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Abstract—Municipal Solid Waste Management (MSWM) is a 

very complex problem present in many communities around 

the world. Decision makers need to formulate solutions that 

consider multiple goals and strategies. Strategies include 

multiple options for waste collection, transportation, transfer, 

treatment and disposal. The most appropriate choice, however, 

is often not clear. Given the large number of available options 

for MSWM and the interrelationships among these options, 

identifying MSWM strategies that satisfy economic or 

environmental objectives is a complex task. The main objective 

of this work is to use MSWM simulation and multi-objective 

linear programming to support decision makers in the process 

of selecting MSWM strategies from a very large decision space 

and in the presence of multiple objectives. Three competing 

objectives are considered: least cost, minimization of carbon 

dioxide emissions and minimization of energy consumption. A 

multi-objective fuzzy linear programming method is proposed 

to manage imprecision and uncertainty in the objectives via 

fuzzy membership functions. 

Keywords-simulation model; linear programming; fuzzy 
multiobjective optimization; Pareto optimal set; waste 
management. 

I.  INTRODUCTION 

 
Municipal Solid Waste Management (MSWM) is getting 

increased attention at national and local levels. The specific 
goals of each community for implementing MSWM plans 
depend on site-specific conditions and issues. For instance, a 
community facing a landfill space crisis may set a goal to 
reduce the amount of waste sent to landfill disposal and may 
consider source reduction, waste diversion through recycling, 
and volume reduction alternatives such as converting waste 
to energy. The most appropriate choice, however, is often not 
clear. For instance, recycling is known to reduce 
consumption of natural resources and save some processing 
activities at manufacturing facilities. These savings will 
avoid the emissions of some associated greenhouse gases 
and pollutants. However, if the market prices of recyclable 
materials are low, then a recycling program may not be as 
economical as one of the other options. To add complexity to 
this problem, landfill space may be very limited, making 
recycling an attractive option regardless of low market prices 
for recyclable materials. Each step in waste management 

(collection, recycling, treatment, disposal) could be 
accomplished through different technological options, and an 
overall MSWM overall strategy should include in most cases 
at least one technological option for each step. Decision 
makers are then faced with a problem of multiple 
dimensions: they need to select from multiple technological 
options to manage municipal waste from the generation point 
to the final disposal point to create an overall strategy, and 
they must evaluate each overall strategy for the competing 
objectives of cost effectiveness and environmental impact 
reduction. Given the large number of available options for 
MSWM and the interrelationships among these options, 
identifying MSWM strategies that satisfy economic or 
environmental objectives is a complex task. Simulation of 
MSWM is used in this work to help the decision makers with 
the screening and identification of MSWM strategies. 

The main objective of this work is to use MSWM 
simulation and multi-objective linear programming to select 
MSWM strategies from a very large decision space. Multiple 
objectives are considered: least cost, minimization of carbon 
dioxide emissions and minimization of energy consumption. 
Least cost solutions will tend to select MSWM technological 
options that do not necessarily reduce emissions or energy 
consumption. Conversely, minimum energy consumption 
scenarios and minimum pollutant emission scenarios will 
tend to select more advanced and expensive MSWM 
technological options. A number of methodologies have 
been proposed for multi-objective linear programming, such 
as the ones reported in [4], [5], [6], [7], [8], [9], and [10]. 
None of these methodologies offers a simple way to evaluate 
the relative importance of objective functions with very 
dissimilar measurement units. A new methodology using 
MSWM simulation and multi-objective fuzzy linear 
programming is proposed to improve the traditional 
weighted sum methodology. It is used to select noninferior 
solutions and to quantify the degree of achievement for each 
of the competing objectives.    

II. METHODOLOGY 

A. Municipal Solid Waste Management Simulation 

Simulation of MSWM can be performed by using a 
systemic representation of the different MSWM options. 
Each MSWM option or node has a specific purpose (e.g. 
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waste collection, waste transfer or waste treatment) and is 
inter-related with a number of other MSWM options.  Waste 
processes are simulated as mass balances at each 
management option, where there is incoming waste from 
other nodes and outgoing waste to other nodes. This 
simulation includes a number of sub-models, one for each 
MSWM option. These sub-models use the Life Cycle 
Inventory methodology to calculate annualized cost, energy 
consumption and emissions of different pollutants. The 
mathematical formulation is linear programming (LP) in 
which the objective functions are to minimize cost, energy 
consumption or a number of pollutant emissions. The 
simulation includes a life cycle inventory of different 
pollutants and the user can select to minimize the emissions 
of any of these pollutants. It also includes a complex 
mathematical formulation via constraints to represent waste 
mass flows from process units to other process units. For 
more details on the model simulation design and 
mathematical formulation see references [1], [2] and [3]. 
Table 1 shows a list of MSWM options used in this study. 

TABLE I.  MUNICIPAL SOLID WASTE MANAGEMENT OPTIONS 

MSWM step Management Option 

Collection Residential Collection of Yardwaste 

Collection Residential Collection of Mixed MSW 

Collection 
Residential Collection of Commingled Recyclables 

Sorted by Crew 

Collection Residential Collection of Presorted Recyclables 

Collection 
Residential Collection of Commingled Recyclables 

Sorted at Materials Recovery Facility 

MRF Materials Recovery Facility (MRF) for Mixed MSW 

MRF 
Materials Recovery Facility (MRF) for Presorted 

Recyclables 

MRF 
Materials Recovery Facility (MRF) for Commingled 

Recyclables 

Treatment Treatment at Yardwaste Compost Plant 

Treatment Treatment at Mixed MSW Combustion Plant 

Treatment Treatment at Refuse Derived Fuel (RDF) Plant 

Disposal Disposal at Landfill 

Disposal Disposal at Ash-landfill 

 

B. Generation of Baseline Solutions 

 
A hypothetical case representing a residential urban 

region of medium size will be defined. The residential 
population is 400,000 people with a solid waste generation 
rate of 4.5 lbs/person-day. The MSWM system definition 
requires specification of many input parameters, e.g., waste 
composition, distances between waste processing facilities, 
collection frequencies, etc. Most of these input parameters 
use national average values. The model was applied to an 
illustrative problem scenario where 15% of overall generated 
waste was banned from being disposed at the landfill. 
Diverting waste to be disposed at the local landfill can be 
achieved via yardwaste composting and recycling programs. 

The diversion rate will be enforced by adding a diversion 
constraint in addition to the mass flow constraints. Single 
objective simulations were executed to obtain the minimum-
cost solution, the minimum carbon dioxide emissions 
solution and the minimum energy consumption solution. The 
resulting MSWM options selected from the decision space 
were reported for each case. The resulting cost or 
environmental objective values selected from the objective 
space were reported for each case. 

 

C. Generation of Pareto Optimal Set 

 
The next step was to generate additional MSWM 

solutions using multi-objective programming. The three 
solutions obtained previously were generated by minimizing 
on one of the main objectives at a time. Since these 
objectives can be conflicting with one other, we are now 
interested in formulating a single aggregate objective 
function that incorporates all three objectives. This is done 
by creating a weighted linear sum of the objectives.     

Equation 1 shows the weighted linear sum of the three 
objectives: cost, energy consumption and carbon dioxide 
emissions. This objective function is optimized subject to the 
mass flows constraints and the diversion constraint. The 
objective function weights wcost, wCO2 and wenegy are supplied 
to obtain different optional solutions. They dictate how much 
of one objective must be sacrificed for the benefit of the 
other objectives. All solutions obtained with this method 
constitute non-inferior solutions necessary to generate the 
Pareto Optimal Set. 

 
Min {wcost x Z1 + wenergy x Z2 + wCO2 x Z3}.                 (1) 

Subject to: mass flow and waste diversion constraints. 

 

where: Z1 is Cost, Z2 is Energy Consumption and Z3 is CO2 

emissions. Weights wcost, wCO2 and wenegy are greater than 
zero and their sum is equal to 1. 

 

D. Fuzzy Linear Programming 

 
The last step was to use fuzzy linear programming to 

represent the objective functions as fuzzy sets. The use of 
fuzzy sets tries to capture the imprecision and uncertainty of 
competing objectives. A number of methodologies have been 
proposed for fuzzy multi-objective linear programming, such 
as the ones reported in [4], [5], [6], [7], [8], [9] and [10]. The 
method proposed here is a modification of the method 
proposed by Raju and Kumar [4]. The relative importance of 
the objectives is measured by the membership functions. The 
membership function is a measure of the degree of 
achievement for any given objective and is represented by 
µi(X) in Equation 2.     

 
                  0, for Zi < ZL,i 

µi(X) = {  (Zi –Z L,i)/(ZU,i –ZL,i), for Zi < ZL,i  (2) 
                  1, for Zi > ZU,i 
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where: 
ZL,i: less desirable value for objective i 
ZU,i: most desirable value for objective i    
Zi: objective value linked to degree of achievement µi   
X: decision variables vector 

 
Equation 1 can be re-written as:  
 
Min λ      (3) 
Subject to: 

λ  = wcost x λ 1 + wenergy x λ 2 + wCO2 x λ 3 

(Zcost –Z L,cost)/(ZU,cost –ZL,cost) ≤ λ 1 

(Zenergy –Z L,energy)/(ZU,energy –ZL,energy) ≤ λ 2 

(ZCO2 –Z L,CO2)/(ZU,CO2 –ZL,CO2) ≤ λ 3 

0 ≤ λ 1 ≤ 1, 0 ≤ λ 2 ≤ 1, 0 ≤ λ 3 ≤ 1 
mass flow and waste diversion constraints 

 

A value of 0 for λ1 means that there was a perfect 
achievement to minimize the cost objective, and a value of 1 
means that the worst achievement for cost was obtained. The 
same applies for λ2 and the energy objective and for λ3 and 
the CO2 objective. The degree of achievement can be then 
defined as 1- λi. Under this modified formulation, weights 
wcost, wCO2 and wenegy have values greater than zero but do 
not need to add up to 1. They measure the objectives relative 
importance between one another. 

 

III. RESULTS AND ANALYSIS 

A. Minimum Cost Solution 

 
 The model simulation resulted in a minimum cost 
solution that includes yard waste collection and composting 
for a sector of the residential population (23,800 tons). It 
also includes collection of mixed MSW taken to a mixed 
MSW MRF for separation of recyclable materials (260,000 
tons). 

Recyclable materials sorted and processed (25,500 tons) 
at the mixed waste MRF include among others: old 
newspaper (10,500 tons), corrugated cardboard (3,280 tons), 
ferrous cans (2,350), plastic (782 tons), clear glass (6,100) 
and brown glass (2,500 tons). This amount of composted and 
recycled material helped comply with the mandatory 15% 
diversion policy goal. Fig. 1 shows the selection of 
technologies for the minimum cost solution. The minimum 
cost obtained was $33 million, with -40 million pounds of 
CO2 emissions and -0.18 trillion BTU of energy 
consumption. A negative value in CO2 emissions indicates 
that CO2 emissions generated by unit processes (35 million 
lbs) are offset by the remanufacturing of recyclable materials 
into other usable materials (avoided 32 million lbs). These 
remanufacturing processes use recyclable material instead of 
virgin materials. Avoided emissions from the extraction and 
processing of raw materials are accounted for in the life 
cycle inventory. Additional emission offsets are accounted 
for at the landfill where CO2 is sequestered and avoided from 
entering the atmosphere (43 million lbs). Similarly, a 
negative value in the energy consumption means that energy 
consumed by the unit processes (0.27 trillion BTU) is offset 
by the remanufacturing process (avoided 0.29 trillion BTU). 

Avoided energy consumption from the extraction and 
processing of raw materials is accounted for in the life cycle 
inventory. 

 
          

 
 
 

 

 

 

 

 

 

B. Minimum Carbon Dioxide Emissions Solution 

 
The minimum carbon dioxide emissions solution 

includes quite different options from the minimum cost 
solution. It includes collection of recyclables sorted by the 
collection crew and taken to a presorted recyclables MRF 
(29,200 tons). It also includes collection of mixed MSW 
taken to a mixed MSW MRF (299,000 tons). Residuals from 
the mixed MSW MRF are then taken to a waste to energy 
facility (280,000 tons). Recyclable materials sorted and 
processed at the mixed MSW MRF (18,800 tons) include 
among others: old newspaper (6,830 tons) and clear glass 
(4,160 tons); and recyclable materials sorted at the presorted 
recyclables MRF (29,200 tons) include among others: old 
newspaper (9,590 tons) and clear glass (5,250 tons). Fig. 2 
shows the selection of technologies for the minimum carbon 
dioxide emissions solution. The minimum carbon dioxide 
obtained was -202 million pounds of CO2 (offset), with a 
cost of $57.6 million and -2.2 trillion BTU of energy 
consumption (offset). 

 

 
 
 

 
 
 
 
 
 

C. Minimum Energy Consumption Solution 

 
The minimum energy consumption solution includes 

collection of commingled recyclables taken to a commingled 
recyclables MRF (27,600 tons). It also includes collection of 
mixed MSW taken to a mixed MSW MRF (301,000 tons). 
Residuals from the mixed MSW MRF are then taken to a 
waste to energy facility (280,000 tons). Recyclable materials 
sorted and processed at the commingled materials MRF 
(27,600 tons) include among others: old newspaper (9,590 
tons) and clear glass (5,250 tons); and recyclable materials 

Figure 1. Management options for minimum cost. 
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Figure 2. Management options for minimum carbon dioxide emissions. 
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sorted at the mixed waste MRF (21,000 tons) include among 
others: old newspaper (6,830 tons) and clear glass (4,160 
tons). Fig. 3 shows the selection of technologies for the 
minimum energy consumption solution. The minimum 
energy consumption obtained was -2.27 trillion BTU 
(offset), with a cost of $60.3 million and -198 million pounds 
of CO2 emissions (offset).   

 

 
 
 

 
 
 

 
 
 
 

 

D. Multi-objective Optimization 

 
 Additional solutions were found by using multi-
objective optimization and the weighted sum method. Table 
2 shows the weight values used for each multi-objective 
formulation, and summarizes the values of the three 
objectives for each of the noninferior solutions. Weights 
were varied arbitrarily to try to capture different solutions. 
The optimal solution obtained depended on the relative 
values of the used weights. For example, if the specified 
weight for the cost objective was greater than the specified 
weight for the energy consumption objective, the solution 
favored lower cost over lower energy consumption.  
 Solution A corresponds to the least cost solution (Z1*); 
solution E to the minimum CO2 emissions solution (Z3*); 
and solution F to the minimum energy solution (Z2*). The 
other solutions represent noninferior points in the multi-
objective solution space. 

TABLE II.  SUMMARY OF SOLUTIONS FROM MULTI-OBJECTIVE 

OPTIMIZATION 

Sol. wcost 
wenergy wCO2 Cost 

(106 $) 
Energy 
(trillion 
BTU) 

CO2 
(106 
lbs) 

A 0.999 5e-4 5e-4 
33.1 

(Z1*) 
0.018 39.8  

B 0.8 0.1 0.1 36.4 1.207 137.0 

C 0.6 0.2 0.2 45.6 2.070 187.0 

D 0.4 0.3 0.3 52.1 2.203 196.0 

E 0.2 0.4 0.4 57.6 2.205 
202.4 

(Z3*) 

F 5e-5 0.9999 5e-5 59.9 
2.270 

(Z2*) 
195.9  

 
Fig. 4 shows a plot of the multi-objective solutions as a 

tradeoff between the conflicting objectives of least cost and 
minimum CO2 emissions. Similarly, Fig. 5 shows a plot of 

the multi-objective solutions as a tradeoff between the 
conflicting objectives of least cost and minimum energy 
consumption. These tradeoff curves represent the Pareto 
optimal sets or frontiers for the conflicting objectives. Any 
point in the Pareto optimal set represents a noninferior 
solution, for which an improvement in one objective requires 
a degradation of the other. Energy and emissions are non-
conflicting objectives. 

  
 

 
Figure 4. Cost and CO2 emissions tradeoff curve. 

 

 
 Figure 5. Cost and energy consumption tradeoff curve. 

 
Solutions B, C and D are noninferior solutions in which 

none of the three objectives reaches its minimum possible 
value. These “intermediate” solutions try to accommodate all 
three objectives based on the provided objective weights. 
The combinations of MSWM options for these intermediate 
solutions are also different from the least cost, minimum 
energy and minimum CO2 solutions. Fig. 6 shows the 
selected MSWM options for solution B. This solution is 
trying to depart from the least cost solution A and provides a 
greater weight to both the energy and emissions objectives. 
Therefore, the selection of technologies includes, in addition 
to the mandatory recycling, Refuse Derived Fuel (RDF) to 
try to offset energy consumption via the generation of energy 
from waste, and to avoid CO2 emissions by reducing the 
amount of waste to be disposed at landfills. Fig. 7 shows the 
selected MSWM options for solution C, which increments 
the weight values again for both the energy and emissions 
objectives. The selection of technologies includes now both 

Figure 3. Management Options for minimum energy consumption. 
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RDF and waste to energy to try to improve the 
environmental objectives at the expense of cost. Finally, and 
following the same reasoning, Fig. 8 shows the selected 
options for solution D, which now includes only waste to 
energy and RDF, and excludes yardwaste composting.                     

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

E. Multi-objective Fuzzy Optimization 

 
The multi-objective fuzzy optimization method 

simplified the task of choosing a unique solution among 
possible solutions from the noninferior solution set 
determined previously. Because the different objectives use 
very different measuring units, the weights used in the 
traditional weighted sum method were counter-intuitive. By 
using the membership functions in the multi-objective fuzzy 
optimization method, the objective values are normalized to 
comparable dimensionless units.   

 
Table 3 shows the results obtained after running a 

number of scenarios by varying the relative importance 

given to the objectives. The relative importance given to the 
objectives through the weights had a direct effect on their 
reported degree of achievement. The greater the relative 
importance given to an objective, the greater the degree of 
achievement was for that objective in the reported solution. 

  
Scenario 1 was obtained by assigning five times more 

importance to cost than to the other objectives. Cost obtained 
a degree of achievement of 87% while the other two 
objectives obtained degrees of achievement below 60%. 
Scenario 2 assigned five times more importance to energy 
than to cost, and the degree of achievement obtained for 
energy was 97% in detriment of cost. Since energy and CO2 
are non-competing objectives, the degree of achievement for 
CO2 was also high. Scenario 3 assigned five times more 
importance to CO2 than to cost, and the degree of 
achievement obtained for CO2 was 97% in detriment of cost. 
Again, since energy and CO2 are non-competing objectives, 
the degree of achievement for energy was high. 

 
The combinations of MSWM options corresponding to 

the solutions obtained in these 3 scenarios are also different 
from the least cost, minimum energy and minimum CO2 
solutions, and from the solutions B, C and D obtained in the 
previous section. The fuzzy multi-objective linear 
programming method presented here allows for the 
exploration of the decision space, as different combinations 
of management options are likely to be selected when new 
noninferior solutions are chosen.   

TABLE III.  SUMMARY OF SOLUTIONS FROM FUZZY MULTI-
OBJECTIVE OPTIMIZATION 

Scenario Relative 
importance 

Objective values 
(1=cost, 2=energy, 
3=CO2) 

Degree of 
achievement 
(1- λi) 

1 w1 =5 Z1=36.4 M$ λ1=87% 
w2=1 Z2=1.21 trillion BTU λ2=53% 
w3=1 Z3=137.0 million lbs λ3=60% 

2 w1 =1 Z1=51.1 M$ λ1=33% 
w2=5 Z2=2.20 trillion BTU λ2=97% 
w3=1 Z3=194.8 million lbs λ3=95% 

3 w1 =1 Z1= 53.3 M$ λ1=25% 
w2=1 Z2= 2.20 trillion BTU λ2=97% 
w3=5 Z3= 197.6 million lbs λ3=97% 

      

IV. DISCUSSION 

 
Municipal Solid Waste Management (MSWM) is a 

difficult task when a number of optional technologies and 
management processes are available to choose from. MSWM 
simulation is crucial to help generate and analyze multiple 
and different waste management scenarios. It allows the 
analyst to choose from a number of optional objectives. 
Initially, optimal solutions were found for a waste 
management scenario under three different objectives: 
minimum cost, minimum carbon dioxide emissions and 
minimum energy consumption. The combination of unit 
processes associated with these optimal solutions was very 
different from one another. While the minimum cost solution 
included collection of mixed waste and processing of 
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Figure 6. Management options for Solution B 
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Figure 7. Management options for Solution C 
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recyclables in a mixed waste MRF, the other two scenarios 
included additional recyclable collection and processing 
options. Only the minimum cost solution included yardwaste 
composting. Both minimum energy and minimum carbon 
dioxide emissions included waste-to-energy as a means of 
offsetting energy consumption with the electricity generated 
at the waste-to-energy plant. The mandated diversion rate of 
15% was satisfied by all three scenarios in different ways. 
The minimum cost solution diverted waste by composting 
yardwaste and recycling. The other two scenarios relied on 
recycling only. Both minimum energy and minimum carbon 
dioxide used waste-to-energy to offset energy consumption 
and emissions from regular unit processes.  

Decision makers may also want to find MSWM options 
while satisfying multiple objectives at once. The MSWM 
simulation allowed us to perform multiple-objective 
optimization to find interesting and different solutions from 
those obtained by minimizing on one objective at a time. The 
weighted sum methodology is a simple and reliable way to 
obtain non-inferior solutions from the Pareto optimal set. 
Each individual non-inferior solution represents a 
compromise between the competing objectives, and will 
favor one objective with respect to the other depending on 
the relative weights used. The convexity of the Pareto 
frontier means that, when moving from one non-inferior 
solution to another, an improvement in one of the objectives 
will represent degradation in the other objective. Non-
inferior solutions represent interesting multi-objective 
scenarios for the decision maker to consider. They represent 
different points in the objective space, combining multiple 
objectives by means of the weighted sum methodology. They 
also represent potential different points in the decision space, 
which can provide valuable information about a variety of 
MSWM strategies. A drawback of the traditional weighted 
sum methodology is the potential disparity in the values of 
used weights, due to the different measurement units used by 
the objectives. The fuzzy multi-objective methodology 
presented here provides the modeler with the possibility to 
select a noninferior solution and quantify the degree of 
achievement for each of the competing objectives. By 
normalizing the objective values via the membership 
functions, it eliminates the inconvenience of having 
dissimilar measurement units. It offers a method to manage 
imprecision and uncertainty in the objectives via fuzzy 
membership functions defined based on the worst 
achievement level and the best achievement level for each 
objective. By changing the relative level of importance on 

the objectives, the user can explore the noninferior set and 
have a quantifiable means to rank the degree of optimization 
obtained for each individual objective. The user may also 
experience different combinations of waste management 
options, as changes in the solution space may imply changes 
in the decision space.                
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