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Abstract—In this paper, logically and spatially correlated
failures affecting a distributed-computing system (DCS) have
been modeled in a stochastic manner by means of a Markov
random field (MRF) approach. The MRF is induced by the
topology of the communication network, and is specified locally
by the reliability of each node and the degree of interaction
between a node and its nearest neighbors. Thus, the MRF
introduces a global probability distribution function for the
failure patterns of nodes in the DCS, which is parameterized
using n values per node, where n is the number of nodes in
the DCS. The statistical analysis conducted on test networks
has shown that, compared to independent failures, correlated
failures increase: (i) the average number of failed nodes due
to failures propagate among the nodes; and (ii) the probability
of observing a large fraction of failed computing nodes.

Keywords-Distributed computing; Reliability; Markov Ran-
dom Fields

I. INTRODUCTION

Distributed computing (DC) is computing paradigm that
allows to process computationally and data-intensive work-
loads in a parallel and cooperative fashion using a large
number of computing nodes. Unlike other parallel comput-
ing environments, in a distributed-computing system (DCS)
the memory is not shared, and furthermore, is geographically
distributed. Consequently, computing nodes must exchang-
ing data and control messages using an communication
network that is usually bandwidth constrained [1].

A DCS is very complex system due to the heterogeneous
processing capabilities of the nodes, the large number of
elements in the system, the tight coupling of the nodes,
the data dependencies in the workloads, and the concurrent
dynamics of the nodes, workloads, and network, among
other factors. In spite of this complexity, there exists a deep
understanding on the computing performance and resource
utilization of DCS [2]. The understanding, however, of
DCSs’s reliability and availability is not as deep as in the
case of the aforementioned subjects.

Reliability and availability in DCSs are indeed extremely
complicated to model and analyze [2]. To obtain results and
achieve conclusions, researchers have simplified the problem
assuming that the components in a DCS may fail indepen-
dently. Under this (on occasions oversimplified) assumption,
the reliability of DCSs has been vastly assessed, and studies
have been conducted regarding either the computing nodes,

the communication network, the application being processed
by the DCS, or DCS’s management software as the basic
component in the analysis. Examples of such results are the
works by Ravi et al. [3] as well as the work by Srinivasan
and Jha [4] where the system reliability of complex DCSs
was maximized using task reallocation, or the work by Vid-
yarthi and Tripathi [5] where both the safety and reliability
of a DCS were jointly maximized.

The assumption on the independent node failure in a DCS
is a popular because it simplifies the analysis. However, it
is clear that such an assumption is not realistic for the type
of failures occurring in DCS scenarios, because a DCS is a
highly heterogeneous computing environment that imposes a
significant communication latency [2]. Furthermore, a DCS
becomes highly dynamic due to the communication network
and the nodes are affected by a wide class of anomalies
that change the topology of the system in a random fashion
[6], [7]. These anomalies do exhibit some type of spatial
and/or temporal correlation when they result, for instance,
from wide-area power or network outages, communication
network failures, or missed data dependencies. In addition,
these correlated failures may also induce further failures in
other nodes, as a result of the lack of reliable communication
between the components of the DCS. For instance, by
analyzing DCSs’ logs stored at The Failure Trace Archive
[8] we noticed that the first failure triggered by a power
outage indeed produced a correlated failure in two nodes
of the high-performance computing (HPC) system at Los
Alamos National Laboratory. In fact, other authors have
thoroughly analyzed failure logs in large-scale systems and
concluded that: (i) correlated node failures are frequent
events affecting such systems; and (ii) correlated failures
reduce the reliability of a DCS [9], [10]. Finally, we add that
it has been quantified that correlated failures may reduce the
system unavailability by orders of magnitude [11], [12].

In this paper, we have tackled the problem of modeling
the reliability of DCSs affected by correlated component
failures. To model correlated failures, a Markov random field
(MRF) [13] approach has been undertaken to derive a Gibbs
probability distribution [13] for the patterns of correlated
failures affecting the DCS. The Gibbs distribution is induced
by the underlying network topology of the DCS, which has
been abstracted using graph theory. In addition, the Gibbs
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distribution has been parameterized by individual and group
node parameters, such as the reliability of each node and
the degree of interaction between a node and its nearest
neighbors. Equipped with this global Gibbs distribution
function, patterns of correlated-failure can be sampled using
an algorithm whose inputs are: the graph modeling the
topology of the DCS and n parameters per node, where n
is the number of nodes in the DCS.

The rest of this paper is organized as follows. In Sec-
tion III, we build the model for correlated failures. In
Section IV, we present simulations results on the impact
of correlated failures in the reliability of DCSs and, in
Section V, the conclusions of this work are outlined.

II. RELATED WORK

Under scenarios of application different from DC, corre-
lated failures have been extensively modeled. For instance,
in computer networks correlated failures have been modeled
using naive yet effective methods, such as regarding clusters
of nodes, whose joint probability of failure is “large enough,”
as prone to fail in a correlated manner [14]. Jiang and
Cybenko used hidden Markov models to detect temporally
and spatially correlated failures in a network security system
[15]. Fu and Xu reported in [16] a proactive management
system for node failures using a failure predictor based on
spatial and temporal correlations. Other researchers have
developed models for correlated failures triggered by mas-
sive natural and/or man-made events [17]–[19]. These events
occur within a certain geographical region and physically
damage several nodes. For example, correlated failures were
modeled using geographical distances and failure probabil-
ities in [17], while the concept of probabilistic shared-risk
groups was used in [18], and a Strauss spatial point process
was employed in [19] to capture the aforementioned failures.

In the context of storage systems, Bakkaloglu et al. [20]
modeled the availability of a storage system in the presence
of correlated failures introducing using two representations.
The first representation used the so-called correlation level
parameter, which was defined as the conditional likelihood
of failure at a unit, given that another system unit has already
failed. The second representation relies on the capability of
the Beta-Binomial distribution to capture correlation among
interconnected storage units. Later, Nath et al. modeled
correlated failures in wide-area storage systems by fitting
a bi-exponential distribution for the number nodes failing in
a correlated manner [21]. In software development, Goseva
et al. [22] and by Dai et al. [23] modeled correlation in
software reliability using a Markov renewal process which
incorporated the dependencies among successive software
runs. In the context of system monitoring, Fiondella and
Gokhale derived analytical expressions, based on pairwise
component correlations, for the reliability in an on-demand
system exhibiting correlated failures [24].

Some models for correlated failures in DCSs have been
also proposed in the literature. To the best of our knowledge,
the work by Tang and Iyer is the first paper on modeling
correlated failures in multicomputer systems [6]. In this
pioneering work, the authors tackled the modeling problem
by analyzing traces from real systems and proposed a
two-phased hyperexponential model for the time between
failures. It is noteworthy to mention that correlation was
modeled in the time domain assuming that failures propagate
among nodes. Following the same ideas, Nath et al. studied
the effects of failure patterns on the availability of DCSs
using traces from real-world systems [25]. Dai et al. evalu-
ated the reliability of a grid computing system by modeling
the failure correlation appearing in the different subtasks
executed by the grid. Chen et al. reported in [7] a model
for temporally correlated failures in HPC systems which
captures cyclic dependencies among the tasks executed by
the nodes. Gallet et al. created a database of system logs and
modeled correlated failures in a probabilistic fashion using
parametric models with time-varying parameters [9].

III. MODEL FOR CORRELATED FAILURES

The key idea is to develop a model for correlated failures
capturing the logical and spatial interaction among the nodes
in a DCS. To do so, we first abstract the logical and
geographical connections between the nodes in a DCS by
means of the underlying topology of the network connecting
the nodes. Next, the ability of MRFs to model correlated
phenomena has been exploited by defining meaningful local
interactions that are simple to specify. These interactions
in turn, define a global Gibbs distribution of logically and
spatially correlated failures. The technical details of the
model are provided next.

A. Markov random fields approach for modeling spatially
correlated failures

Suppose that the undirected graph G = (V,E) represents
the topology of a DCS, where V = {1, . . . , n} is the set of
nodes and E ⊂ V × V represents the underlying topology
of the communication network connecting the nodes. In
order to capture both logical as well as spatial correlations
in a MRF setting, the following neighborhood system is
introduced:

Nv , {u : dW (v, u) ≤ Dmax ∨ dL(v, u) = 1, u, v ∈ V }.
(1)

In words, two nodes are neighbors if their Euclidean (geo-
graphical) distance is within the range Dmax or if they have
a direct connection with each other. From this definition of
neighborhood, the graph G induces the neighborhood system
N .

Suppose now that Xi is a binary random variable repre-
senting if a node has failed (“1”) or not (“0”). The definition
of neighborhood-system in conjunction with the collection
of binary random variables X = {Xi, i ∈ V } taking values
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on the configuration space Ω = {0, 1}n is employed here
to introduce a MRF. The definition of the MRF is complete
when the Markovian condition is specified, that is, the MRF
is completely determined when the likelihood of failure of
a node, conditional on the failed or working state of its
neighbor nodes is specified.

Requirements. It is of interest here analyzing the perfor-
mance of DCSs in scenarios where the failure of a node
induces failures in other functioning nodes, for instance,
due to the inability of the working nodes to exchange data
and information with a failed node. It is also of interest
to this work to model situations where the geographical or
logical proximity of a functioning node to a failed node
increases the probability of failure on the functioning node
and its neighbor nodes. To fulfill all these requirements, the
following local specification for the probability of failure
of the node, say, v, given the failed or working state of its
neighbor nodes is proposed:

P{Xv = xv|X(Nv) = x(Nv)}

=
exp

(
−T−1 xv(rv −

∑
u∈Nv

sv,u xu)
)

1 + exp
(
−T−1(rv −

∑
u∈Nv

sv,u xu)
) , (2)

where T is a constant, rv is a non-negative parameter
modeling the resilience of the vth node to failures and
sv,u is a non-negative parameter modeling the strength of
interaction between the nodes u and v.

Note that, due to the summation in (2), the likelihood
of node v of being in a failed state, xv = 1, effectively
increases when one or more of its neighboring nodes are also
in a failed state, xu = 1. Moreover, consider the following
definition for sv,u, the strength of interaction parameter:

sv,u =


Dmax

dW (v,u) + sL , if u∈Nv ∧ dW (v, u) ≤ Dmax

sL , if u∈Nv ∧ dW (v, u) > Dmax

0 , if u /∈Nv

,

(3)
where sL is a non-negative parameter modeling the logical
strength of interaction between nodes v and u. This inhomo-
geneous definition for sv,u clearly increases the likelihood
of failure of nodes when they are geographically or logically
close to failed nodes.

The equivalence between MRFs and Gibbs fields can be
exploited to determine the energy function. By invoking
the law of total probability, the definition (2) and recalling
the Markovian condition it is straightforward to obtain the
energy function in terms of second-order Gibbs potentials:

E(x) =
∑
v∈V

rv xv −
∑
v∈V

∑
u∈Nv

sv,u xvxu,

= xT r− xTAx, (4)

where x = (x1 . . . xn)T , r = (r1 . . . rn)T , and A =
(sv,u)n×n. Thus, the Gibbs distribution associated with this

energy function is

πX(x) =
1

ZT
exp

(
−xT r− xTAx

T

)
. (5)

Note that the local specification (2) is independent of the
normalizing constant ZT , while the Gibbs distribution de-
pends on it. Note also that, when the strength of interaction
parameters are equal to zero, the Gibbs distribution reduces
to the case of independent failures.

B. A Gibbs sampler for generating correlated failures

Realizations of spatially correlated failures following a
Gibbs distribution can be sampled, in theory, from (5).
Unfortunately, the normalizing constant T is usually hard
to compute since due to the large dimension of the configu-
ration space. In order to circumvent this problem, sampling
algorithms such as Gibbs or Metropolis samplers can be
employed to generate realizations of (5). These sampling
algorithms yield realizations of MRFs by constructing a
field-valued, homogeneous Markov chain that has as its
stationary distribution, the desired Gibbs distribution. The
idea of the algorithm is to generate a realization of a Markov
chain that, at a large number of iterations, will be close to
(5). A key result in MRFs theory proves that a Markov chain
having as a stationary distribution (5) can be constructed
using the local specifications [13].

From (2), the local specifications for the vth node are:

p0 = π (0|x(Nv)) =
1

1 + exp
(
−T−1(rv −

∑
u∈Nv

sv,u xu)
) ,

(6)

p1 = π (1|x(Nv)) =
exp

(
−T−1 (rv −

∑
u∈Nv

sv,u xu)
)

1 + exp
(
−T−1(rv −

∑
u∈Nv

sv,u xu)
) .

(7)

Once these expressions are known, the Gibbs sampler can be
implemented. Algorithm 1 shows the details of the sampling
process, whose main idea is the following: Starting with
an initial random configuration, at each iteration of the
algorithm a node is randomly picked, say the vth node.
The value of the realization xv associated with the random
variable Xv , is updated according to either p0 or p1. This
process is repeated a large number of times, K, and as a
result of these K iterations a sample from (5) is obtained.

IV. SIMULATION RESULTS

To demonstrate the ability of the MRF-based model
for generating correlated failures, DCSs with representative
network topologies have been considered. In the examples
a nationwide DCS has been considered, where nodes are
located at several cities in the USA, as shown in Fig. 1.
The network topology of the first DCS considered is a
realization from the class of the so-called random networks.
In the second and third DCSs considered, the underlying
communication networks correspond to modified versions
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Algorithm 1 Gibbs sampler for the distribution (5). Algorithm
taken from [26].
Require: G = (V,E), T , rv , sL, Dmax, Nv , and K
Ensure: x

Set x0 to any random value in ΛV

Set k = 0
while k ≤ K do

xk+1 ← xk

Randomly pick v ∈ V
Compute p0 using (6)
Generate a random number α ∼ U [0, 1]
if α < p0 then

Set xk+1
v = 0

else
Set xk+1

v = 1
end if
k ← k + 1

end while
x← xk

of the AT&T IP backbone network 2Q2000 [27]. The DCSs
studied in this section comprise 20, 38 and 17 nodes, and
the Fiedler connectivity of the communication networks are
0.47, 0.45 and 0.23, respectively. (The Fiedler connectivity
is defined as the second smallest eigenvalue associated with
the Laplacian matrix of the graph G modeling the topology
of the network [28].)

Samples of correlated failures have been drawn using
the Gibbs sampler shown in Algorithm 1. To model the
resilience of the nodes to failures, the ri parameters were
set, for simplicity, to be homogeneous for all the nodes.
The coupling or strength of interaction parameters, si,j , can
be defined as homogeneous (si,j = s for all i, j ∈ V )
or heterogeneous (si,j). Here, such parameters are mainly
heterogeneous because they depend on the geographical
distance of the nodes; however, for simplicity the parameter
sL modeling the logical strength of interaction between
neighboring nodes was defined to be homogeneous. Thus,
unless otherwise stated, the following parameters have been
used to generate patterns of correlated failures on the DCS:
T = 1, ri = 2, and sL = 1. Additional parameters employed
are: (i) the Gibbs sampler iterates K = 50000 times before
yielding a sample of the MRF; and (ii) covariance matrices
were estimated using 2000 realizations of the MRF. For
comparison, the case of independent failures has been also
simulated by setting all the strength of interaction parameters
to zero, due to when si,j = 0 for all i and j in (5), the Gibbs
distribution reduces to a product of exponential distributions,
which corresponds in fact to a probability distribution for
independent failures.

Correlated failure patterns have been tested by generating
a total of 2000 failure realizations, and sampled covariance
matrices have been computed. Each off-diagonal element of
such matrices was statistically tested for correlation using a
t-test for the hypothesis of no correlation with a confidence
of 99%. The results of these tests and a sample realization
of correlated failures in the DCS were used to construct the

(a)

(b)

(c)

Figure 1: (a) Sample DCS composed of 20 nodes. (b) DCS
interconnected by means of the AT&T IP backbone network
2Q2000 [27]. (c) DCS interconnected by means of a simplified
version of the AT&T IP backbone network 2Q2000 [27].

images shown in Fig. 2. The elements in the diagonal of the
matrices correspond to a sample realization from the Gibbs
distributions obtained using Algorithm 1. A node, say, the
ith node has become failed if the ith diagonal element is
“1” (black rectangle) and is in a working state if the ith
element is “0” (no rectangle). The off-diagonal elements of
the matrices shown in Fig. 2 represent if there is correlation
(value “1” depicted as a gray rectangle) or not (value “0”
depicted using no rectangle) between the ith and jth nodes.
Note that the pattern of correlated failures in Fig. 2(a) shows
that four out of twenty nodes have failed. These four nodes
are nodes 1, 7, 9, and 14, which clearly form a cluster of
nodes in Fig. 1(a). Note also that the off-diagonal elements
of the correlation matrix depicted in Fig. 2(a) confirm with
a 99% confidence the correlation between the failures at the
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Figure 2: Matrices showing the spatial correlation in the case
of the (a) sample network with 20 nodes, and (b) the AT&T
IP backbone network 2Q2000. The elements in the diagonal of
the matrices correspond to a sample realization from the Gibbs
distributions. A red color means a failed node. The off-diagonal
elements show if there is (blue color) or not (white color) spatial
correlation between the failures at the nodes.

aforementioned nodes. Similarly, Fig. 2(b) shows a sample
failure pattern where the directly connected nodes 4, 5, and
10, as well as the stub node 6, have failed in a correlated
manner.

Figures 3 and 4 show the effect of both the resilience
parameter and the strength of interaction parameter on the
average number of failed nodes for the DCSs depicted in
Fig. 1(a) and (b). As expected, it can be observed from the
figures that the average number of failed nodes increases as
the robustness parameter decreases. In addition, as either the
homogeneous or the heterogeneous strength of interaction
parameter increases so it does the average number of failed
nodes. This behavior suggests that failures propagate more
intensely as these parameters increase, thereby reflecting the
fact that failures become more correlated as the coupling

Table I: FAILURE PATTERNS IN CORRELATED AND INDE-
PENDENT FAILURE SCENARIOS FOR THE DCS IN FIG. 1(c).

Probability of failure patterns
Correlated Independent Failure pattern

0.081 10−42 All nodes
Clustering 0.063 10−35 All except 2, 4, 10, 11

0.030 10−41 All except node 17
Effect 0.030 10−41 All except node 7

0.030 10−41 All except node 2
Inhibition 10−5 0.006 One node only

4× 10−5 to 10−7 4× 10−5 Two nodes only
Effect 5× 10−5 to 10−9 4× 10−7 Three nodes only

between nodes increases. Also as expected, when the robust-
ness parameter is fixed, the average number of failed nodes
is larger in the case of correlated failures as compared to the
case of a independent failures. Finally, note that the slopes
of the plots in Figs. 3(a) to (c) are steeper than those shown
in Figs. 4(a) to (c). This is attributed to the connectivity
of the underlying networks associated with the DCSs. Note
that the topology of the 20-node DCS is more connected
than the 38-node DCS. Such a fact is clearly reflected in the
Fiedler eigenvalue [28]. As a consequence of this greater
connectivity, the logical coupling between nodes is naturally
accentuated due to the larger number of relative connections
in the 20-node DCS as compared to the connections in the
38-node DCS.

Table I compares the effect of correlation parameters sL
and Dmax on some interesting failure patterns for the 17-
node DCS shown in Fig. 1(c). The normalizing constant
has been calculated by considering all the values in the
configuration space for independent and correlated failures.
With this, the probability of each specific failure pattern can
be calculated from the Gibbs distribution (5). Results show
that the probability of having a large fraction of the nodes
failing is much higher in the correlated-failure case than
in the independent-failure case. As expected from such a
model, the correlation parameters sv,u can be used to control
the degree of failed-nodes clustering or bunching. Similarly,
the probability of failure patterns with very few failed nodes
is much lower in the correlated-failure scenario than that
corresponding to the independent case. Namely, there is a
weaker “inhibition” effect in the correlated-failure scenarios
compared to the independent-failure scenario.

V. CONCLUSION AND FUTURE WORK

This paper presented a novel framework, based on MRFs
and graph theory, for modeling correlated failures of com-
puting nodes. The model abstracts the arbitrary topology
of the underlying network connecting the nodes in a DCS.
The developed failure model captures the spatial correlation
between nodes with logical and geographical connections
and captures also the percolation effect of node damage
across the DCS. The model was developed by defining local
conditional specifications of failure probabilities, which can

135Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation



0 1 2 3 4 5 6
0

2

4

6

8

10

12

14

16

18

20

CE robustness, r

A
v
g
. 
n
u
m

b
e
r 

o
f 
fa

ile
d
 C

E
s

 

 

Correlated

Independent

(a)

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

16

18

20

Homogeneous interaction parameter s

A
v
g

. 
n

u
m

b
e

r 
o

f 
fa

ile
d

 C
E

s

(b)

2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

Heterogeneous interaction parameter s
i,j

A
v
g

. 
n

u
m

b
e

r 
o

f 
fa

ile
d

 C
E

s

(c)

Figure 3: Average number of failed nodes versus (a) rv parameter,
(b) sL parameter, and (c) Dmax parameter for the DCS with 20
nodes shown in Fig. 1(a).

be easily specified in practice since they are related directly
to both the geographical and logical relations imposed by
the topology of the DCS. Key in the development of the
model are the set of parameters termed as the strength of
interaction between nodes, which quantifies the degree of
interaction between nodes in terms of physical distances and
also in terms of logical coupling.
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Figure 4: The average number of failed nodes versus (a) rv
parameter, (b) sL parameter, and (c) Dmax parameter for the DCS
with 38 nodes shown in Fig. 1(b).

The statistical analysis conducted on realizations obtained
from the model for correlated failures has shown that the
failure of a single node does propagate to other functioning
nodes, and the degree of propagation depends on the inten-
sity of the so-called inter-node strength of interaction pa-
rameter. The analysis confirms also that the average number
of failures increases as the logical and geographical strength
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of interaction between nodes increases and, as expected, the
average number of failed nodes also increases, as compared
to the case of independent failures, when correlated failures
affect the nodes of a DCS. Analytical results show also
that the probability of having a failure pattern involving a
large fraction of the nodes is considerably higher than in the
case of independent failures, when correlated failures affect
the system. Moreover, the strength of interaction parameters
specified in the model can be used to limit the number
of failed-nodes. This result is of practical interest in order
to identify the vulnerabilities associated with coordinated
attacks on the network infrastructure of the DCS.

As a future work, traces available on Internet from pro-
duction systems will be studied and the proposed Gibbs
distributions will be fitted in order to validate the proposed
model.
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