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AbstractDevelopment of concurrent and time-dependent 

software systems is currently growing in its strategic 

importance due to the diffusion of powerful multi-

core/many-core machines. To effectively cope with current 

and prospective concurrency demands, formal tools have to 

be used. A library of reusable UPPAAL timed automata was 

achieved, which enables a reasoning on concurrency. The 

library is tailored to Java. However, similar solutions could 

be also developed to work with other languages as well. This 

paper outlines library design and focuses on its exploitation 

for model-based prediction of the correctness of thread-safe 

Java objects. 
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I. INTRODUCTION 

This work argues that to properly design and 

implement concurrent systems, the adoption of formal 

tools, which can support a reasoning on concurrency is 

mandatory. 

This paper introduces the design of a UPPAAL library 

of timed automata [1-3], which improves preliminary 

experience described in [4]. Library design was mainly 

inspired by Java concurrency features. Common 

synchronization mechanisms such as semaphores and 

monitors, both classic and Java specific, are provided. On 

top of these mechanisms, new synchronizers, tailored to 

particular programming styles, can be built. The library 

enables modeling of a concurrent program according to 

implementation aspects, thus reducing the semantic gap 

which normally exists between a specification model and 

its vocabulary (e.g., atomic actions, broadcast 

synchronization, etc.) and a corresponding 

implementation. Analysis activities are based on 

exhaustive verification and model checking [5], [6]. 

 The paper proposes an approach to modeling and 

verification (M&V) of Java thread-safe objects and 

illustrates it by practical examples. 

 The model-based prediction approach can be related to 

the work of Hamberg and Vaandrager [7] and to the 

known Finite State Processes (FSP)/Labeled Transition 

System Analyzer (LTSA) tool developed by Magee and 

Kramer [8]. With the first work our approach shares the 

use of the UPPAAL model checker. However, our library is 

characterized by its volition of being Java tailored. In 

addition, some common structures like semaphores 

appear to be more efficient. The second approach is based 

on the FSP process algebra. An FSP model is transformed 

into a labeled transition system to be analyzed by the 

LTSA tool. However, this approach does not allow, for 

instance, the expression of a FIFO policy (e.g., for 

awaking processes waiting on a semaphore). In addition, 

the use of a discrete time model can complicate the 

verification of complex models. 

 The paper is structured as follows. Section II outlines 

the developed UPPAAL. Section III proposes an approach 

for M&V of Java thread-safe objects. Section IV 

describes a more complex modeling example. Finally, an 

indication of research directions which deserve further 

work is given in the conclusion. 

 

II. CONCURRENCY CONTROL IN UPPAAL 

A library of UPPAAL template processes (i.e., timed 

automata TA) was developed, which provides such 

common concurrent structures as semaphores and 

monitors [9], both classic and Java specific. The 

following gives an outline of the library contents. 

 
Figure 1. The BinarySemaphore automaton 

 

 Fig. 1 shows an automaton for classic binary 

semaphore. A similar construction exists for a general, 

counting semaphore. Classic P/V operations are 

implemented as unicast channel arrays P[.]/V[.] whose 

dimension mirrors the number of semaphores used in a 

model. A P operation on a semaphore s is expressed by 

raising a synchronization P[s]!. The requesting process is 

assumed to put into a global (meta) variable proc its 

unique process id at the time of P[s]!. Variable proc is 

used only during the atomic action of P[s]!, with the 

receiving semaphore which frees it immediately by 

storing the proc value in a local variable. A further 

channel array GO[.], whose dimension coincides with the 

number of processes in the model, is used for blocking the 

requesting process until the semaphore assigns the permit 

to the process. The use of GO is implicit in the operation 

P in a programming language, but in UPPAAL it serves the 

purpose of transforming a strict rendezvous (P[.]!) into an 

extended rendezvous, which terminates when the 

semaphore completes the handling of P[.]! and allows the 

requesting process to unblock. A V[s]! request never 

blocks the requesting process and normally does not 

require the proc mediation. 

 With respect to the realization proposed in [7], our 

semaphores use less variables thus favoring model 
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checking. For instance, the identity of the requesting 

process during a P operation, which finds a binary 

semaphore green (count==1) is temporarily stored in the 

surely empty internal queue of the semaphore.  

 

 
Figure 2. The JSemaphore automaton 

 

 A semaphore automaton (JSemaphore) directly based 

on a provided Java (java.util.concurrent.Semaphore) class 

is shown in Fig. 2. Differences from classic semaphores 

concern the possibility of acquiring/releasing atomically a 

number of permits greater than 1. In addition, a fair 

parameter can be used to request a FIFO behavior of 

acquire requests. This way, an acquire operation, in the 

case there are some waiting processes, puts the requesting 

process at the end of the semaphore queue even if permits 

are available. 

 JSemaphore relies on an interface consisting of channel 

arrays Acquire[.], Release[.], PermitsAvailable[.], GO[.], 

and exploits two global variables: proc and perm. The 

perm variable stores, at the time of an Acquire[s]! or 

Release[s]!, the number of involved permits, and contains 

the number of available permits of the semaphore just 

after a PermitsAvailable[s]! operation. A GO[p]? 

synchronization must follow an Acquire[s]! or a 

PermitsAvailable[s]! command. It is at the time of a 

GO[p]? unblocking operation, that perm is actually filled 

of the semaphore permits number. 

It is worth noting that whereas a burst of release 

operations on a JSemaphore instance used as a mutex, 

will increase the permits number arbitrarily, in the case of 

a BinarySemaphore, a burst of V’s can never augment the 

internal count beyond 1.  

 Although widely used, semaphores are often viewed 

as a low level concurrent abstraction mechanism, where a 

misuse of P/V operations can easily lead to a deadlock. 

Monitors (e.g., [9]), on the other hand, represent a higher 

level concurrent control structure, which naturally acts as 

a guardian of an abstract data type, e.g., encapsulated into 

a Java class. Monitors are a key for achieving thread-safe 

classes by offering control over mutual exclusion among 

class methods (synchronized blocks or critical sections of 

code) and suspension/signaling from within a critical 

section. Different kinds of monitors are defined in the 

literature, which are characterized by different 

programming styles and guarantees/obligations that are 

assigned to both processes and the control structure.  

 Java adopts, as a basic solution, the Lampson & 

Redell [10] monitor structure with broadcast signaling, 

where suspended processes in a synchronized block are 

responsible of re-checking a condition in a while loop to 

see, at each awaking, if it is necessary to coming back to 

waiting or the process can finally exit its waiting status. 

Broadcast signaling does not block the executing process. 

An awaken process has to compete in reacquiring the lock 

for it to actually resume execution. 

 Directly based on the built-in Java monitor structure is 

the JMonitor automaton presented in Fig. 3.  

 
Figure 3. The JMonitor automaton 

 A monitor instance can be operated using such 

channel arrays as enter[mid][pid], exit[mid][pid], 

wait[mid][pid], notifyAll[mid][pid], which accommodate 

for the possible existence of multiple monitor instances in 

a model. Types mid and pid respectively are integer sub-

ranges of unique identifiers of monitors and processes 

used in the model. For instance, enter[m][p]!/exit[m][p]! 

are used by a process p to explicitly enter/exit to/from a 

synchronized block based on monitor m. Similarly, 

wait[m][p]!/notifyAll[m][p]! serve respectively to 

suspend the requesting process p until its condition holds 

(in a while loop), and to awake all the processes 

suspended on monitor m. 

 Every Java object has an implicit lock which can be 

used as a monitor. The lock holds one implicit condition, 

whose meaning is established by the 

modeler/programmer. The lock object is associated with a 

wait-set where both entering processes which find the 

lock closed, and processes within a synchronized block 

(based on the lock object) whose condition prescribes 

waiting, are put (although the two kind of waiting 

processes are clearly distinguished to one another). 

Processes which are suspended for a wait operation can 

only be awaken by a notifyAll operation. The notifyAll 

operation does not free the lock. Other processes awake as 

the lock/monitor is up to be abandoned. In the proposed 

implementation, the wait-set is purposely realized 

implicitly. Processes requesting an enter are simply 

blocked if the monitor is already locked. Processes which 

execute wait are supposed to move into a location (see 

W1 and W2 in Fig. 6) from which they can only exit 

following a relevant notifyAll[.][.]? signal. Towards this, 

channels notifyAll[.][.] are declared as broadcast. 

Following a notifyAll signal, an awaken process has to 

compete for re-acquiring the lock (see edges exiting the 

W1 or W2 location in Fig. 6). Whereas this is implicit in 

the Java wait() method, it is explicit in the proposed 

modeling pattern, thus revealing a semantic issue. 
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 The automaton in Fig. 3 maintains the identity of the 

monitor owner, which is used to realize reentrancy and to 

check for erroneous operations, which in Java correspond 

to raising an IllegalMonitorStateException, e.g., invoking 

a wait or notifyAll operation out of a synchronized block. 

The implicit realization of the wait-set complies with the 

Java specification and lets processes which try to enter the 

monitor and awaken processes to be handled non 

deterministically and thus without any privilege. The 

design makes it possible to implement a timed wait. In 

this case, from the wait location (now provided of a clock 

invariant) the process can also exit when the clock goes 

beyond a given time limit (timeout).  

 In reality, the Java built-in monitor also exposes a 

notify operation to awake one, although unspecific, 

process which is suspended in the wait-set. For generality 

reasons, the automaton in Fig. 3 only implements the 

notifyAll operation because, as discussed in [11], the use 

of notify can cause a Lost-Wakeup-Problem, i.e., a notify 

signal can be lost and the system enters a bad status. 

 On the basis of JMonitor, a monitor structure based on 

the Java Lock/Condition framework was also achieved, 

which allows to split the waiting processes among 

different conditions (waiting rooms) associated with a 

given lock. The signaling mechanism can be directed to a 

specific condition.  

 The library also includes some other classic monitors 

like the Hoare monitor [9], which in a case can be built on 

top of semaphores. The Hoare monitor owns a different 

signaling mechanism: when a process (signaler) changes 

the status of the data structure so that a (possibly) waiting 

process (signalee) on a condition can be awaken because 

the condition holds, control is immediately transferred to 

the signalee (together with the lock), which is thus the 

only process which can proceed. The signaler, on the 

other hand, is put to wait in an urgent queue from where it 

gets unblocked as soon as the monitor is up to become 

free. 

 A discussion about Lampson & Redell vs. Hoare 

monitors can be found in [9] where it is argued, besides 

any runtime implication (e.g., number of context 

switches), that Lampson & Redell monitor can be 

superior in the most general case. 

 

III. AN APPROACH TO M&V OF THREAD-SAFE OBJECTS 

In the following, the proposed M&V approach is 

demonstrated by achieving a synchronizer based on two-

way (or rendezvous) communications. The modeling 

example, which is original, can be used as a (partial) 

proof for programming a class like Exchanger<T> as 

provided in the java.util.concurrent package. The 

mechanism is intended to be used by two processes, 

which both play the sender/receiver roles. When the time 

arrives for a synchronization/communication, the earliest 

process which comes to the appointment awaits the 

partner. When the latest process arrives, processes 

exchange some information, then exit the synchronization 

thus returning to concurrent execution. In particular, the 

exchanger allows each process to send a message to the 

partner and to receive the message sent by the partner. 

Obviously, the mechanism can easily reproduce a CSP 

synchronous communication, when a partner is assigned 

the sender role and the other the receiver role. 

An exchange synchronizer can be easily modeled by 

using the UPPAAL native features, as depicted in Fig. 4. 

 
Figure 4. A native UPPAAL model for an exchanger 

Fig. 4 assumes that each process transmits a local value 

vi and receives from the partner an information to be 

stored in local variable xi. A (meta) global variable d is 

used for the information exchange. Two unicast channels 

ch1 and ch2 are used where, for instance, ch1 can be 

declared as urgent. A committed location ensures an 

atomic exchange of information. Once the 

synchronization starts, on ch1, it is immediately followed 

(without a time passage) by a synchronization on ch2. 

Correctness of the model in Fig. 4 depends, among the 

other, on the fact that in a channel synchronization, the 

update (e.g., d=v1) of the sender (e.g., ch1!) is executed 

before the update (x2=d) of the receiver. 

 However, a native model like that in Fig. 4 cannot be 

immediately translated into Java, simply because the 

UPPAAL vocabulary of atomic actions, urgent channels, 

committed locations, etc. is not supported in the target 

language. The modeler/programmer is thus forced to 

intuitively achieve Java code by using the basic 

vocabulary of Java, e.g., synchronized blocks, 

wait/notifyAll, etc. However, the problem remains that an 

implementation cannot be proved to be a faithful 

representation of its specification model. 

public interface Exchanger<T> { 
 T exchange( T v ); 
}//Exchanger 
 
public class ExchangerMJ<T> implements Exchanger<T>{ 
 private T d; 
 private boolean partner = false, release = false; 
 private Object m = new Object(); //lock/monitor object 
 public T exchange( T v ){ 
  synchronized( m ){ 
   while( release ) //protection from a prompt re-enter 
    try{ m.wait(); }catch( InterruptedException e ){} 
   T x=null; 
   if( !partner ){ 
    d = v; partner = true; 
    while( partner ) //waiting for partner 
     try{ m.wait(); }catch( InterruptedException e ){} 
    x = d; release = false; 
    m.notifyAll(); 
   } 
   else{ 
    x = d; d = v; partner = false; release = true; 
    m.notifyAll(); 
   } 
   return x; 
  } 
 }//exchange 
}//ExchangerMJ 

Figure 5. A Java thread-safe class for the exchanger 

 To reduce the semantic gap existing between an 

UPPAAL model and a Java code, the model can embody 

implementation aspects. Stated in other terms, the model 

can mirror, through reverse-engineering, some Java code. 
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 In Fig. 5, it is shown a Java code realizing the 

exchanger synchronizer. The Exchanger<T> interface 

exposes only the method exchange(v), which transmits v 

and receives the value sent by the partner. The 

ExchangerMJ<T> class implements, in a case, the 

Exchanger<T> interface in terms the of the native Java 

monitor. 

Two waiting points exist in the exchange method in 

Fig. 5: one when the first process arrives and finds the 

partner is lacking (partner is false); another one for 

blocking a process, which finds a synchronization release 

in progress. When the latest process comes to the 

synchronization point, it finds partner=true, takes the 

transmitted data and sends its own information, then 

assigns false to partner, states that a release is up to 

commence, executes notifyAll and, finally, exits the 

synchronization block. Now, it is possible for the just 

exited process, to re-enter immediately the monitor 

whereas the last synchronization is still not finished. 

Apart for data overwriting problems, from Fig. 5 it is easy 

to see that a deadlock situation would occur.  

 

Figure 6. The Exchanger automaton based on JMonitor 

 Fig. 6 portrays a UPPAAL model for the ExchangerMJ 

class (integers are the exchanged data), which is based on 

the JMonitor automaton. Two arrays of channels are used: 

exchange[.] and ok[.], whose dimension is the number of 

processes. A process p requests an exchange through the 

operation exchange[p]! and then blocks on receiving an 

ok[p]? synchronization (see e.g., Fig. 7). Exchanger 

receives as a parameter the unique identifier of the lock 

object to be used internally for the synchronization. Since 

each participating process can wait at a different point in 

the control structure, two instances of the Exchanger 

automaton must be created, each serving a different 

process. Each instance links to the requisting process 

through a nondeterministic select (see the edge outgoing 

from Home in Fig. 6). In addition, information of the 

Exchanger (e.g., variables partner, release, etc.) are to be 

declared global to the model. 

 The use-pattern of Exchanger model in Fig. 6 is 

illustrated in Fig. 7 and Fig. 8, where a Producer sends the 

sequence 1, 2, 3 to a Consumer. Both processes are 

characterized by a process identifier (p) established at 

configuration time. 

 For proper behavior of the application, it is important 

that the consumer receives exactly the same data 

transmitted by the producer at each synchronization point. 

To check correctness of this behavior, the consumer 

model reaches the Error location as soon as it discovers an 

incorrect received data. 

 A system can be configured as indicated in Fig. 9. 

 

 
Figure 7. Producer automaton Figure 8. Consumer automaton 

  
// Place template instantiations here. 
ex0=Exchanger(LOCK); 
ex1=Exchanger(LOCK); 
//ex0=OptimisticExchanger(LOCK); 
//ex1=OptimisticExchanger(LOCK); 
prod=Producer(PROD); 
cons=Consumer(CONS); 
// List one or more processes to be composed into a system. 
system JMonitor,ex0,ex1,prod,cons; 

Figure 9. Producer/consumer system configuration 

 The following queries were issued to the UPPAAL model 

checker. The answers confirm all the queries are satisfied. 

1) A[] !deadlock 
2) A[] cons.R0 imply (prod.BS0 || prod.S0 || prod.BS1) 
3) A[] cons.R1 imply (prod.BS1 || prod.S1 || prod.BS2) 
4) A[] cons.R2 imply (prod.BS2 || prod.Home || prod.BS0) 

Since there are no deadlocks, the consumer is 

guaranteed it never reaches the Error location. Query 2) 

ensures that when the consumer receives 0, the prod(ucer 

can’t have completed the transmission of the next int. The 

producer completes the transmission of 1 when it enters 

the S1 location in Fig. 7. Similar considerations apply to 

queries 2) and 3). 

 
Figure 10. The OptimisticExchanger automaton 

 An optimistic variant of the Exchanger is shown in Fig. 

10, which differs from Fig. 6 only because the first 

waiting point is eliminated.  

 
Figure 11. A screenshot of the simulator after a deadlock 
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By adjusting the system configuration in Fig. 9 so as to 

include two instances of the OptimisticExchanger 

template, it emerges that the first query is no longer 

satisfied. Asking the verifier to generate a diagnostic trace 

and opening it in the simulator, confirms the model is 

deadlocked (see Fig. 11). 

For demonstration purposes, Fig. 12 shows an 

exchanger model based on semaphores. Two binary 

semaphores (with identifiers MUTEX and WAIT) are 

used: one as a mutex (initialized to 1), the other as a 

waiting room (initialized to 0). 

 
Figure 12. The ExchangerS automaton based on semaphores 

 Model in Fig. 12 rests on the “pass the baton” design 

pattern [12], i.e., when the latest process arrives 

(partner=true), it awakes the partner through a V[WAIT]! 

operation and then exits without releasing the mutex. As a 

consequence, the earliest process gets awaken with the 

mutex transferred to it. Therefore, a prompt re-enter is 

thus forbidden because mutex is occupied, and the release 

variable of Fig. 6 is useless. 

 Also, a system based on ExchangerS was configured 

and found correct by model checking.  

As a final remark, except for the GO[.] 

synchronizations, the model in Fig. 12 directly maps on 

Java code. 

 

IV. SECOND M&V EXAMPLE 

The concept of a binary semaphore, corresponding to 

the UPPAAL model in Fig. 1, can be introduced in Java 

through a class as shown in Fig. 13. The realization relies 

on the language native monitor.  

In order to check the correctness of the 

BinarySemaphore class, it was modeled in UPPAAL as 

depicted in Fig. 14, using the JMonitor automaton and the 

approach described in section III. Since the 

BinarySemaphoreMJ rests on JMonitor, it is assumed that 

also at the time of a V[.] operation the requesting process 

assigns its identifier to the global proc variable. 

 A notable difference between the automaton in Fig. 14 

and the Java code in Fig. 13 concerns the realization of 

the linked waiting list, which in Fig. 14 is based on a 

bounded array managed as a FIFO queue. In addition, the 

toAwake integer variable is turned into a bounded int 

variable of UPPAAL, whose upper bound is qs+1 where qs 

is the queue size, established through a parameter of the 

BinarySemaphoreMJ template. As a consequence, when 

executing a burst of V’s, it is useless to advance toAwake 

beyond this upper limit. 

 A key point of the model in Fig. 14 is the use of 

committed locations. The goal is to ensure that a P or V 

operation, once started, is conducted to a conclusion (i.e., 

re-entering the Home location or reaching the WaitTrue 

location) in an atomic way. 

public interface Semaphore { 
 void P(); 
 void V(); 
}//Semaphore 
 
public class BinarySemaphore implements Semaphore{ 
 private int count, toAwake=0; 
 private List<Thread> waitList=new LinkedList<Thread>(); 
 private Object m=new Object(); //lock-monitor object 
 public BinarySemaphore ( int count ){ 
  if( count <0 || count >1 ) throw new IllegalArgumentException(); 
  this. count = count; 
 } 
 public void P(){ 
  synchronized( m ){ 
   if( count==0 ){ 
    waitList.add( Thread.currentThread() );//arrival order 
    while( true ){ 
     try{ m.wait(); }catch( InterruptedException e ){} 
     if( toAwake>0 && 
      waitList.get(0)==Thread.currentThread() ){ 
      toAwake--; waitList.remove(0); 
      if( toAwake>0 ){ 
       if( waitList.size()>0 ) m.notifyAll(); 
       else{ count =1; toAwake=0; } 
      } 
      break; 
     } 
    }//while 
   } 
   else count=0; 
  } 
 }//P 
 public void V(){ 
  synchronized( m ){ 
   if( waitList.size()==0 ) count=1; 
   else{ toAwake++; m.notifyAll(); } 
  } 
 }//V 
}//BinarySemaphore 

Figure 13. A FIFO BinarySemaphore Java class 

  
Figure 14. The BinarySemaphoreMJ automaton 

 An experimental verification frame was designed with 

the aim of comparing one instance (identifier S1) of 

BinarySemaphore in Fig. 1 and one instance (identifier 

S2) of BinarySemaphoreMJ in Fig. 14. Both instances 

receive a same sequence of P/V operations and the goal 

was to assess that both instances evolve exactly in the 

same way. Three process automata (see Fig. 15) were 

prepared: pProcess1, which acts on semaphore S1, 
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pProcess2 which operates on semaphore S2, and vProcess 

which uses both S1 and S2. Process instances receive as 

parameters: the unique process identifier (pid) p, and the 

names of used semaphores.  

  
 

Figure 15. (a) pProcess1 (b) pProcess2 (c) vProcess automata 

 Since V operations are not blocking, one single 

instance of vProcess can be used to ensure that a V is 

actually issued to S1 and S2. Because a P operation can 

block the requesting process, one instance of pProcess1 

and one instance of pProcess2 were used. A critical point 

in the process design was how to guarantee atomicity of 

the blocks {P[S1], P[S2]} and {V[S1], V[S2]}. Towards 

this, a global bool variable v is used, which is true if the V 

block is in execution. For the atomicity of the first block a 

global counter pc is employed, which is incremented each 

time a PO operation is launched. A V block can be started 

provided a P block is not in progress and similarly a P 

block can be started if no V block is in progress. Exiting a 

P block (see End location in Fig. 16 and Fig. 17) is 

ensured by a unicast channel signal synch, which is raised 

by a pProcess and received by other. At each 

synchronization over synch, pc is reset. Similarly, at the 

time of the second V of a V block, the variable v is reset. 

It should be noted that Fig. 15 (c) guarantees that a burst 

of V blocks can occur. Obviously, the semaphores S1 and 

S2 are supposed to be initialized to the same value. 

 The actual system configuration used for the 

verification experiments is shown in Fig. 16.  

// Place template instantiations here. 
bs=BinarySemaphore( S1, 0, PROC-2 );//id, init val, queue size 
BS0=BinarySemaphoreMJ( S2, MON, 0 );//id, mon id, init val 
BS1=BinarySemaphoreMJ( S2, MON, 0 ); 
p0=pProcess1( P0, S1 ); 
p1=pProcess2( P1, S2 ); 
v2=vProcess( V2, S1, S2 ); 
// List one or more processes to be composed into a system. 
system JMonitor,bs,BS0,BS1,p0,p1,v2; 

Figure 16. System configuration for the experimental frame 

 The following queries (all satisfied) were used for 

model checking: 

1) A[] !deadlock 
2) A[] p0.Home && p1.Home && v2.Home && BS0.Home 

&& BS1.Home && bs.Home imply bs.count==count && 
empty() && bs.empty() 

3) E<> p0.Home && p1.Home && v2.Home && BS0.Home 
&& BS1.Home && bs.Home && count==0 && 
count==bs.count 

4) E<> p0.Home && p1.Home && v2.Home && BS0.Home 
&& BS1.Home && bs.Home && count==1 && 
count==bs.count 

5) A[] p0.S && p1.S && (BS0.WaitTrue||BS1.WaitTrue) 
imply count==0 && bs.count==count && size()==1 && 
size()==bs.size() && first()==P1 && bs.first()==P0 

 Query 2) guarantees that when all automata are in 

their Home location, the semaphores have the same count 

value and their queues are both empty. Queries 3) and 4) 

show that in the same states of query 2), the semaphores 

can be both green or red. Query 5) verifies that when 

processes p0 and p1 are in the S location, i.e., they have 

both requested a P operation, in the case the 

BinarySemaphoreMJ is in the WaitTrue location, it 

effectively follows that both semaphores are red 

(count==0), their internal queues have the same size and 

in particular P0 is waiting in S1 and P2 is waiting in S2. 

 Meaning of queries from 2) to 5) ensures that after 

each complete execution of a block of P or V operations, 

the two semaphores have equivalent states. 

 Although the above described verification frame 

cannot replace a formal (weak) bisimulation proof of the 

two automata in Fig. 1 and Fig. 14, it provides important 

information about the correct behavior of 

BinarySemaphoreMJ and then of the Java thread-safe 

class in Fig. 13. 

All the verification experiments were carried out on a 

Win 8, 12GB, Intel Core i7-3770K, 3.50GHz. 

V. CONCLUSION AND FUTURE WORK 

 The UPPAAL timed automata library and the M&V 

approach for concurrent systems proposed in this paper 

are useful in the practical case, and are under 

experimentation in an undergraduate course on systems 

programming. The solutions, although inspired by Java 

concurrency, can be adapted to work with other 

concurrent programming languages as well. 

 

On-going and future work is geared at: 

 Improving the supporting library of basic concurrent 

control structures and synchronizers. 

 Extending the library in order to experiment with 

alternative but influencing concurrency schemes like 

the software transactional memory [11], which in the 

next future should be made available, e.g., in Java. 
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