
Monitoring and Modeling Web Server Performance:

A Symbiotic Simulation Approach

Antonios Kogias, Mara Nikolaidou, and Dimosthenis Anagnostopoulos

Department of Informatics and Telematics

Harokopio University of Athens

Athens, Greece

coyas@hua.gr, mara@hua.gr, dimosthe@hua.gr.

Abstract—Existing approaches on web server simulation are

often restricted, especially with the advent of the dynamic web.

We propose a symbiotic approach for web server simulation,

using a Faster than Real Time Simulation environment,

compatible with the Dynamic Data Driven Applications

Systems concept. The corresponding framework was

implemented, consisting of: a measurement module, the FRT

simulator, running concurrently with the web server, a

controller that manages both the measuring process and the

simulator, and a network level packet sniffer. Experimental

results are presented along with open research issues.

Keywords-modeling; web-server simulation; symbiotic

simulation; faster-than-real-time simulation

I. INTRODUCTION

In symbiotic simulation [23], a simulation system and a
physical system are closely associated with each other, in a
potentially mutually beneficial relationship. The simulation
system benefits from real-time measurements about the
physical system provided by corresponding sensors. The
physical system, on the other side, may benefit from the
effects of decisions made by the simulation system.
Operational decision making has hard real-time constraints
and the manual evaluation of alternative decisions is
difficult. Symbiotic simulation may alleviate this problem by
automatically evaluating what-if scenarios within a
reasonable period of time.

In Faster than Real Time Simulation (FRTS) [22][24],
advancement of simulation time occurs faster than real
world time. Making models run faster is the modeler's
responsibility and certainly not a trivial task, since real time
systems often have hard requirements for interacting with
the human operator or other agents. Model evolution occurs
faster than the real world and the experimentation results
may be compared to the actual system and be used to
improve the effectiveness of the simulation experiment.
Incorporating into the model any occurring system changes
is crucial for the reliability of the experiment; in FRTS, this
happens in the process of remodeling, i.e., changing model
specification in real time, as changes occur in the system.

Dynamic Data Driven Applications Systems (DDDAS)
[21] is a concept of symbiotic relationship between
application and measurement systems, wherein applications
can accept and respond dynamically to new data, and

reversely, the ability of application systems to dynamically
control the measurement processes. The synergistic
feedback control-loop between application simulations and
measurements opens new domains in the capabilities of
simulations with high potential pay-off, using sensors to
produce large quantities of telemetry that are fed into
simulations that model key quantities of interest. As data are
processed, computational models are adjusted to best agree
with known measurements. If properly done, this increases
the predictive capability of the simulation system.

Web server modeling [6][10][14] and simulation [9][12],
as well as http analysis [5][13] and web traffic modeling
[11][15], while very active in the past, has received little
contemporary attention, mainly due to the onslaught of the
dynamic web and the inability of off-line simulations to use
general models for the production of useful results. In this
paper we propose the use of symbiotic simulation as an
approach that could bring back the edge to the area, by
enabling on-line simulations to use accurate and continually
updated models, and produce useful insights about the real
system’s future (e.g., saturation, utilization, etc.) in real
time.

The rest of the paper is organized as follows. In the
second section, we present a brief review of web server
simulation research, identify shortcomings and propose how
to overcome them. In the third section, we present the
proposed framework, and, in the fourth, the evaluation of
our approach. We conclude at the fifth section.

II. WEB SERVER SIMULATION – OPEN ISSUES

The first published research in web server modeling and
simulation [1] used a simple, high-level, open queuing
network model (single server) and produced a theoretical
upper bound on the serving capacity of Web servers. The
single-server approach was also adopted in [3], where the
model presented was an abstraction of the actions that occur
at the session level layer, and all actions associated with the
network layer were ignored, including specifics about
individual TCP connections associated with requests (the
web server was modeled as a single-server queue with single
stream of Poisson arrivals). Colored Petri Nets (CPN)
modeling was used in [4], where it was assumed that the
fundamental service offered by a web server to web clients,
is access to the documents stored therein. Only HTTP/1.0

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

was considered but it was noted that the CPN model could
be easily modified to reflect HTTP/1.1. An end-to-end
queuing model for the performance analysis of a web server
was presented by Van Der Mei et al. [2], which described the
impacts and interactions of the TCP subsystem, HTTP
subsystem, I/O subsystem, and network, to predict the
performance of web servers (in terms of end-to-end response
time and effective throughput). This was a multi-server
approach for static content only, although it was stated that
the approach was valid for dynamic content as well. In the
most recent web server performance analysis we found [7],
it was noted that, considering the concurrent processing
capability of modern web servers, it would be appropriate to
consider them as multi-server systems. An M/G/m queuing
model was presented, which was validated for deterministic
and heavy-tailed workloads using experimentation. It was
proposed that for most web servers, the capacity of the
queue to hold requests when all the resources are busy was
typically very large (to ensure that the probability of denying
a request is very low); thus, queue size was assumed to be
infinite.

Hereby, the restrictions we have identified in existing
web server simulation approaches are discussed.

A. Complexity of dynamic content modeling

All models proposed so far have been specifically
designed for, and tested with, static web server content, i.e.,
files of various types (HTML, JPEG, etc.) stored on a
physical medium and accessed by the web server through the
OS file system. Although a couple of approaches state that,
since verified for static content, they are equally valid for
dynamic content, there have been no reports of such
successful attempts. Considering the simplifications already
made to succeed in modeling solely static content, it is quite
understandable that dynamic content proves very hard to
model with acceptable degree of success. Apart from the
already modeled response transmission time (with whatever
complexity the existing static content models have
established), there are other factors for which very little is
(or can be) known, e.g., script engine (architecture, version,
implementation platform, OS of availability), database
engine (connection, efficiency, inter-networking factors,
hardware parameters), quality and efficiency of the code that
implements the dynamic application, etc. Apparently, the
generality of static content approaches is of necessity lost,
and a separate model must exist for each web application at
a particular OS, network and hardware setup, at a specific
point in time. Therefore, we decided to use a higher level
modeling approach, focusing on the web server as a request
processor. Dynamic applications, especially those that
connect to databases, spend much more of their processing
time retrieving data than preparing and sending the response
to the client through the network. For dynamic content, what
static content models are simulating is probably no longer
the deciding factor for web server load.

B. No information about lost/denied requests

Content (i.e., TCP packets) gets lost during HTTP
interactions over the internet all the time. As a rule, this is
attributed to network congestion; however, another source is
possible: web server overload. Web requests are processed
from at least two queues: the TCP connection queue, where
“socket-open” requests are gathered by the OS, and the
HTTP request queue, where each accepted TCP connection
waits until an http-thread (or process) becomes available to
read, process the incoming request and send back the
response. These queues, especially in today’s computer
systems where RAM is cheap, are typically very large – but
definitely not infinite, although in all related work, they have
been considered as such. Dropped requests never leave a
trace in the web server’s access log files, although they do
use system resources; therefore, they should be modeled.

C. HTTP/TCP-specific end-to-end modeling

Most previous approaches have used the simplification
that service time (server processing plus network I/O) is
strongly related to the size of the HTTP response (in bytes),
an approach that admittedly worked well for proposing
improvements for the HTTP, and sometimes TCP as well,
protocol. The models developed are very detailed and they
lack the necessary simplicity for real life use – mainly
because some, of their many, parameters are dynamic or
impossible to measure, but also because the simulation
running time becomes too long for effective use in real-time
(or faster) setups. Therefore, a simpler, more abstract,
service-based, and server-oriented approach is called for.

III. PROPOSED FRTS FRAMEWORK

The proposed approach does not deal with the TCP (and
lower) subsystems, focusing instead at the HTTP layer and
above; it measures performance and updates continually
running simulations, which try to mirror the real system and
predict its state in the future. It utilizes a simple web server
model, combining an appropriate level of detail and faster-
than-real-time execution speed in multiple replications
within hard time constraints. It consists of: a) a measurement
module, b) the faster than real time simulator, c) a controller
that manages the simulator, acquires measurements and
produces output, and d) a network level packet sniffer. The
architecture of the proposed framework is depicted in Figure
1.

A. Measurement

The sniffer software (Wireshark 1.6.0 [19]) runs on the
same hardware with the web server and concurrently
provides feedback on the network flows that reach it.
Example settings are shown in Figure 2. The web server
(Tomcat 7.0.11 [16]) is the real system under test, which
serves HTTP requests coming from web clients. The web
server’s access log has been formatted accordingly (using
the “Valve” capability [18]) to facilitate easiness and speed
of reading, as shown in Figure 3.

The pattern signifies that the web server logs (for each

completed job) the time taken to process the request (%D)

and the bytes sent including HTTP headers (%B).

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Figure 1. Components and data flow of the proposed framework

Figure 2. Wireshark capture options just before the Start button is pressed

Figure 3. Tomcat’s Valve configuration (conf/server.xml)

The web server’s access log and the sniffer’s capture file

(i.e., sniffer log) constitute the measurement logs being used

by the controller. The log reader component reads the new

data entered in fixed time intervals, and provides the number

of incoming HTTP (“GET”) requests identified by the

sniffer, the service time mean of the HTTP responses served

by the server, and also the mean and deviation of the size of

the HTTP responses.
Measurements are used by the FRTS Controller

component to decide whether the simulation is still
accurately depicting the real system or it has deviated due to
real conditions changing. All the basic model parameters
(setting the “Connector” section in the “server.xml” file [17]
as seen in Figure 4) cannot be changed without web server
restart (which would also necessitate a simulation restart),
thus are only read once.

Figure 4. Tomcat’s Connector configuration (conf/server.xml)

The most significant measurement is
maxKeepAliveRequests, which defines the maximum
number of HTTP requests that can be pipelined until the
connection is closed by the server. Setting this attribute to 1
will disable HTTP/1.0 keep-alive, as well as HTTP/1.1
keep-alive and pipelining. This property (when set to 1)
makes the M/M/n model applicable to the web server, in a
more abstract (HTTP and above) view of the web serving
process without dealing with the TCP specifics. The
property maxThreads signifies

the maximum number of

request processing threads to be created, i.e., the maximum
number of simultaneous requests that can be handled. The
property acceptCount signifies the maximum queue length
for incoming connection requests when all possible request

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

processing threads are in use; any requests received when
the queue is full will be refused. The property
maxConnections sets the maximum number of connections
that the server will accept and process at any given time;
when this number has been reached, the server will not
accept any more connections until the number of
connections reach below this value – the operating system
may still accept connections based on the acceptCount
setting though.

This is a property of slightly lower level than

http (i.e., tcp and socket layer), which we set to
acceptCount + maxThreads.

The controller compares the following four
measurements with the predictions provided by the
simulation for the past interval:

 Number of incoming requests

 Number of serviced requests (completed responses)

 Ratio of serviced to incoming requests

 Average size of responses

All of the predictions must be within the acceptability

threshold of the measurements, provided as initial simulation

parameter; if they were not, remodeling occurs: all available

predictions are thrown away and the simulator is restarted

with the latest measurements as parameters. The FRTS

Controller runs on a separate thread, where it alternates

between processing and sleeping the designated interval,

taking the steps shown in Figure 5.

Figure 5. FRTS Controller process

B. Modeling and Simulation

The model we use in our simulation was implemented
according to the Discrete Event Simulation (DES) paradigm
[20] and is a simple queuing model with a single shared
finite FIFO queue and a number of servers (n) that service
jobs waiting in queue and cannot be idle unless the queue is
empty (M/M/n in queuing theory because both arrivals and
service times are memoryless, i.e., exponential). The queue
models the http-queue that the web server has, where
incoming http-requests are held waiting until an http-thread
becomes available to process and produce/transmit the http-
response. Servers correspond to available http-threads that
the web server has and are used to process incoming http-
requests and transmit http-responses. The controller
manages a number of faster than real time simulators, each
running an M/M/n model. At real time intervals of the equal
duration to the simulation intervals, each simulator

momentarily pauses to gather statistics for that particular
predicted interval, and then continues simulating from the
exact moment it had paused. This way, the controller is able
to provide predictions about the values of interest (requests,
responses, size) for the specified intervals in the future.

The interarrival time distribution is considered
exponential and its mean (beta) is computed from the
sniffer’s capture file measurements of the amount of
incoming http requests in the latest measurement interval.
The service time distribution is considered exponential and
its mean (beta) is from the web server’s web access log
measurements for each successfully processed http request
and subsequent http response. The response size distribution
has been chosen to be Gaussian/Normal. The mean and
deviation of the response sizes is computed from the web
access log and passed to the simulation. The measure of
success is the frequency of remodeling events during its
execution: the lower the better.

IV. EVALUATION

Our aim was to provide validation and verification of the
framework for use with static content web servers in
controlled (laboratory) conditions, so we did extensive
experimentation with static content, controlling both the web
resources dataset available, the test web client and the web
server settings, as described below.

A. Datasets

There are four fixed-size file datasets, each consisting of
randomly generated files of fixed (per dataset) size equal to
the number in parenthesis in kilobytes:

 F(1): 10k different files of 1kb size

 F(10): 1k different files of 10kb size

 F(100): 100 different files of 100kb size

 F(1000): 10 different files of 1000kb size
The total volume of each dataset was set to be the same,

10 megabytes; they were used for fine-tuning the simulation
setup and as the backbone for varied-size experimenting.

We used combinations of the F datasets for creating
varied-size datasets, by merging the various F datasets in all
possible combinations; thus creating skewed probabilities of
response size, with the intent of proving that the simulation
setup is versatile enough to cope with such traffic:

 V(A): F(1) + F(10)

 V(B): F(1) + F(100)

 V(C): F(1) + F(1000)

 V(D):F(10) + F(100)

 V(E): F(10) + F(1000)

 V(F): F(100) + F(1000)

 V(G): F(1) + F(10) + F(100)

 V(H): F(1) + F(100) + F(1000)

 V(I): F(1) + F(10) + F(1000)

 V(J): F(10) + F(100) + F(1000)

 V(K):F(1) + F(10) + F(100) + F(1000)

 V(L): 35x1kb + 50x10kb + 14x100kb + 1x1000kb
For example, the V(D) setup consists of merging the

F(10) and the F(100) datasets; therefore, the probability of

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

requesting a 10 kilobytes file is ten times more than that of a
100 kilobytes file. V(L) is a dataset of special proportions,
as it comprises of 35 files from F(1), 50 files from the F(10),
14 files from the F(100) and 1 file from the F(1000). It is an
effort to represent the SPECweb96 benchmark [25], which
has been used extensively for static content web server
simulation in the past. The SPECweb96 workload defines
four classes of files to get, based on the following file sizes:
less than 1 KB, 1 to 10 KB, 10 to 100 KB, and 100 KB to 1
MB (there are several files in each class, with sizes
distributed evenly through the range for that class).
SPECweb96 directs 35 percent of its activity to the smallest
class, 50 percent to the 1-to-10-KB class, 14 percent to the
10-to-100-KB class, and one percent to the largest files.

B. Simulation Setup

For the final experimentation setup, we picked 30
simulators as the best compromise between accuracy and
performance (increasing their number did not significantly
increase accuracy) and acceptance threshold of ±20% (i.e.,
system will not proceed to remodeling if predicted values
are within 80% - 120% of measured values) over the four
measurements monitored.

The monitoring interval was set at 30 sec, to provide for
RAM conservation, emergent dynamic HTTP variability and
modeling suitability. It was the lowest value that allowed for
consistent simulation in our experiments; with values below
30 sec, the simulations had trouble converging. The
prediction window was set at 10 intervals into the future
(i.e., 5 minutes of real time); if a simulator reached that
threshold of predictions, it went to ‘sleep’ to conserve
system resources. Each experiment lasted at least 40
intervals (i.e., more than 20 minutes of real time), a long
enough duration for interesting phenomena to emerge.

We used one multi-threaded web client to create the
server workload with exponential inter-request rate and
uniform random selection of file requested from all those
available in each dataset (thus creating the skewed
probabilities explained earlier).

C. Experimentation

The web server was setup to run with either 1 or 100
processing threads using a queue of either 1 or 100 pending
requests. These values were of course mirrored in the FRTS
simulators for accurate modeling. The web client was setup
to create either 10 requests/sec or 100 requests/sec, values
that proved during fine-tuning to be the thresholds for
interesting behavior and implementation stress.

We run experiments with these eight different
combinations over the four F datasets (32 experiments) and
the twelve V datasets (96 experiments); 128 experiments in
total. For each experiment we measured the percent of
overall FRTS success, i.e., the ratio of intervals that
predictions were within acceptance threshold (i.e., no
remodeling) over the total intervals of the simulation run.

D. Results

The overall simulation setup ran quite smoothly,
although FRTS implementation RAM issues lead four
F(1000) and one V(F) experiments of high request rate (100
requests/sec) to early shutdown (marked as invalid).

We found that using the Normal distribution (Gaussian)
for predicting response size was a poor choice because it
went astray in most V datasets, causing remodelings that
could otherwise have been avoided. Size prediction (Z) is
traditionally important for predicting the response
benchmark (S); in our model however those are disjoint.
Therefore, remodelings due to Z alone were excluded from
success ratio calculations. Success percentages presented
below account only for ASR remodelings, considering Z
remodelings as never occurred.

 Figure 6. Results of all 128 experiments

All experiments showed greater than 65% success, with
more than half of them in the 91-100% scale. In Figure 6,
the results of all 128 experiments are shown in detail. The F
datasets experiments were the less important (included
mostly for sanity check). The V dataset experiments were
considered more important; especially the V(L), in which
success rates were consistently above 90%. The simulation
was slightly more successful when request rate was low than
high; it also lost some accuracy in high size datasets and
those of great variability. However such failings were
expected, given the simplicity of the model we used. In
general, the simulation quality seemed unaffected by the
web server’s ability to cope with the load, providing quality
predictions even in the interesting occasions that the web
server could not cope with the load.

V. CONCLUSION AND FUTURE WORK

Research in the area of web server simulation is active
and useful; however, traditional off-line simulations have
trouble dealing with the onslaught of dynamic web and the
lack or relevant generic models. The proposed framework is
a novel symbiotic simulation approach in this direction, with
the potential of breaking through the barrier of web server
dynamic content modeling and simulation.

It is apparent that the framework is ‘cold’ restarted after
each remodeling, but that cannot be helped as whatever state
the simulator has reached must be considered invalid. We
are currently working in incorporating distribution
estimation, instead of simple means, into the framework.
The model used is arguably very simple, and more complex
versions, along with concurrent simulators of different
models, should be developed. Profiling web traffic and

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

workload classes, delving deeper into the complexity of the
web server, as well as the stability of the measure and
remodel loop are also open approaches that we wish to
investigate. Interesting future expansions include decision
processes to modify the interval duration and self tuning
some real system parameters.

After exploiting the above directions and completing
testing of the proposed framework for static content web
server simulation, research will focus solely on its
applicability for dynamic content.

REFERENCES

[1] L. P. Slothouber, “A Model of Web Server Performance,” 5th
International Web Conference, 1996 (poster).

[2] R. D.Van Der Mei, R. Hariharan, and P. K. Reiser, “Web
Server Performance Modeling,” Springer Telecommunication
Systems, Vol. 16, Issue 3-4, March 2001, pp. 361-378.

[3] A. C. Dalal and S. Jordan, “Improving User-Perceived
Performance at a World Wide Web Server,” Proc. IEEE
Global Telecommunications Conference (GLOBECOM '01),
IEEE, Vol. 4, pp. 2465-2469, 2001,
doi:10.1109/GLOCOM.2001.966220.

[4] L. Wells, S. Christensen, L. M. Kristensen, and K. H.
Mortensen, “Simulation Based Performance Analysis of Web
Servers”, Proc. 9th international Workshop on Petri Nets and
Performance Models (PNPM'01), IEEE Computer Society,
2001, p. 59.

[5] C. D. Murta and G. N. Dutra, “Modeling HTTP Service
Times,” Proc. Global Telecommunications Conference
(GLOBECOM '04), IEEE, Vol. 2, pp. 972-976, 2004,
doi:10.1109/GLOCOM.2004.1378104.

[6] V. V. Panteleenko and V. W. Freeh, “Web Server
Performance in a WAN Environment,” Proc. 12th
International Conference on Computer Communications and
Networks (ICCCN 2003), pp. 364-369, 1997,
doi:10.1109/ICCCN.2003.1284195.

[7] J. Lu, and S. S. Gokhale, “Web Server Performance
Analysis,” Proc. 6th international conference on Web
engineering (ICWE '06), ACM, 2006, pp. 111-112,
doi:10.1145/1145581.1145605.

[8] L. Li, R. X. Tian, B. Yang, B., and Z. G. Gao, Z. G, “A
Model of Web Server’s Performance-Power Relationship,”
Proc. IEEE International Conference on Communication
Software and Networks (ICCSN '09), IEEE Computer Society
2009, pp. 260-264, doi:10.1109/ICCSN.2009.131.

[9] Y. Hu, A. Nanda, and Q. Yang, “Measurement, Analysis and
Performance Improvement of the Apache Web Server,” Proc.
1999 IEEE International 12th International Performance,
Computing and Communications Conference, 1999, pp. 261-
267, doi:10.1109/PCCC.1999.749447.

[10] A. E. Hassan and R. C. Holt, “A Reference Architecture for
Web Servers,” Proc. 7th Working Conference on Reverse
Engineering (WCRE'00), IEEE Computer Society, 2000, pp.
150-160.

[11] M. S. Squillante, D. D. Yao, and L. Zhang, “Web Traffic
Modeling and Web Server Performance Analysis,” ACM
SIGMETRICS Performance Evaluation Review, Vol. 27
Issue 3, ACM, Dec. 1999, pp. 24-27,
doi:10.1145/340242.340323.

[12] S. Gokhale, U. Praphamontripong, A. Gokhale, and J. Gray,
“Performance Analysis of an Asynchronous Web Server,”
Proc. 30th Annual International Computer Software and
Applications Conference (COMPSAC '06), Vol. 02, IEEE
Computer Society, 2006, pp. 22-28,
doi:10.1109/COMPSAC.2006.148.

[13] J. Heidemann, K. Obraczka, and J. Touch, “Modeling the
Performance of http Over Several Transport Protocols,”
IEEE/ACM Transactions on Networking (TON), Vol. 5 Issue
5, Oct. 1997, pp. 616-630, doi:10.1109/90.649564.

[14] J. C. Hu, I. Pyarali, and D. C. Schmidt, “Measuring the
Impact of Event Dispatching and Concurrency Models on
Web Server Performance Over High-speed Networks,” Proc.
Global Telecommunications Conference (GLOBECOM '97),
IEEE, Vol. 3, pp. 1924-1931, 1997,
doi:10.1109/GLOCOM.1997.644610.

[15] B. Liu and E. A. Fox, “Web Traffic Latency: Characteristics
and Implications,” Journal of Universal Computer Science,
Vol. 4, No 9, pp. 763-778, 1998, doi:10.3217/jucs-004-09-
0763.

[16] “Apache Tomcat 7,” http://tomcat.apache.org, 22.08.2013.

[17] “The HTTP Connector,” http://tomcat.apache.org/tomcat-7.0-
doc/config/http.html, 22.08.2013.

[18] “The Valve Component,” http://tomcat.apache.org/tomcat-
7.0-doc/config/valve.html, 22.08.2013.

[19] “Wireshark,” http://www.wireshark.org, 22.08.2013.

[20] A. M. Law and W. D. Kelton, “Simulation Modeling and
Analysis,” McGraw–Hill, 2000, pp. 6-57.

[21] C. C. Douglas, “Dynamic Data Driven Applications Systems
– DDDAS 2008,” Proc. 8th International Conference on
Computational Science, Part III, Springer Lecture Notes in
Computer Science, Vol. 5103, 2008, pp. 3-4.

[22] D. Anagnostopoulos, M. Nikolaidou, and P. Georgiadis, “A
Conceptual Methodology for Conducting Faster Than Real
Time Experiments,” Transactions of the Society for Computer
Simulation International, Vol. 16 Issue 2, pp. 70-77, June
1999.

[23] H. Aydt, S. J. Turner, W. Cai, and M. Y. H. Low, “Research
Issues in Symbiotic Simulation,” Proc. Winter Simulation
Conference (WSC '09), 2009, pp. 1213-1222.

[24] D. Anagnostopoulos and M. Nikolaidou, “Executing a
Minimum Number of Replications to Support the Reliability
of FRTS Predictions,” Proc.7th IEEE International
Symposium on Distributed Simulation and Real-Time
Applications (DS-RT '03), IEEE Computer Society, 2003, p.
138.

[25] “Answers to Common Questions About the SPECweb96
Benchmark,” http://www.spec.org/web96/web96q+a.html,
22.08.2013.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

	I. INTRODUCTION
	V. CONCLUSION AND FUTURE WORK
	REFERENCES

