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Abstract—The number of embedded systems used worldwide
is increasing rapidly. With each generation of equipment, con-
sumers are expecting more computational power and function-
ality, meaning current designs can be considered unsuitable. As
transistor feature size reaches its atomic limit, manufacturers
have moved from single to multi-core environments to bridge
the performance gap and continue to meet Moores Law. How-
ever, this means job scheduling has become exponentially more
complex and is reaching a point where standard algorithms are
failing to cope. This paper summarizes the initial work performed
creating a heuristic based algorithm that is aware of both requests
and available resources and therefore is capable of managing the
uncertainty brought about by these factors. The work uses Monte
Carlo Simulation combined with multi-vary analysis to identify
primary contributors and their contribution to scheduling.
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I. INTRODUCTION

With the increase in pervasive computing across the world,
ever more embedded systems work primarily on stored en-
ergy to perform computationally intensive tasks. This means
management of both jobs and power becomes more important
in every design iteration. A major technique for manag-
ing dynamic power dissipation (power consumed by active
switching) that is becoming widely used is Dynamic Voltage
Frequency Scaling (DVFS). This reduces power consumption
at the penalty of increasing execution time. In a system where
task execution is short, but with regular activation times, this
technique could reduce power consumption by up to 30%
[1]. However, many multi-core systems now operate close to
their critical voltage, meaning reduction of core voltage to
reduce energy consumption is not possible [2]. Therefore more
intelligent management of the jobs presented must take place
to maximize functionality while conserving reliability.

As performance continues to be a key metric, microproces-
sor designers aim to meet the goals set by Gordon Moore in
1965 that the number of transistors on an integrated circuit
would double every 18 to 24 months [3]. This goal, now
known as ”Moores Law” is now seen by designers as a target
to be met and has been achieved by a number of processors
[4]. While this was originally done by decreasing feature size,
as transistors head below 10nm, we are approaching the atomic
limit; where leakage current is too great to be acceptable
for normal use. Therefore, the design of systems rather than
devices has changed, with multi core environments allowing
Moores predictions to remain true. However, as the number
of cores increase, the complexity of managing them grows

exponentially. Standard scheduling, working on such methods
as First Come First Served or Priority Queuing can cope while
the core number is small, but will eventually fail, especially
once threads with precedence and relations are present [5].
Eventually these problems will become NP-Hard and feasible
schedules will fail to be constructed in a timely manner.

Heuristic Algorithms may offer a solution to this problem,
by having simple rules based on factors such as job arrival
rate and available energy and using designer intuition,. One
such method of heuristic planning is Game Theory which,
since its development by Von Neumann in the 1940s [6] and
subsequent work by John Forbes Nash [7], has found use in
many fields from computer science to evolutionary biology, as
well as power management [8] [9].

The models developed tend to take on simple rules, which
over time lead to a stabilized outcome. Ideally this out-
come will maximize for all players, making the game pareto
optimal. This way, if a sudden change occurs, the game
will become unstable and eventually settle over a set of
repetitions. These games can be modelled as either cooper-
ative or non-cooperative, with much research concentrating
on non-cooperative models where every player is competing
to maximize their payout. However, some work [10] suggests
cooperative games could also lead to greater power savings
against the penalty of a power management kernel. Within
a system, this game would have many players and input
variables, therefore a method must be developed that can
reduce these into an optimal model and manage scheduling
based on key parameters only.

This paper presents the simulation testing of a Heuristic
Algorithm developed in MATLAB to compensate for these
issues. The Hypothesis is that a simple algorithm aware of
parameters such as overall system load should outperform
standard queuing paradigms and increase operational life.
Section II details the processor design, queuing methods and
simulations conducted, along with techniques used to refine the
Heuristic Algorithm. Section III analyses the outcomes from
the MATLAB simulation and optimisation runs, discussing
the findings. Section IV summarises findings and Section V
proposes further investigation for these outcomes.

II. METHODOLOGY

A. Job Queuing

To develop a heuristic based algorithm, a simplified system
was modelled in MATLAB. This took the form of Figure 1,
with jobs arriving and being sent to cores by a scheduler.
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Fig. 1. Simplified Microprocessor Design for Simulations

The cores would manage these jobs and inform the scheduler
when they are available to accept new tasks. Three models
were chosen for testing. These were:

• First Come First Served (FCFS)
• Priority Queuing
• Heuristic Algorithm under investigation.
First Come First Served is the simplest, but often most

effective method of queue management [11]. One queue exists,
which all jobs enter and the job at the head of the queue is
serviced. This is feasible to implement, while also giving good
performance for low workloads. However, as the workload
increases, queues can build to extreme lengths and lead to
issues.

Priority Queuing adds a second queue for high priority jobs.
This is similar to the system seen at airports where check-in
desks will serve the main queue until someone joins the fast-
track queue. This reduces issues with FCFS when jobs have
varying priorities, but can lead to large volumes building up in
the main queue if priority jobs continue to block the processor
either through high arrival rates or processor utilization.

Both these and other scheduling algorithms fail to dynam-
ically manage cores to maximize system reliability. Many
also lack the ability to manage precedence and are unaware
of energy as an input. The proposed solution in this paper
provides these important items, while also managing job
direction through simple heuristics, rather than a complex
management program.

B. Literature Review

Heuristics have proved a popular method of managing
jobs in a variety of areas, especially where a level of non-
determinism is present, as this can lead to exhaustive search
methods becoming excessively long in their computation time.
Methods can use explicit rules to find optimal strategies
[12] or more abstract techniques such as Nash Equilibrium
discussed previously [13]. Heuristics allow for schedules that
are clearly infeasible to be ignored through initial grouping,
which reduces computation time and can improve performance
[14] [15]. This use of heuristics means some scheduling

that would originally have been performed offline can now
take place in real-time, improving the reliability of operation
[16]. As complexity of systems increases, the use of rule-
based schedulers will become more commonplace. While these
cannot always give the best response, the outcome will often
be suitable in the time taken to calculate it that no detriment
to the quality of service will perceptibly take place [17].

C. System Level Simulation

An algorithm, which can be seen in Algorithm 1, was
created to allow System Level Simulations to take place. This
let a series of jobs be run through a Monte Carlo Simulation.
Jobs are created based on a rate (λ) and processed based on
another rate (µ). One to three cores can also be implemented,
allowing the difference in queue times, queue length and
processor utilization to be observed. For this jobs are assumed
to be arriving from activation (t0) at a rate of λe−λt and
processed at a rate of µe−µt. The simulation is run over 72000
cycles with 10 repeats for each case and λ/µ values of 10, 30
and 50. One, two and three cores are active in versions of the
simulation and all simulations are repeated ten times to give
consistency of results.

Once job arrival and service rates are determined in lines
4-5, the system enters the 72000 operational cycles. The
algorithm considers available energy prior to scheduling and
adjusts the level to activate the Heuristic section through vari-
able MaxQueueLength. Cores are only activated to service
jobs if the current queue length is greater than this variable,
preventing the excessive consumption of energy but increasing
total operation time for jobs. If all cores are active and a job
is low priority, it will be placed into the queue at the tail,
replicating FCFS. However, priority jobs will be placed into
the priority queue, which will be serviced by the next available
core. All data was outputted to a CSV file on completion
of 72000 cycles or if system energy reached zero during
simulation when this was considered.

Data from the simulations was collected and analysed using
Minitab, a statistical program used for data analysis, to look
for statistical differences between scheduler types and key
parameters to be used in any improvement exercises.

D. Addition of Energy

Once these experiments were complete, giving a baseline
of algorithm effectiveness, the extra uncertainty of energy
was added to the simulations. This was done by placing a
battery into the simulation with a percentage of charge. The
FIFO and Priority Queues were unaware of this and there-
fore continued executing jobs at the same rate until failure.
However, as the state of charge decreased, the aggression of
the heuristic algorithm in activating cores decreased through
MaxQueueLength, meaning the execution time for jobs
increased. While this would seem to decrease the quality
of service, the goal is to maximise lifetime of the system.
Since fewer cores are activated, both the static and dynamic
energy consumptions are decreased — thereby increasing the
operational life of the system. Priority queuing is still active
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Algorithm 1 Simulation for Heuristic Scheduler
1: Set λ and µ
2: Set Flags and Clock to zero, Energy to 100
3: for ArrivalT ime and ServiceT ime = 1 to 72000 do
4: ArrivalT ime(n) = λe−λt

5: ServiceT ime(n) = µe−µt

6: end for
7: while Clock < 72000 do
8: if Energy < 50 then
9: MaxQueueLength = 2

10: else
11: MaxQueueLength = 4
12: end if
13: for AllActiveCores do
14: ServiceT ime−−
15: end for
16: if QueueLength > 0 then
17: if CoreisEmpty & CoreIsActive then
18: PlaceJobonCore
19: else if CoreisEmpty & CoreisInactive &

QueueLength > MaxQueueLength then
20: ActivateCore, P laceJob
21: end if
22: if Clock = ArrivalofNewJob then
23: if CoreisEmpty & CoreisActive then
24: PlaceJobonCore
25: end if
26: else if CoreisEmpty & CoreisInactive &

QueueLength > MaxQueueLength then
27: ActivateCoreandP laceJob
28: else if AllCoresAreBusy &

JobIsNonpriority then
29: PlaceJobinQueue
30: QueueLength++
31: else if AllCoresAreBusy & JobIsPriority then
32: PlaceJobinPriorityQueue
33: end if
34: end if
35: for EachActiveCore(1− x) do
36: Core(x)EnergyConsumed = U(0.002, 0.005)
37: end for
38: Energy = Energy − AllCore(x)

EnergyConsumed−N (0.01, 0.005)
39: if Energy <= 0 then
40: Break
41: end if
42: UpdateWaitT ime, IdleT ime,QueueLength
43: Clock ++
44: end while
45: print Value of Energy, Cores, λ, µ, Average Wait Time,

Max Wait Time, Average Queue Length, Max Queue
Length, Clock, Cores 1-3 Idle Percentage

and priority jobs will be fast tracked to the core, with jobs
currently occupying it halted. Once all priority tasks are
cleared from the system, the non-priority jobs may resume
executing. In extreme cases, the scheduler may activate a core
to push through more priority jobs, thus maintaining quality
of service for a small energy penalty. Though this will shorten
the operational life of the entire system, missing priority jobs
could be hazardous, especially in real-time or safety critical
systems. Therefore this reduction in system lifetime is justified
by keeping key systems active.

E. Design of Experiments

Following this preliminary work, a Design of Experiments
(DoE) was conducted to determine each variables overall
contribution and whether any interaction between variables
took place. Within a DoE, key parameters and their values are
run to identify which have a major effect and which can be
deemed insignificant[18]. All possible levels of interaction are
initially investigated, with insignificant higher-orders removed
until a minimized model exists. This model can then be math-
ematically analysed by a generalization such as the General
Linear Model (GLM) to give the percentage contribution (ε)
that each parameter, including error, delivers to the overall
system. The DoE was set up in Minitab as a two-level, four
input, full factorial DoE with five repeats, giving 80 data points
(5x24). Parameters were as follows:

• Level of Battery to increase Queue Length for Core
Activation = 30/60

• Kick Out of non-priority jobs for priority jobs = Off/On
• λ=10/50
• µ=10/50
These results were analysed to determine key parameters

for the GLM to determine the contributions each factor gives
to the overall effect. These factors can allow further testing
to give ideal results and an optimal scheduler design for the
Heuristic Environment.

III. RESULTS

For the simulations undertaken, Table I shows the outcome
for tests conducted where λ = µ and energy was considered.
For this cycle, the Heuristic Algorithm outperforms both FCFS
and Priority Queuing by a factor of 3, giving a statistically sig-
nificant result. In cases where λ ≥ µ, the Heuristic Algorithm
consistently outperforms its rivals and also gives significantly
longer operating life in situations where λ < µ due to the
dynamic deactivation of superfluous cores. This result is shown
for other values of λ

µ in Fig 2, demonstrating that the Heuristic
Scheduler outperforms both FCFS and Priority Scheduling for
a range of values. No detriment to lifetime occurs with an
increase in load rate, as proved by a regression test on the
Heuristic Algorithm results (P=0.507, therefore no correlation
between job rate and clock cycles completed).

When tests were conducted with single and dual core
architectures the results, seen in Fig 3, show the Heuristic
Algorithm continued to outperform both FCFS and Priority
Queuing. With only one core active, Heuristic methods give
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Fig. 2. Scatterplot showing Clock Cycles Complete for increasing values of
lambda over mu

Fig. 3. Boxplot of Microprocessor Life for varying number of cores

a factor of two increase in operational lifetime due to the
dynamic management of cores and their deactivation during
light loading — similar to the sleep mode present in many
modern microprocessors. As the core count increases, the
effectiveness of the Heuristic Management can still be seen,
giving improvements of 61 % for two cores and 35 % for
three. This reduction in effectiveness is due to the increased
dynamic and leakage power consumption present for a greater
number of cores.

TABLE I
ONE-WAY ANOVA RESULTS FOR NUMBER OF CLOCK CYCLES
COMPLETED COMPARED TO QUEUING METHOD WHEN λ = µ

Queueing Mean Standard P-Value Conclusion
Method Deviation
FCFS 971.00 0.25 0.00 Heuristic

Priority Queue 970.96 0.32 Outperforms
Heuristic 2848.79 0.54

Following analysis of the DoE, Fig 4 shows an increase
in Lambda, as well as deactivation of the Kick Out function
have a significant effect on the number of successful clock
cycles completed. Further analysis, shown in Fig 5, reveals
that increasing the value of MaxQueueLength in Algorithm
1 gives some increase to operational life and concurs with Fig
4 that being able to remove tasks from processors to allow

Fig. 4. Main Effects Plot of DoE

Fig. 5. Main Effects Plot showing additional parameters to Fig 4

execution of priority jobs (the ”kickout” function) reduces
operational life of the system – as this will increase the
utilisation of processors and thus affect energy consumption.
Due to this, a second analysis only looking at priority jobs
was undertaken and can be seen in Fig 6. For this, deactivating
Kick Out can be seen to have a large effect on missed priority
jobs as these are now made to wait until a core has completed
execution, rather than allowing the job immediate access.

The results from these experiments were placed into a GLM
within Minitab to see determine main contributions to the

TABLE II
EPSILON SCORES FOR GENERAL LINEAR MODEL FOLLOWING DOE

Source P-Value ε
Power Saving 0.000 0.152
Kick Out 0.000 33.162
Lambda 0.000 33.097
Mu 0.756 0.000
Power Saving*Kick Out 0.000 0.153
Power Saving*Lambda 0.000 0.156
Power Saving*Mu 1.00 0.000
Kick Out*Lambda 0.000 33.125
Kick Out*Mu 0.022 0.000
Lambda*Mu 0.165 0.000
Power Saving*Kick Out*Lambda 0.000 0.155
Error 0.000
Total 100.0
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Fig. 6. Main Effects Plot analysing Priority Jobs only

microprocessor lifetime. The results for this, shown in Table II
clearly show the contribution the kickout function and lambda
have on the system, accounting for 99 percent of the effect
seen. For these runs, error can be seen to be zero, due to the
level of non-determinism afforded by the simulation being low.
For repeat runs on a real microprocessor, this value would be
expected to rise significantly.

IV. CONCLUSIONS

This work shows that under low loads (λ < µ), a first
come first served scheduler is capable of managing all jobs
easily. With only one core active, FCFS gives a high value of
maximum wait time compared to average wait time. Therefore
this would not be suitable for a system with priority jobs. With
two cores active however, this wait time reduces dramatically
and priority queuing may not be required. However, when
λ > µ, priority queuing and multiple active cores becomes
a feasible way to manage jobs.

The heuristic algorithm presented provides the flexibility of
both strategies, combined with dynamic core management and
therefore increased energy efficiency. By altering the queue
length required to activate a new core with respect to energy
available the algorithm, this extra non-deterministic aspect
can be managed and the quality of service for an end user
maintained.

When λ � µ, a drop in performance for all scheduling
methods takes place. As the arrival rate is so much larger
than the service rate, the queue grows exponentially; meaning
processor utilisation is always at 100 %. Due to this, no
dynamic core management can take place and all schedulers
perform at a comparable rate. Within these simulations, this
leads to FCFS and Priority Queuing outperforming the Heuris-
tic Algorithm, as the model designed considered the extra
complexity required and increased leakage power accordingly
— causing lifetime for the Heuristic Algorithm to be reduced.

While this system has only been tested up to three cores,
it is thought that the algorithm would feasibly cope with
a larger number of available devices in its current design.
Since the scheduler operates as an overseer for all devices,
it simply places jobs onto the first core it finds available;
or activates a core if required. A limitation for this is the

simulation work required to determine suitable values for
MaxQueueLength and the Energy at which to alter this. This
work also currently presumes a homogeneous layout, but it is
expected that heterogeneous microprocessors (where cores of
different design are placed on the same silicon) will become
more commonplace in the near future.

While this work only addresses a generic system with gen-
eral job types, some further tests with real-time jobs have been
conducted in a single-core variant of this work [19] and found
to give an improvement in reliability over standard schedulers
such as FCFS. This work developed an automotive Electronic
Control Unit (ECU) within the MATLAB environment and
had multiple priority levels for jobs. This further validates the
work presented in this paper and shows the use of Heuristics
in practical environments can give operational benefits.

V. FUTURE WORK

This paper proves the concept of a heuristic algorithm is
viable and can dynamically manage a multi-core stored energy
environment with minimal complexity. Key factors in its
management have been identified and initially tested through
simulation, which has allowed rapid testing of the many
permutations and validation of the concept. The progression
of this work is to conduct a Design of Experiments (DoE)
to optimize the algorithm through determining each input
variables overall contribution to both wait time and system
reliability. DoEs have been used in previous work to great
effect in identifying key items within an energy harvesting
environment [20].

Owing to computational restrictions, only architectures up
to three cores were investigated in this work. With the number
of cores predicted to reach more than 300 by 2020 [21], tests
of massive many-core layouts would be necessary to prove the
versatility and usefulness of the Heuristic Algorithm against
other more-advanced scheduling paradigms. While MATLAB
is a useful tool for performing this, the runtimes for a 300
core simulation on a desktop computer would be excessive.
One solution to this would be the use of a grid computer
such as HTCondor to run the Monte Carlo simulation across
a distributed system; thus reducing the test time and allowing
validation of this concept on a massive many-core architecture.

As scalability may be an issue for heuristic algorithms,
investigations into the use of pruning and filtering techniques
are currently on going. These would give a hybrid approach,
where certain situations would be managed by a standard
schedule design, saving the use of heuristics for intensive or
high-difficulty cases. Through this method, it is thought that
the heuristic design could be preserved and used on more
complicated systems without the need for redesign at each
iteration.

While conceptually the design can be construed as sound,
tests in a practical multi-core architecture will determine
whether the algorithm works practically. Investigation for a
suitable real-world processor and development kit are under-
way, with plans to port the algorithm into the system kernel
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and perform tests against established schedulers including
FCFS.
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