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Abstract—Existing approaches on web server simulation are 

often restricted, especially with the advent of the dynamic web. 

We propose a symbiotic approach for web server simulation, 

using a Faster than Real Time Simulation environment, 

compatible with the Dynamic Data Driven Applications 

Systems concept. The corresponding framework was 

implemented, consisting of: a measurement module, the FRT 

simulator, running concurrently with the web server, a 

controller that manages both the measuring process and the 

simulator, and a network level packet sniffer. Experimental 

results are presented along with open research issues. 

Keywords-modeling; web-server simulation; symbiotic 

simulation; faster-than-real-time simulation 

I. INTRODUCTION 

In symbiotic simulation [23], a simulation system and a 
physical system are closely associated with each other, in a 
potentially mutually beneficial relationship. The simulation 
system benefits from real-time measurements about the 
physical system provided by corresponding sensors. The 
physical system, on the other side, may benefit from the 
effects of decisions made by the simulation system. 
Operational decision making has hard real-time constraints 
and the manual evaluation of alternative decisions is 
difficult. Symbiotic simulation may alleviate this problem by 
automatically evaluating what-if scenarios within a 
reasonable period of time.  

In Faster than Real Time Simulation (FRTS) [22][24], 
advancement of simulation time occurs faster than real 
world time. Making models run faster is the modeler's 
responsibility and certainly not a trivial task, since real time 
systems often have hard requirements for interacting with 
the human operator or other agents. Model evolution occurs 
faster than the real world and the experimentation results 
may be compared to the actual system and be used to 
improve the effectiveness of the simulation experiment. 
Incorporating into the model any occurring system changes 
is crucial for the reliability of the experiment; in FRTS, this 
happens in the process of remodeling, i.e., changing model 
specification in real time, as changes occur in the system. 

Dynamic Data Driven Applications Systems (DDDAS) 
[21] is a concept of symbiotic relationship between 
application and measurement systems, wherein applications 
can accept and respond dynamically to new data, and 

reversely, the ability of application systems to dynamically 
control the measurement processes. The synergistic 
feedback control-loop between application simulations and 
measurements opens new domains in the capabilities of 
simulations with high potential pay-off, using sensors to 
produce large quantities of telemetry that are fed into 
simulations that model key quantities of interest. As data are 
processed, computational models are adjusted to best agree 
with known measurements. If properly done, this increases 
the predictive capability of the simulation system. 

Web server modeling [6][10][14] and simulation [9][12], 
as well as http analysis [5][13] and web traffic modeling 
[11][15], while very active in the past, has received little 
contemporary attention, mainly due to the onslaught of the 
dynamic web and the inability of off-line simulations to use 
general models for the production of useful results. In this 
paper we propose the use of symbiotic simulation as an 
approach that could bring back the edge to the area, by 
enabling on-line simulations to use accurate and continually 
updated models, and produce useful insights about the real 
system’s future (e.g., saturation, utilization, etc.) in real 
time. 

The rest of the paper is organized as follows. In the 
second section, we present a brief review of web server 
simulation research, identify shortcomings and propose how 
to overcome them. In the third section, we present the 
proposed framework, and, in the fourth, the evaluation of 
our approach. We conclude at the fifth section. 

II. WEB SERVER SIMULATION – OPEN ISSUES 

The first published research in web server modeling and 
simulation [1] used a simple, high-level, open queuing 
network model (single server) and produced a theoretical 
upper bound on the serving capacity of Web servers. The 
single-server approach was also adopted in [3], where the 
model presented was an abstraction of the actions that occur 
at the session level layer, and all actions associated with the 
network layer were ignored, including specifics about 
individual TCP connections associated with requests (the 
web server was modeled as a single-server queue with single 
stream of Poisson arrivals). Colored Petri Nets (CPN) 
modeling was used in [4], where it was assumed that the 
fundamental service offered by a web server to web clients, 
is access to the documents stored therein. Only HTTP/1.0 
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was considered but it was noted that the CPN model could 
be easily modified to reflect HTTP/1.1. An end-to-end 
queuing model for the performance analysis of a web server 
was presented by Van Der Mei et al. [2], which described the 
impacts and interactions of the TCP subsystem, HTTP 
subsystem, I/O subsystem, and network, to predict the 
performance of web servers (in terms of end-to-end response 
time and effective throughput). This was a multi-server 
approach for static content only, although it was stated that 
the approach was valid for dynamic content as well. In the 
most recent web server performance analysis we found [7], 
it was noted that, considering the concurrent processing 
capability of modern web servers, it would be appropriate to 
consider them as multi-server systems. An M/G/m queuing 
model was presented, which was validated for deterministic 
and heavy-tailed workloads using experimentation. It was 
proposed that for most web servers, the capacity of the 
queue to hold requests when all the resources are busy was 
typically very large (to ensure that the probability of denying 
a request is very low); thus, queue size was assumed to be 
infinite. 

Hereby, the restrictions we have identified in existing 
web server simulation approaches are discussed. 

A. Complexity of dynamic content modeling 

All models proposed so far have been specifically 
designed for, and tested with, static web server content, i.e., 
files of various types (HTML, JPEG, etc.) stored on a 
physical medium and accessed by the web server through the 
OS file system. Although a couple of approaches state that, 
since verified for static content, they are equally valid for 
dynamic content, there have been no reports of such 
successful attempts. Considering the simplifications already 
made to succeed in modeling solely static content, it is quite 
understandable that dynamic content proves very hard to 
model with acceptable degree of success. Apart from the 
already modeled response transmission time (with whatever 
complexity the existing static content models have 
established), there are other factors for which very little is 
(or can be) known, e.g., script engine (architecture, version, 
implementation platform, OS of availability), database 
engine (connection, efficiency, inter-networking factors, 
hardware parameters), quality and efficiency of the code that 
implements the dynamic application, etc. Apparently, the 
generality of static content approaches is of necessity lost, 
and a separate model must exist for each web application at 
a particular OS, network and hardware setup, at a specific 
point in time. Therefore, we decided to use a higher level 
modeling approach, focusing on the web server as a request 
processor. Dynamic applications, especially those that 
connect to databases, spend much more of their processing 
time retrieving data than preparing and sending the response 
to the client through the network. For dynamic content, what 
static content models are simulating is probably no longer 
the deciding factor for web server load. 

B. No information about lost/denied requests 

Content (i.e., TCP packets) gets lost during HTTP 
interactions over the internet all the time. As a rule, this is 
attributed to network congestion; however, another source is 
possible: web server overload. Web requests are processed 
from at least two queues: the TCP connection queue, where 
“socket-open” requests are gathered by the OS, and the 
HTTP request queue, where each accepted TCP connection 
waits until an http-thread (or process) becomes available to 
read, process the incoming request and send back the 
response. These queues, especially in today’s computer 
systems where RAM is cheap, are typically very large – but 
definitely not infinite, although in all related work, they have 
been considered as such. Dropped requests never leave a 
trace in the web server’s access log files, although they do 
use system resources; therefore, they should be modeled. 

C. HTTP/TCP-specific end-to-end modeling 

Most previous approaches have used the simplification 
that service time (server processing plus network I/O) is 
strongly related to the size of the HTTP response (in bytes), 
an approach that admittedly worked well for proposing 
improvements for the HTTP, and sometimes TCP as well, 
protocol. The models developed are very detailed and they 
lack the necessary simplicity for real life use – mainly 
because some, of their many, parameters are dynamic or 
impossible to measure, but also because the simulation 
running time becomes too long for effective use in real-time 
(or faster) setups. Therefore, a simpler, more abstract, 
service-based, and server-oriented approach is called for. 

III. PROPOSED FRTS FRAMEWORK 

The proposed approach does not deal with the TCP (and 
lower) subsystems, focusing instead at the HTTP layer and 
above; it measures performance and updates continually 
running simulations, which try to mirror the real system and 
predict its state in the future. It utilizes a simple web server 
model, combining an appropriate level of detail and faster-
than-real-time execution speed in multiple replications 
within hard time constraints. It consists of: a) a measurement 
module, b) the faster than real time simulator, c) a controller 
that manages the simulator, acquires measurements and 
produces output, and d) a network level packet sniffer. The 
architecture of the proposed framework is depicted in Figure 
1. 

A. Measurement 

The sniffer software (Wireshark 1.6.0 [19]) runs on the 
same hardware with the web server and concurrently 
provides feedback on the network flows that reach it. 
Example settings are shown in Figure 2. The web server 
(Tomcat 7.0.11 [16]) is the real system under test, which 
serves HTTP requests coming from web clients. The web 
server’s access log has been formatted accordingly (using 
the “Valve” capability [18]) to facilitate easiness and speed 
of reading, as shown in Figure 3. 

The pattern signifies that the web server logs (for each 

completed job) the time taken to process the request (%D) 

and the bytes sent including HTTP headers (%B). 
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Figure 1. Components and data flow of the proposed framework 

 

Figure 2. Wireshark capture options just before the Start button is pressed 

 

 

Figure 3. Tomcat’s Valve configuration (conf/server.xml) 

The web server’s access log and the sniffer’s capture file 

(i.e., sniffer log) constitute the measurement logs being used 

by the controller. The log reader component reads the new 

data entered in fixed time intervals, and provides the number 

of incoming HTTP (“GET”) requests identified by the 

sniffer, the service time mean of the HTTP responses served 

by the server, and also the mean and deviation of the size of 

the HTTP responses. 
Measurements are used by the FRTS Controller 

component to decide whether the simulation is still 
accurately depicting the real system or it has deviated due to 
real conditions changing. All the basic model parameters 
(setting the “Connector” section in the “server.xml” file [17] 
as seen in Figure 4) cannot be changed without web server 
restart (which would also necessitate a simulation restart), 
thus are only read once. 

 

 

Figure 4. Tomcat’s Connector configuration (conf/server.xml) 

The most significant measurement is 
maxKeepAliveRequests, which defines the maximum 
number of HTTP requests that can be pipelined until the 
connection is closed by the server. Setting this attribute to 1 
will disable HTTP/1.0 keep-alive, as well as HTTP/1.1 
keep-alive and pipelining. This property (when set to 1) 
makes the M/M/n model applicable to the web server, in a 
more abstract (HTTP and above) view of the web serving 
process without dealing with the TCP specifics. The 
property maxThreads signifies

 
the maximum number of 

request processing threads to be created, i.e., the maximum 
number of simultaneous requests that can be handled. The 
property acceptCount signifies the maximum queue length 
for incoming connection requests when all possible request 
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processing threads are in use; any requests received when 
the queue is full will be refused. The property 
maxConnections sets the maximum number of connections 
that the server will accept and process at any given time; 
when this number has been reached, the server will not 
accept any more connections until the number of 
connections reach below this value – the operating system 
may still accept connections based on the acceptCount 
setting though.

 
This is a property of slightly lower level than 

http (i.e., tcp and socket layer), which we set to 
acceptCount + maxThreads. 

The controller compares the following four 
measurements with the predictions provided by the 
simulation for the past interval: 

 Number of incoming requests 

 Number of serviced requests (completed responses) 

 Ratio of serviced to incoming requests 

 Average size of responses 

All of the predictions must be within the acceptability 

threshold of the measurements, provided as initial simulation 

parameter; if they were not, remodeling occurs: all available 

predictions are thrown away and the simulator is restarted 

with the latest measurements as parameters. The FRTS 

Controller runs on a separate thread, where it alternates 

between processing and sleeping the designated interval, 

taking the steps shown in Figure 5. 
 

 

Figure 5. FRTS Controller process 

B. Modeling and Simulation 

The model we use in our simulation was implemented 
according to the Discrete Event Simulation (DES) paradigm 
[20] and is a simple queuing model with a single shared 
finite FIFO queue and a number of servers (n) that service 
jobs waiting in queue and cannot be idle unless the queue is 
empty (M/M/n in queuing theory because both arrivals and 
service times are memoryless, i.e., exponential). The queue 
models the http-queue that the web server has, where 
incoming http-requests are held waiting until an http-thread 
becomes available to process and produce/transmit the http-
response. Servers correspond to available http-threads that 
the web server has and are used to process incoming http-
requests and transmit http-responses. The controller 
manages a number of faster than real time simulators, each 
running an M/M/n model. At real time intervals of the equal 
duration to the simulation intervals, each simulator 

momentarily pauses to gather statistics for that particular 
predicted interval, and then continues simulating from the 
exact moment it had paused. This way, the controller is able 
to provide predictions about the values of interest (requests, 
responses, size) for the specified intervals in the future.  

The interarrival time distribution is considered 
exponential and its mean (beta) is computed from the 
sniffer’s capture file measurements of the amount of 
incoming http requests in the latest measurement interval. 
The service time distribution is considered exponential and 
its mean (beta) is from the web server’s web access log 
measurements for each successfully processed http request 
and subsequent http response. The response size distribution 
has been chosen to be Gaussian/Normal. The mean and 
deviation of the response sizes is computed from the web 
access log and passed to the simulation. The measure of 
success is the frequency of remodeling events during its 
execution: the lower the better. 

IV. EVALUATION 

Our aim was to provide validation and verification of the 
framework for use with static content web servers in 
controlled (laboratory) conditions, so we did extensive 
experimentation with static content, controlling both the web 
resources dataset available, the test web client and the web 
server settings, as described below. 

A. Datasets 

There are four fixed-size file datasets, each consisting of 
randomly generated files of fixed (per dataset) size equal to 
the number in parenthesis in kilobytes: 

 F(1): 10k different files of 1kb size 

 F(10): 1k different files of 10kb size 

 F(100): 100 different files of 100kb size 

 F(1000): 10 different files of 1000kb size 
The total volume of each dataset was set to be the same, 

10 megabytes; they were used for fine-tuning the simulation 
setup and as the backbone for varied-size experimenting. 

We used combinations of the F datasets for creating 
varied-size datasets, by merging the various F datasets in all 
possible combinations; thus creating skewed probabilities of 
response size, with the intent of proving that the simulation 
setup is versatile enough to cope with such traffic: 

 V(A): F(1) + F(10) 

 V(B): F(1) + F(100) 

 V(C): F(1) + F(1000) 

 V(D):F(10) + F(100) 

 V(E): F(10) + F(1000) 

 V(F): F(100) + F(1000) 

 V(G): F(1) + F(10) + F(100) 

 V(H): F(1) + F(100) + F(1000) 

 V(I): F(1) + F(10) + F(1000) 

 V(J): F(10) + F(100) + F(1000) 

 V(K):F(1) + F(10) + F(100) + F(1000) 

 V(L): 35x1kb + 50x10kb + 14x100kb + 1x1000kb 
For example, the V(D) setup consists of merging the 

F(10) and the F(100) datasets; therefore, the probability of 
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requesting a 10 kilobytes file is ten times more than that of a 
100 kilobytes file. V(L) is a dataset of special proportions, 
as it comprises of 35 files from F(1), 50 files from the F(10), 
14 files from the F(100) and 1 file from the F(1000). It is an 
effort to represent the SPECweb96 benchmark [25], which 
has been used extensively for static content web server 
simulation in the past. The SPECweb96 workload defines 
four classes of files to get, based on the following file sizes: 
less than 1 KB, 1 to 10 KB, 10 to 100 KB, and 100 KB to 1 
MB (there are several files in each class, with sizes 
distributed evenly through the range for that class). 
SPECweb96 directs 35 percent of its activity to the smallest 
class, 50 percent to the 1-to-10-KB class, 14 percent to the 
10-to-100-KB class, and one percent to the largest files. 

B. Simulation Setup 

For the final experimentation setup, we picked 30 
simulators as the best compromise between accuracy and 
performance (increasing their number did not significantly 
increase accuracy) and acceptance threshold of ±20% (i.e., 
system will not proceed to remodeling if predicted values 
are within 80% - 120% of measured values) over the four 
measurements monitored.  

The monitoring interval was set at 30 sec, to provide for 
RAM conservation, emergent dynamic HTTP variability and 
modeling suitability. It was the lowest value that allowed for 
consistent simulation in our experiments; with values below 
30 sec, the simulations had trouble converging. The 
prediction window was set at 10 intervals into the future 
(i.e., 5 minutes of real time); if a simulator reached that 
threshold of predictions, it went to ‘sleep’ to conserve 
system resources. Each experiment lasted at least 40 
intervals (i.e., more than 20 minutes of real time), a long 
enough duration for interesting phenomena to emerge. 

We used one multi-threaded web client to create the 
server workload with exponential inter-request rate and 
uniform random selection of file requested from all those 
available in each dataset (thus creating the skewed 
probabilities explained earlier). 

C. Experimentation 

The web server was setup to run with either 1 or 100 
processing threads using a queue of either 1 or 100 pending 
requests. These values were of course mirrored in the FRTS 
simulators for accurate modeling. The web client was setup 
to create either 10 requests/sec or 100 requests/sec, values 
that proved during fine-tuning to be the thresholds for 
interesting behavior and implementation stress. 

We run experiments with these eight different 
combinations over the four F datasets (32 experiments) and 
the twelve V datasets (96 experiments); 128 experiments in 
total. For each experiment we measured the percent of 
overall FRTS success, i.e., the ratio of intervals that 
predictions were within acceptance threshold (i.e., no 
remodeling) over the total intervals of the simulation run. 

D. Results 

The overall simulation setup ran quite smoothly, 
although FRTS implementation RAM issues lead four 
F(1000) and one V(F) experiments of high request rate (100 
requests/sec) to early shutdown (marked as invalid). 

We found that using the Normal distribution (Gaussian) 
for predicting response size was a poor choice because it 
went astray in most V datasets, causing remodelings that 
could otherwise have been avoided. Size prediction (Z) is 
traditionally important for predicting the response 
benchmark (S); in our model however those are disjoint. 
Therefore, remodelings due to Z alone were excluded from 
success ratio calculations. Success percentages presented 
below account only for ASR remodelings, considering Z 
remodelings as never occurred. 

 

 Figure 6. Results of all 128 experiments 

All experiments showed greater than 65% success, with 
more than half of them in the 91-100% scale. In Figure 6, 
the results of all 128 experiments are shown in detail. The F 
datasets experiments were the less important (included 
mostly for sanity check). The V dataset experiments were 
considered more important; especially the V(L), in which 
success rates were consistently above 90%. The simulation 
was slightly more successful when request rate was low than 
high; it also lost some accuracy in high size datasets and 
those of great variability. However such failings were 
expected, given the simplicity of the model we used. In 
general, the simulation quality seemed unaffected by the 
web server’s ability to cope with the load, providing quality 
predictions even in the interesting occasions that the web 
server could not cope with the load. 

V. CONCLUSION AND FUTURE WORK 

Research in the area of web server simulation is active 
and useful; however, traditional off-line simulations have 
trouble dealing with the onslaught of dynamic web and the 
lack or relevant generic models. The proposed framework is 
a novel symbiotic simulation approach in this direction, with 
the potential of breaking through the barrier of web server 
dynamic content modeling and simulation.  

It is apparent that the framework is ‘cold’ restarted after 
each remodeling, but that cannot be helped as whatever state 
the simulator has reached must be considered invalid. We 
are currently working in incorporating distribution 
estimation, instead of simple means, into the framework. 
The model used is arguably very simple, and more complex 
versions, along with concurrent simulators of different 
models, should be developed. Profiling web traffic and 
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workload classes, delving deeper into the complexity of the 
web server, as well as the stability of the measure and 
remodel loop are also open approaches that we wish to 
investigate. Interesting future expansions include decision 
processes to modify the interval duration and self tuning 
some real system parameters. 

After exploiting the above directions and completing 
testing of the proposed framework for static content web 
server simulation, research will focus solely on its 
applicability for dynamic content. 
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