

Reasoning on Concurrency: An Approach to Modeling and Verification of Java

Thread-safe Objects

Franco Cicirelli, Libero Nigro, Francesco Pupo
Laboratorio di Ingegneria del Software

Dipartimento di Elettronica Informatica e Sistemistica

Università della Calabria - 87036 Rende (CS) – Italy

Email: f.cicirelli@deis.unical.it, {l.nigro,f.pupo}@unical.it

AbstractDevelopment of concurrent and time-dependent

software systems is currently growing in its strategic

importance due to the diffusion of powerful multi-

core/many-core machines. To effectively cope with current

and prospective concurrency demands, formal tools have to

be used. A library of reusable UPPAAL timed automata was

achieved, which enables a reasoning on concurrency. The

library is tailored to Java. However, similar solutions could

be also developed to work with other languages as well. This

paper outlines library design and focuses on its exploitation

for model-based prediction of the correctness of thread-safe

Java objects.

Keywords-Modeling and verification; concurrent systems;

Java; thread-safe objects; model checking; UPPAAL.

I. INTRODUCTION

This work argues that to properly design and

implement concurrent systems, the adoption of formal

tools, which can support a reasoning on concurrency is

mandatory.

This paper introduces the design of a UPPAAL library

of timed automata [1-3], which improves preliminary

experience described in [4]. Library design was mainly

inspired by Java concurrency features. Common

synchronization mechanisms such as semaphores and

monitors, both classic and Java specific, are provided. On

top of these mechanisms, new synchronizers, tailored to

particular programming styles, can be built. The library

enables modeling of a concurrent program according to

implementation aspects, thus reducing the semantic gap

which normally exists between a specification model and

its vocabulary (e.g., atomic actions, broadcast

synchronization, etc.) and a corresponding

implementation. Analysis activities are based on

exhaustive verification and model checking [5], [6].

 The paper proposes an approach to modeling and

verification (M&V) of Java thread-safe objects and

illustrates it by practical examples.

 The model-based prediction approach can be related to

the work of Hamberg and Vaandrager [7] and to the

known Finite State Processes (FSP)/Labeled Transition

System Analyzer (LTSA) tool developed by Magee and

Kramer [8]. With the first work our approach shares the

use of the UPPAAL model checker. However, our library is

characterized by its volition of being Java tailored. In

addition, some common structures like semaphores

appear to be more efficient. The second approach is based

on the FSP process algebra. An FSP model is transformed

into a labeled transition system to be analyzed by the

LTSA tool. However, this approach does not allow, for

instance, the expression of a FIFO policy (e.g., for

awaking processes waiting on a semaphore). In addition,

the use of a discrete time model can complicate the

verification of complex models.

 The paper is structured as follows. Section II outlines

the developed UPPAAL. Section III proposes an approach

for M&V of Java thread-safe objects. Section IV

describes a more complex modeling example. Finally, an

indication of research directions which deserve further

work is given in the conclusion.

II. CONCURRENCY CONTROL IN UPPAAL

A library of UPPAAL template processes (i.e., timed

automata TA) was developed, which provides such

common concurrent structures as semaphores and

monitors [9], both classic and Java specific. The

following gives an outline of the library contents.

Figure 1. The BinarySemaphore automaton

 Fig. 1 shows an automaton for classic binary

semaphore. A similar construction exists for a general,

counting semaphore. Classic P/V operations are

implemented as unicast channel arrays P[.]/V[.] whose

dimension mirrors the number of semaphores used in a

model. A P operation on a semaphore s is expressed by

raising a synchronization P[s]!. The requesting process is

assumed to put into a global (meta) variable proc its

unique process id at the time of P[s]!. Variable proc is

used only during the atomic action of P[s]!, with the

receiving semaphore which frees it immediately by

storing the proc value in a local variable. A further

channel array GO[.], whose dimension coincides with the

number of processes in the model, is used for blocking the

requesting process until the semaphore assigns the permit

to the process. The use of GO is implicit in the operation

P in a programming language, but in UPPAAL it serves the

purpose of transforming a strict rendezvous (P[.]!) into an

extended rendezvous, which terminates when the

semaphore completes the handling of P[.]! and allows the

requesting process to unblock. A V[s]! request never

blocks the requesting process and normally does not

require the proc mediation.

 With respect to the realization proposed in [7], our

semaphores use less variables thus favoring model

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

checking. For instance, the identity of the requesting

process during a P operation, which finds a binary

semaphore green (count==1) is temporarily stored in the

surely empty internal queue of the semaphore.

Figure 2. The JSemaphore automaton

 A semaphore automaton (JSemaphore) directly based

on a provided Java (java.util.concurrent.Semaphore) class

is shown in Fig. 2. Differences from classic semaphores

concern the possibility of acquiring/releasing atomically a

number of permits greater than 1. In addition, a fair

parameter can be used to request a FIFO behavior of

acquire requests. This way, an acquire operation, in the

case there are some waiting processes, puts the requesting

process at the end of the semaphore queue even if permits

are available.

 JSemaphore relies on an interface consisting of channel

arrays Acquire[.], Release[.], PermitsAvailable[.], GO[.],

and exploits two global variables: proc and perm. The

perm variable stores, at the time of an Acquire[s]! or

Release[s]!, the number of involved permits, and contains

the number of available permits of the semaphore just

after a PermitsAvailable[s]! operation. A GO[p]?

synchronization must follow an Acquire[s]! or a

PermitsAvailable[s]! command. It is at the time of a

GO[p]? unblocking operation, that perm is actually filled

of the semaphore permits number.

It is worth noting that whereas a burst of release

operations on a JSemaphore instance used as a mutex,

will increase the permits number arbitrarily, in the case of

a BinarySemaphore, a burst of V’s can never augment the

internal count beyond 1.

 Although widely used, semaphores are often viewed

as a low level concurrent abstraction mechanism, where a

misuse of P/V operations can easily lead to a deadlock.

Monitors (e.g., [9]), on the other hand, represent a higher

level concurrent control structure, which naturally acts as

a guardian of an abstract data type, e.g., encapsulated into

a Java class. Monitors are a key for achieving thread-safe

classes by offering control over mutual exclusion among

class methods (synchronized blocks or critical sections of

code) and suspension/signaling from within a critical

section. Different kinds of monitors are defined in the

literature, which are characterized by different

programming styles and guarantees/obligations that are

assigned to both processes and the control structure.

 Java adopts, as a basic solution, the Lampson &

Redell [10] monitor structure with broadcast signaling,

where suspended processes in a synchronized block are

responsible of re-checking a condition in a while loop to

see, at each awaking, if it is necessary to coming back to

waiting or the process can finally exit its waiting status.

Broadcast signaling does not block the executing process.

An awaken process has to compete in reacquiring the lock

for it to actually resume execution.

 Directly based on the built-in Java monitor structure is

the JMonitor automaton presented in Fig. 3.

Figure 3. The JMonitor automaton

 A monitor instance can be operated using such

channel arrays as enter[mid][pid], exit[mid][pid],

wait[mid][pid], notifyAll[mid][pid], which accommodate

for the possible existence of multiple monitor instances in

a model. Types mid and pid respectively are integer sub-

ranges of unique identifiers of monitors and processes

used in the model. For instance, enter[m][p]!/exit[m][p]!

are used by a process p to explicitly enter/exit to/from a

synchronized block based on monitor m. Similarly,

wait[m][p]!/notifyAll[m][p]! serve respectively to

suspend the requesting process p until its condition holds

(in a while loop), and to awake all the processes

suspended on monitor m.

 Every Java object has an implicit lock which can be

used as a monitor. The lock holds one implicit condition,

whose meaning is established by the

modeler/programmer. The lock object is associated with a

wait-set where both entering processes which find the

lock closed, and processes within a synchronized block

(based on the lock object) whose condition prescribes

waiting, are put (although the two kind of waiting

processes are clearly distinguished to one another).

Processes which are suspended for a wait operation can

only be awaken by a notifyAll operation. The notifyAll

operation does not free the lock. Other processes awake as

the lock/monitor is up to be abandoned. In the proposed

implementation, the wait-set is purposely realized

implicitly. Processes requesting an enter are simply

blocked if the monitor is already locked. Processes which

execute wait are supposed to move into a location (see

W1 and W2 in Fig. 6) from which they can only exit

following a relevant notifyAll[.][.]? signal. Towards this,

channels notifyAll[.][.] are declared as broadcast.

Following a notifyAll signal, an awaken process has to

compete for re-acquiring the lock (see edges exiting the

W1 or W2 location in Fig. 6). Whereas this is implicit in

the Java wait() method, it is explicit in the proposed

modeling pattern, thus revealing a semantic issue.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

 The automaton in Fig. 3 maintains the identity of the

monitor owner, which is used to realize reentrancy and to

check for erroneous operations, which in Java correspond

to raising an IllegalMonitorStateException, e.g., invoking

a wait or notifyAll operation out of a synchronized block.

The implicit realization of the wait-set complies with the

Java specification and lets processes which try to enter the

monitor and awaken processes to be handled non

deterministically and thus without any privilege. The

design makes it possible to implement a timed wait. In

this case, from the wait location (now provided of a clock

invariant) the process can also exit when the clock goes

beyond a given time limit (timeout).

 In reality, the Java built-in monitor also exposes a

notify operation to awake one, although unspecific,

process which is suspended in the wait-set. For generality

reasons, the automaton in Fig. 3 only implements the

notifyAll operation because, as discussed in [11], the use

of notify can cause a Lost-Wakeup-Problem, i.e., a notify

signal can be lost and the system enters a bad status.

 On the basis of JMonitor, a monitor structure based on

the Java Lock/Condition framework was also achieved,

which allows to split the waiting processes among

different conditions (waiting rooms) associated with a

given lock. The signaling mechanism can be directed to a

specific condition.

 The library also includes some other classic monitors

like the Hoare monitor [9], which in a case can be built on

top of semaphores. The Hoare monitor owns a different

signaling mechanism: when a process (signaler) changes

the status of the data structure so that a (possibly) waiting

process (signalee) on a condition can be awaken because

the condition holds, control is immediately transferred to

the signalee (together with the lock), which is thus the

only process which can proceed. The signaler, on the

other hand, is put to wait in an urgent queue from where it

gets unblocked as soon as the monitor is up to become

free.

 A discussion about Lampson & Redell vs. Hoare

monitors can be found in [9] where it is argued, besides

any runtime implication (e.g., number of context

switches), that Lampson & Redell monitor can be

superior in the most general case.

III. AN APPROACH TO M&V OF THREAD-SAFE OBJECTS

In the following, the proposed M&V approach is

demonstrated by achieving a synchronizer based on two-

way (or rendezvous) communications. The modeling

example, which is original, can be used as a (partial)

proof for programming a class like Exchanger<T> as

provided in the java.util.concurrent package. The

mechanism is intended to be used by two processes,

which both play the sender/receiver roles. When the time

arrives for a synchronization/communication, the earliest

process which comes to the appointment awaits the

partner. When the latest process arrives, processes

exchange some information, then exit the synchronization

thus returning to concurrent execution. In particular, the

exchanger allows each process to send a message to the

partner and to receive the message sent by the partner.

Obviously, the mechanism can easily reproduce a CSP

synchronous communication, when a partner is assigned

the sender role and the other the receiver role.

An exchange synchronizer can be easily modeled by

using the UPPAAL native features, as depicted in Fig. 4.

Figure 4. A native UPPAAL model for an exchanger

Fig. 4 assumes that each process transmits a local value

vi and receives from the partner an information to be

stored in local variable xi. A (meta) global variable d is

used for the information exchange. Two unicast channels

ch1 and ch2 are used where, for instance, ch1 can be

declared as urgent. A committed location ensures an

atomic exchange of information. Once the

synchronization starts, on ch1, it is immediately followed

(without a time passage) by a synchronization on ch2.

Correctness of the model in Fig. 4 depends, among the

other, on the fact that in a channel synchronization, the

update (e.g., d=v1) of the sender (e.g., ch1!) is executed

before the update (x2=d) of the receiver.

 However, a native model like that in Fig. 4 cannot be

immediately translated into Java, simply because the

UPPAAL vocabulary of atomic actions, urgent channels,

committed locations, etc. is not supported in the target

language. The modeler/programmer is thus forced to

intuitively achieve Java code by using the basic

vocabulary of Java, e.g., synchronized blocks,

wait/notifyAll, etc. However, the problem remains that an

implementation cannot be proved to be a faithful

representation of its specification model.

public interface Exchanger<T> {
 T exchange(T v);
}//Exchanger

public class ExchangerMJ<T> implements Exchanger<T>{
 private T d;
 private boolean partner = false, release = false;
 private Object m = new Object(); //lock/monitor object
 public T exchange(T v){
 synchronized(m){
 while(release) //protection from a prompt re-enter
 try{ m.wait(); }catch(InterruptedException e){}
 T x=null;
 if(!partner){
 d = v; partner = true;
 while(partner) //waiting for partner
 try{ m.wait(); }catch(InterruptedException e){}
 x = d; release = false;
 m.notifyAll();
 }
 else{
 x = d; d = v; partner = false; release = true;
 m.notifyAll();
 }
 return x;
 }
 }//exchange
}//ExchangerMJ

Figure 5. A Java thread-safe class for the exchanger

 To reduce the semantic gap existing between an

UPPAAL model and a Java code, the model can embody

implementation aspects. Stated in other terms, the model

can mirror, through reverse-engineering, some Java code.

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

 In Fig. 5, it is shown a Java code realizing the

exchanger synchronizer. The Exchanger<T> interface

exposes only the method exchange(v), which transmits v

and receives the value sent by the partner. The

ExchangerMJ<T> class implements, in a case, the

Exchanger<T> interface in terms the of the native Java

monitor.

Two waiting points exist in the exchange method in

Fig. 5: one when the first process arrives and finds the

partner is lacking (partner is false); another one for

blocking a process, which finds a synchronization release

in progress. When the latest process comes to the

synchronization point, it finds partner=true, takes the

transmitted data and sends its own information, then

assigns false to partner, states that a release is up to

commence, executes notifyAll and, finally, exits the

synchronization block. Now, it is possible for the just

exited process, to re-enter immediately the monitor

whereas the last synchronization is still not finished.

Apart for data overwriting problems, from Fig. 5 it is easy

to see that a deadlock situation would occur.

Figure 6. The Exchanger automaton based on JMonitor

 Fig. 6 portrays a UPPAAL model for the ExchangerMJ

class (integers are the exchanged data), which is based on

the JMonitor automaton. Two arrays of channels are used:

exchange[.] and ok[.], whose dimension is the number of

processes. A process p requests an exchange through the

operation exchange[p]! and then blocks on receiving an

ok[p]? synchronization (see e.g., Fig. 7). Exchanger

receives as a parameter the unique identifier of the lock

object to be used internally for the synchronization. Since

each participating process can wait at a different point in

the control structure, two instances of the Exchanger

automaton must be created, each serving a different

process. Each instance links to the requisting process

through a nondeterministic select (see the edge outgoing

from Home in Fig. 6). In addition, information of the

Exchanger (e.g., variables partner, release, etc.) are to be

declared global to the model.

 The use-pattern of Exchanger model in Fig. 6 is

illustrated in Fig. 7 and Fig. 8, where a Producer sends the

sequence 1, 2, 3 to a Consumer. Both processes are

characterized by a process identifier (p) established at

configuration time.

 For proper behavior of the application, it is important

that the consumer receives exactly the same data

transmitted by the producer at each synchronization point.

To check correctness of this behavior, the consumer

model reaches the Error location as soon as it discovers an

incorrect received data.

 A system can be configured as indicated in Fig. 9.

Figure 7. Producer automaton Figure 8. Consumer automaton

// Place template instantiations here.
ex0=Exchanger(LOCK);
ex1=Exchanger(LOCK);
//ex0=OptimisticExchanger(LOCK);
//ex1=OptimisticExchanger(LOCK);
prod=Producer(PROD);
cons=Consumer(CONS);
// List one or more processes to be composed into a system.
system JMonitor,ex0,ex1,prod,cons;

Figure 9. Producer/consumer system configuration

 The following queries were issued to the UPPAAL model

checker. The answers confirm all the queries are satisfied.

1) A[] !deadlock
2) A[] cons.R0 imply (prod.BS0 || prod.S0 || prod.BS1)
3) A[] cons.R1 imply (prod.BS1 || prod.S1 || prod.BS2)
4) A[] cons.R2 imply (prod.BS2 || prod.Home || prod.BS0)

Since there are no deadlocks, the consumer is

guaranteed it never reaches the Error location. Query 2)

ensures that when the consumer receives 0, the prod(ucer

can’t have completed the transmission of the next int. The

producer completes the transmission of 1 when it enters

the S1 location in Fig. 7. Similar considerations apply to

queries 2) and 3).

Figure 10. The OptimisticExchanger automaton

 An optimistic variant of the Exchanger is shown in Fig.

10, which differs from Fig. 6 only because the first

waiting point is eliminated.

Figure 11. A screenshot of the simulator after a deadlock

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

By adjusting the system configuration in Fig. 9 so as to

include two instances of the OptimisticExchanger

template, it emerges that the first query is no longer

satisfied. Asking the verifier to generate a diagnostic trace

and opening it in the simulator, confirms the model is

deadlocked (see Fig. 11).

For demonstration purposes, Fig. 12 shows an

exchanger model based on semaphores. Two binary

semaphores (with identifiers MUTEX and WAIT) are

used: one as a mutex (initialized to 1), the other as a

waiting room (initialized to 0).

Figure 12. The ExchangerS automaton based on semaphores

 Model in Fig. 12 rests on the “pass the baton” design

pattern [12], i.e., when the latest process arrives

(partner=true), it awakes the partner through a V[WAIT]!

operation and then exits without releasing the mutex. As a

consequence, the earliest process gets awaken with the

mutex transferred to it. Therefore, a prompt re-enter is

thus forbidden because mutex is occupied, and the release

variable of Fig. 6 is useless.

 Also, a system based on ExchangerS was configured

and found correct by model checking.

As a final remark, except for the GO[.]

synchronizations, the model in Fig. 12 directly maps on

Java code.

IV. SECOND M&V EXAMPLE

The concept of a binary semaphore, corresponding to

the UPPAAL model in Fig. 1, can be introduced in Java

through a class as shown in Fig. 13. The realization relies

on the language native monitor.

In order to check the correctness of the

BinarySemaphore class, it was modeled in UPPAAL as

depicted in Fig. 14, using the JMonitor automaton and the

approach described in section III. Since the

BinarySemaphoreMJ rests on JMonitor, it is assumed that

also at the time of a V[.] operation the requesting process

assigns its identifier to the global proc variable.

 A notable difference between the automaton in Fig. 14

and the Java code in Fig. 13 concerns the realization of

the linked waiting list, which in Fig. 14 is based on a

bounded array managed as a FIFO queue. In addition, the

toAwake integer variable is turned into a bounded int

variable of UPPAAL, whose upper bound is qs+1 where qs

is the queue size, established through a parameter of the

BinarySemaphoreMJ template. As a consequence, when

executing a burst of V’s, it is useless to advance toAwake

beyond this upper limit.

 A key point of the model in Fig. 14 is the use of

committed locations. The goal is to ensure that a P or V

operation, once started, is conducted to a conclusion (i.e.,

re-entering the Home location or reaching the WaitTrue

location) in an atomic way.

public interface Semaphore {
 void P();
 void V();
}//Semaphore

public class BinarySemaphore implements Semaphore{
 private int count, toAwake=0;
 private List<Thread> waitList=new LinkedList<Thread>();
 private Object m=new Object(); //lock-monitor object
 public BinarySemaphore (int count){
 if(count <0 || count >1) throw new IllegalArgumentException();
 this. count = count;
 }
 public void P(){
 synchronized(m){
 if(count==0){
 waitList.add(Thread.currentThread());//arrival order
 while(true){
 try{ m.wait(); }catch(InterruptedException e){}
 if(toAwake>0 &&
 waitList.get(0)==Thread.currentThread()){
 toAwake--; waitList.remove(0);
 if(toAwake>0){
 if(waitList.size()>0) m.notifyAll();
 else{ count =1; toAwake=0; }
 }
 break;
 }
 }//while
 }
 else count=0;
 }
 }//P
 public void V(){
 synchronized(m){
 if(waitList.size()==0) count=1;
 else{ toAwake++; m.notifyAll(); }
 }
 }//V
}//BinarySemaphore

Figure 13. A FIFO BinarySemaphore Java class

Figure 14. The BinarySemaphoreMJ automaton

 An experimental verification frame was designed with

the aim of comparing one instance (identifier S1) of

BinarySemaphore in Fig. 1 and one instance (identifier

S2) of BinarySemaphoreMJ in Fig. 14. Both instances

receive a same sequence of P/V operations and the goal

was to assess that both instances evolve exactly in the

same way. Three process automata (see Fig. 15) were

prepared: pProcess1, which acts on semaphore S1,

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

pProcess2 which operates on semaphore S2, and vProcess

which uses both S1 and S2. Process instances receive as

parameters: the unique process identifier (pid) p, and the

names of used semaphores.

Figure 15. (a) pProcess1 (b) pProcess2 (c) vProcess automata

 Since V operations are not blocking, one single

instance of vProcess can be used to ensure that a V is

actually issued to S1 and S2. Because a P operation can

block the requesting process, one instance of pProcess1

and one instance of pProcess2 were used. A critical point

in the process design was how to guarantee atomicity of

the blocks {P[S1], P[S2]} and {V[S1], V[S2]}. Towards

this, a global bool variable v is used, which is true if the V

block is in execution. For the atomicity of the first block a

global counter pc is employed, which is incremented each

time a PO operation is launched. A V block can be started

provided a P block is not in progress and similarly a P

block can be started if no V block is in progress. Exiting a

P block (see End location in Fig. 16 and Fig. 17) is

ensured by a unicast channel signal synch, which is raised

by a pProcess and received by other. At each

synchronization over synch, pc is reset. Similarly, at the

time of the second V of a V block, the variable v is reset.

It should be noted that Fig. 15 (c) guarantees that a burst

of V blocks can occur. Obviously, the semaphores S1 and

S2 are supposed to be initialized to the same value.

 The actual system configuration used for the

verification experiments is shown in Fig. 16.

// Place template instantiations here.
bs=BinarySemaphore(S1, 0, PROC-2);//id, init val, queue size
BS0=BinarySemaphoreMJ(S2, MON, 0);//id, mon id, init val
BS1=BinarySemaphoreMJ(S2, MON, 0);
p0=pProcess1(P0, S1);
p1=pProcess2(P1, S2);
v2=vProcess(V2, S1, S2);
// List one or more processes to be composed into a system.
system JMonitor,bs,BS0,BS1,p0,p1,v2;

Figure 16. System configuration for the experimental frame

 The following queries (all satisfied) were used for

model checking:

1) A[] !deadlock
2) A[] p0.Home && p1.Home && v2.Home && BS0.Home

&& BS1.Home && bs.Home imply bs.count==count &&
empty() && bs.empty()

3) E<> p0.Home && p1.Home && v2.Home && BS0.Home
&& BS1.Home && bs.Home && count==0 &&
count==bs.count

4) E<> p0.Home && p1.Home && v2.Home && BS0.Home
&& BS1.Home && bs.Home && count==1 &&
count==bs.count

5) A[] p0.S && p1.S && (BS0.WaitTrue||BS1.WaitTrue)
imply count==0 && bs.count==count && size()==1 &&
size()==bs.size() && first()==P1 && bs.first()==P0

 Query 2) guarantees that when all automata are in

their Home location, the semaphores have the same count

value and their queues are both empty. Queries 3) and 4)

show that in the same states of query 2), the semaphores

can be both green or red. Query 5) verifies that when

processes p0 and p1 are in the S location, i.e., they have

both requested a P operation, in the case the

BinarySemaphoreMJ is in the WaitTrue location, it

effectively follows that both semaphores are red

(count==0), their internal queues have the same size and

in particular P0 is waiting in S1 and P2 is waiting in S2.

 Meaning of queries from 2) to 5) ensures that after

each complete execution of a block of P or V operations,

the two semaphores have equivalent states.

 Although the above described verification frame

cannot replace a formal (weak) bisimulation proof of the

two automata in Fig. 1 and Fig. 14, it provides important

information about the correct behavior of

BinarySemaphoreMJ and then of the Java thread-safe

class in Fig. 13.

All the verification experiments were carried out on a

Win 8, 12GB, Intel Core i7-3770K, 3.50GHz.

V. CONCLUSION AND FUTURE WORK

 The UPPAAL timed automata library and the M&V

approach for concurrent systems proposed in this paper

are useful in the practical case, and are under

experimentation in an undergraduate course on systems

programming. The solutions, although inspired by Java

concurrency, can be adapted to work with other

concurrent programming languages as well.

On-going and future work is geared at:

 Improving the supporting library of basic concurrent

control structures and synchronizers.

 Extending the library in order to experiment with

alternative but influencing concurrency schemes like

the software transactional memory [11], which in the

next future should be made available, e.g., in Java.

ACKNOWLEDGMENTS

Authors thank Christian Nigro for his contribution to

the development of the M&V approach described in this

paper.

REFERENCES

[1] R. Alur and D.L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, 1994, pp. 183-235.

[2] G. Behrmann, A. David, and K.G. Larsen, “A tutorial on UPPAAL,”
In Formal Methods for the Design of Real-Time Systems, LNCS
3185, Springer, 2004, pp. 200-236.

[3] UPPAAL on-line, www.uppaal.org
[4] F. Cicirelli, L. Nigro, and F. Pupo, “Modelling and verification of

concurrent programs using UPPAAL,” ECMS’2011, 2011, pp. 525-
533.

[5] F. Cicirelli, A. Furfaro, and L. Nigro, “Model checking time-
dependent system specifications using Time Stream Petri Nets and
UPPAAL,” Applied Mathematics and Computation, vol. 218, no. 16,
2012, pp. 8160-8186, Elsevier.

[6] E.M. Clarke, O. Grumberg, and D.A. Peled, “Model Checking,”
Cambridge, MA, MIT Press, 1999.

[7] R. Hamberg and F. Vaandrager, “Using model checkers in an
introductory course on operating systems,” Operating System
Review, vol. 42, no. 6, 2008, pp. 101-111.

[8] J. Magee and J. Kramer, “Concurrency – State models and Java
programming,” John Wiley & Sons, Ltd., 2006.

[9] W. Stallings, “Operating Systems: Internals and design principles,”
Prentice-Hall, 2005.

[10] B.W. Lampson and D.D. Redell, “Experience with processes and
monitor in Mesa,” In Proc. of SOSP, 1979, pp. 43-44.

[11] M. Herlihy and N. Shavit, “The art of multiprocessor
programming,” Elsevier, Revised version of First Edition, Morgan
& Kaufmann Publishers, 2012.

[12] A.K. Reek, “Design patterns for semaphores,” ACM SIGCSE’04,
2004.

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

