Scheduling and Increased Data
Locality for Multiple Applications," Embedded Computer
Systems (SAMOS), 2010 International Conference on, July
2010, pp. 110-117, doi: 10.1109/ICSAMOS.2010.5642075.

[16] M. Winter and G. Fettweis, “Guaranteed Service Virtual
Channel Allocation in NoCs for Run-Time Task Scheduling,”
Proceedings of the Design Automation and Test in Europe
(DATE'11), Grenoble, France, March 2011, pp. 1-6, doi:
10.1109/DATE.2011.5763073.

[17] Tensilica Inc., www.tensilica.com, since March 2013
Cadence (http://www.cadence.com) [retrieved August 2013]

[18] O. Arnold, B. Nöthen, and G. Fettweis, “Instruction Set
Architecture Extensions for a Dynamic Task Scheduling
Unit,” Proceedings of the IEEE Annual Symposium on VLSI
(ISVLSI'12), Aug. 2012, pp. 249-254, doi: 10.1109/
ISVLSI.2012.51.

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

