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Abstract—Simulation of quasi-one dimensional spatiotempo-
ral pattern formation along the three phase contact line in
the fluid cultures of lux-gene engineeredEscherichia coli is
investigated in this paper. The numerical simulation is basd on
a one-dimensional-in-space mathematical model of a bactet
self-organization as detected by quasi-one-dimensionaidumi-
nescence imaging. The pattern formation in a luminou<E. coli
colony was mathematically modeled by the nonlinear reactio-
diffusion-chemotaxis equations. The numerical simulatio was
carried out using the finite difference technique. Regular scil-
lations as well as chaotic fluctuations similar to experimetal
ones were computationally simulated. The effect of the sig-
dependent as well as density-dependent chemotactic senstty
on the pattern formation was investigated. The simulations
showed that a constant chemotactic sensitivity can be apgkd
for modeling the formation of the bioluminescence patternsin
a colony of luminous E. coli.

Keywords-chemotaxis; reaction-diffusion; pattern formation;
whole-cell biosensor.

I. INTRODUCTION

lux-gene engineered cells and a bioluminescence imaging
technique [9], [10]. However, the mechanisms governing the
formation of bioluminescence patterns still remain unclea
Over the last two decades, lux-gene engineered bacteria
have been successfully used to develop whole cell-based
biosensors [11]. A whole-cell biosensor is an analyte probe
consisting of a biological element, such as a genetically
engineered bacteria, integrated with an electronic corapbn
to yield a measurable signal. Whole-cell biosensors have
been successfully used for the detection of environmental
pollutant bioavailability, various stressors, includitigxins,
endocrine-disrupting chemicals, and ionizing radiatiog] |
To solve the problems currently limiting the practical ue o
whole-cell biosensors, the bacterial self-organizatidthivw
the biosensors have to be comprehensively investigated.
This paper investigates the bacterial self-organizatioa i
small circular container near the three phase contact kne a
detected by quasi-one-dimensional bioluminescence imag-
ing. The aim of this work was to develop a computational

Microorganisms respond to different chemicals found inmodel for simulating the spatiotemporal pattern formation

their environment by migrating either toward or away from of bioluminescence in the fluid cultures B&f coli [9], [10],
them. The directed movement of microorganisms in responsg 3]. The pattern formation in a luminous. coli colony

to chemical gradients is called chemotaxis [1]. Chemotaxisvas modeled by the nonlinear reaction-diffusion-chemstax
plays crucial role in a wide range of biological phenomenagquations assuming two kinds of the chemotactic sengitivit
e.g. within the embryo, chemotaxis affects avian gastrulathe signal-dependent sensitivity and the density-depgnde
tion and patterning of the nervous system [2]. Althoughsensitivity. The model was formulated on a one-dimensional
chemotaxis has been observed in many bacterial speciesomain. The numerical simulation at transition conditions
Escherichia coliis one of the mostly studied examplés.  was carried out using the finite difference technique [14].
coli respond to the chemical stimulus by alternating theThe computational model was validated by experimental
rotational direction of their flagella [1], [2]. data. By varying the input parameters the output results

Various mathematical models on the basis of Patlakwere analyzed with a special emphasis on the influence of
Keller-Segel model have been successfully used as imgortathe chemotactic sensitivity on the spatiotemporal pafiern
tools to study the mechanisms of chemotaxis [3]. A compremation in the luminou<E. coli colony. Regular oscillations
hensive review on the mathematical modeling of chemotaxiss well as chaotic fluctuations similar to experimental ones
has been presented by Hillen and Painter [4]. were computationally simulated.

Bacterial species including. coli have been observed  The rest of the paper is organized as follows. In Section
to form various patterns under various environmental condill, the mathematical model is described. Section Il dis-
tions [5], [6], [7]. Populations of bacteria are capable@fs cusses the computational modeling of a physical experiment
organization into states exhibiting strong inhomogeasiti Section IV is devoted to present results of the numerical
in density [8]. Recently, the spatiotemporal patterns i@ th simulation. Finally, the main conclusions are summarized i
fluid cultures of E. coli have been observed by employing Section V.
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1. MATHEMATICAL MODELING the spatiotemporal pattern formation in the fluid culturés o

Various mathematical models based of advection-reactiodx-9ene engineeref. coli is unknown, all these four forms
diffusion equations have been developed for modeling off /(72 ¢) were used to find out the most useful form.
pattern formation in bacterial colonies [5], [6], [15], [16 When m(_)dellng the bacterial self-organlzanon in a cir-
[17]. The system of coupled partial differential equationsCular container along the contact line [9], [10], [13], the
introduced by Keller and Segel are among the most Widebmathematmal model can be defined on a one dimensional

used [3], [4]. domain - the circumference of the vessel. Replacing,
and g4 with the concrete expressions above, the governing
A. Governing Equations equations (1) reduce to a cell kinetics model with nonlinear

According to the Keller and Segel approach, the mairsignal kinetics as well as the chemotactic sensitivity,
biological processes can be described by a system of two gn

n
conservation equations: € 2, t > 0), ot DnAn =V (h(n, c)nVe) + kin (1 - n_o) "
on dc kom 2)
— =V (D,Vn — h(n,c)nVe) + f(n,c), — =D.,Ac+ — kge, x€(0,1), t>0,
Oc =V (D.Ve) + gp(n, e)n — ga(n, c)c, vv.heregA is the Laplace operator formulatgd in the one-
ot dimensional Cartesian coordinate system, aiscthe length

where z and ¢ stand for space and timey(z,t) is the of the contact line, i.e., the circumference of the vessel.
cell densityc(z, t) is the chemoattractant concentratidn, AssumingR as the vessel radius= 27R, = € (0,27R).

and D.. are the diffusion coefficients usually assumed to beB
constant,f(n, c) stands for cell growth and death(n, c) ' _ ST
stands the chemotactic sensitivity, and g; describe the A non-uniform initial distribution of cells and zero con-
production and degradation of the chemoattractant [3],, [17 centration of the chemoattractant are assumed,

Th_e ceI_I growthf(n, ¢) is usually assumed to bg logistic n(z,0) = nog(z), c(x,0)=0, z€l0,l], (@3)
function, i.e., f(n,c¢) = kin(l — n/ng), wherek; is the o .
constant growth rate of the cell population, angl is the ~ Whereng,(z) stands for the initial{(= 0) cell density.
"carrying capacity” of the cell population [5]. For the bacterial simulation on a continuous circle of the

A number of chemoattractant production functions havelengthi of the circumference, the matching conditions are
been employed in chemotactic models [4]. Usually, a satapplied ¢ > 0):

Initial and Boundary Conditions

urating function_of_the cell density is used indicatin_g that n(0,t) = n(l,t), c(0,1) = c(l, ),
as the cell density increases, the chemoattractant prioduct on on de de (4)
decreases. The Michaelis-Menten function is widely used . = — s A = .
) Oz lz=0  Oxlz=i Orlz=0  Oxlz=i
to express the production ratg,(n,c) = ko/(ks + n) [3], C. Di ol Model
[13], [16], [18]. The degradation or consumption of the ~- Imension es_s ode _ _
chemoattractant is typically constagt(n, ¢) = k4. Values In order to define the main governing parameters of the
of ks, ks andk, are not exactly known [17]. mathematical model (2)-(4) [4], [7], [18], a dimensionless
The function(n, ) stands for the chemotactic sensitivity. mathematical model has been derived by setting
The signal-dependent sensitivity and the density-dep@nde
L. ) ) | . n k3k4c « k4t * k4
sensitivity are two main kinds of the chemotactic sensitiv- v =—, v = , U=—, 1 =4/ =,
) . no kang S D.s
ity [4]. Two commonly used forms of the signal-dependent D P n
sensitivity functionh(n,c) are the "receptor’(h(n,c) = D= D”, r= k_l’ b= k_o’ (5)
c 4 3

ks/(ke + ¢)?) and the "logistic” (h(n,c) = ks/(ks + c)) )
forms [4], [15], [17]. Assuming that cells carry a certain  y(u,v) = — 22
finite volume, a density-dependent chemotactic sensitivit kskaDe
function as well as volume-filling model were derived, Dropping the asterisks, the dimensionless governing equa-
h(n,c) = ks(1 — n/ng), whereny denotes the maximal tions then becomet (> 0)

h(nou, kQ?’LQC/(k}g/ﬁl)).

cell density [4]. Another form for the density-dependent 5, 2y O I

chemotactic sensitivity/{(n,¢) = ks/(ks + n)) has been % - Poz o <X(U70)U%> + sru(l —u),

introduced by Velazquez [19]. 9 52 (6)
In the simplest form, the chemotactic sensitivity is as- <2 — 2% (L — v) , x€(0,1),

sumed to be independent of the chemoattractant concentra- ot Oa? 1+ du

tion ¢ as well as the cell density, i.e., h(n,c) is constant, where z and ¢ stand for the dimensionless space and
h(n,c) = ks. Since the proper form of the chemotactic time, respectivelyu is the dimensionless cell density,
sensitivity functionk(n, ¢) to be used for the simulation of is the dimensionless chemoattractant concentrations
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the dimensionless growth rate of the cell populatign,
stands for saturating of the signal productigii, v) is the
dimensionless chemotactic sensitivity, andtands for the
spatial and temporal scale.

For the dimensionless simulation of the spatiotemporal
pattern formation in a luminouk. coli colony, four forms
of the chemotactic sensitivity function(u, v) were used to
find out the best fitting pattern for the experimental data [9]
[10], [13],

X0
= 7a
) = 2 (7a)
1+
= yo—— 7b
X(U, U) XOU + [37 ( )
u
x(u,v) = Xxo (1 - ;) ; (7c)
__Xo (7d)
x(u,v) = 1+ eu Figure 1. Top view bioluminescence images of the bacteritlies in

the cylindrical vessel at 5 (a), 20 (b), 40 (c), 60 (d) min apdce-time
The first two forms (7a) and (7b) of the functigriu, v) plot along the contact line (e) [10].
correspond to the signal-dependent sensitivity, while the
other two (7c) and (7d) - for the density-dependent sensitiv
ity [4]. Acceptinga =0, 8 — 0o, v — oo ore = 0 leads to
a constant form of the chemotactic sensitivifyu, v) = xo. ~ constant dimensionless step side ¢ was also used in the

The initial conditions (3) take the following dimensiorges time direction. An explicit finite difference scheme hasibee
form: built as a result of the difference approximation [14], [20]

The digital simulator has been programmed by the author in
u(z,0)=1+¢e(z), v(z,0)=0, z€[0,1], (8)  JAVA language [21].

wheree(z) was a20% random uniform spatial perturbation. ~ The computational model was applied to the simulation

The boundary conditions (4) transform to the following Of bioluminescence patterns observed in a small circular
dimensionless equations £ 0): containers made of glass [10], [13]. Figures 1a-1d show typ-

ical top view bioluminescence images of bacterial cultures

u(0,t) =u(l,t),  0(0,t) = c(1,t), illustrating an accumulation of luminous bacteria near the
Ou _Ou v _Ov (9 contact line. In general, the dynamic processes in unetirre
Orla=0 Ozlz=1" Ozle=0 IJzls=1 cultures are rather complicated and need to be modeled

According to the classification of chemotaxis models, theln three dimensional space [1], [9], [10]. Since luminous
dimensionless model of the pattern formation is a combi£ells concentrate near the contact line, the three-diroaabi
nation of the signal-dependent sensitivity (M2), the digsi Processes were simulated in one dimension (quasi-one di-
dependent sensitivity (M3), the saturating signal prodmct Mensional rings in Figures la-1d). Figure le shows the

(M6) and the cell kinetics (M8) models [4]. corresponding space-time plot of quasi-one-dimensional b
oluminescence intensity.
. NUMERICAL SIMULATION By varying the model parameters the simulation results

The mathematical model (2)-(4), as well as the correwere analyzed with a special emphasis to achieving a
sponding dimensionless model (6), (8), (9), has been definespatiotemporal pattern similar to the experimentally oled
as an initial boundary value problem based on a systerpattern shown in Figure le. Figure 2 shows the results of
of nonlinear partial differential equations. No analytica the informal pattern fitting, where Figures 2a and 2b present
solution is possible because of the nonlinearity of thesimulated space-time plots of the dimensionless cell densi
governing equations of the model [7]. Hence the bacterial: and the chemoattractant concentratigmespectively. The
self-organization was simulated numerically. corresponding valueg andv averaged on circumference of
The numerical simulation was carried out using the finitethe vessel are depicted in Figure 2c. Regular oscillations
difference technique [14]. To find a numerical solution of as well as chaotic fluctuations similar to experimental ones
the problem a uniform discrete grid with 200 points andwere computationally simulated. Accepting the constant
the dimensionless step sife005 (dimensionless units) in form of the chemotactic sensitivityy(u,v) = xo, the
the space direction was introducezh0 x 0.004 = 1. A dynamics of the bacterial population was simulated at the
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Figure 3. Spatiotemporal plots of the dimensionless ceibkite u for two
. _ forms of the signal-dependent chemotactic sensitiwity, v): (7a) « =
. u 0.05) (a) and (7b)& = 10) (b). Values of other parameters are as defined
S0, MMW in (10)-
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Figure 2. Simulated space-time plots of the dimensionledisdensity u
(a) as well as the chemoattractant concentrati¢h) and the corresponding 03
averaged valueg andv (c). Values of the parameters are as defined in (10).

following values of the model parameters [13]:

b)

00 02 04 06 0.8 1.0 00 02 04 06 08 1.0
X X

D=01,x0=62r=1,¢=0.73 s=625. (10) a)

Due to a relatively great number of model parametersfigure 4. Spatiotemporal plots of the dimensionless celsite v for two
there is no guarantee that the values (10) mostly approach e ° ¢ Sensy Sependent shertact sensity /(9.0 %
pattern shown in Figure le. Similar patterns were achievegho)
at different values of the model parameters. An increase in
one parameter can be often compensated by decreasing or
increasing another one [4], [17], [22] .

distinguish from the experimental ones (Figure 1e) when in-

creasingn-parameter (Figure 3a) or decreasjfigparameter

(Figure 3b). Because of this, there is no practical reason fo
By varying the input parameters the output results werepplication of a non-constant form of the signal-dependent

analyzed with a special emphasis on the influence of theensitivity to modeling the formation of the bioluminescen

chemotactic sensitivity on the spatiotemporal pattern forpatterns in a colony of luminous. coli

mation in the luminousE. coli colony. Figure 2a shows

the spatiotemporal pattern for the constant form of theB. The Effect of the Density-Dependent Sensitivity

chemotactic sensitivityy (u, v) = xo. Two forms, (7c) and (7d), of the function were em-
ployed for modeling the density-dependent chemotactie sen
sitivity. The spatiotemporal patterns of the cell density
The signal-dependent sensitivity was modeled by twowere simulated at various valuespfinde. Figure 4 shows
forms of the chemotactic sensitivity functiog (7a) and how the density-dependency affects the pattern formation.
(7b). The spatiotemporal patterns of the dimensionleds cel Acceptingy — oo ory = 0 leads to a constant form of the
densityu were simulated at very different values @fand  chemotactic sensitivityy(u,v) = xo. Multiple simulation
B. Figure 3 shows signal-dependency of the chemotactishowed that the simulated patterns distinguish from the
sensitivity. experimental ones (Figure 1e) when decreasifqmarameter
Acceptinga = 0 or 3 — oo leads to a constant (Figure 4a) or increasing-parameter (Figure 4b). Because
form of the chemotactic sensitivity(u,v) = xo. Results  of this, similarly to the signal-dependent chemotacticssen
of multiple simulations showed that the simulated patterngivity, there is no practical reason for application of a non

IV. RESULTS AND DISCUSSION

A. The Effect of the Signal-Dependent Sensitivity
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constant form also of the density-dependent sensitivitgrwh  [5] E. O. Budrene and H. C. Berg, “Dynamics of formation of

modeling the pattern formation in a colony of luminoks symmetrical patterns by chemotactic bacteriddture vol.
coli 376, no. 6535, pp. 49-53, 1995.

A simple constant formy((u, v) = xo) of the chemotactic [6] M. P. Brenner, L. S. Levitov, and E. O. Budrene, “Physical

sensitivity can be successfully applied to modeling the mechanisms for chemotactic pattern formation by bacteria,
formation of the bioluminescence patterns in a colony of Biophys. J.vol. 74, no. 4, pp. 1677-1693, 1998.

luminousE. coli. Oscillations and fluctuations similar to ex- _ _ _
perimental ones can be computationally simulated ignoring[”] é-, D. '\gwr?ﬁ'\”fhetma“gaé B'(;"Ogé’: 'I',- Sgat'?' Mo‘jz‘gg;‘“d
the signal-dependence as well as the density-dependence of iomedical Applicationsard ed.  Beriin: Springer, '

the chemotactic sensitivity. [8] S. Sasakiet al, “Spatio-temporal control of bacterial-

suspension luminescence using a pdms céll,Chem. En-

V. CONCLUSIONS gineer. Japanvol. 43, no. 11, pp. 960-965, 2010.
The quasi-one dimensional spatiotemporal pattern forma- . S o _
tion along the three phase contact line in the fluid cultufes o [9] R. Simkus, “Bioluminescent monitoring of turbulent biocon-

lux-gene engineereffscherichia colican be simulated and vection,” Luminescencevol. 21, no. 2, pp. 77-80, 2006.

studied on the bqsis of the Patlak-Keller-Segel model. _ [10] R. Simkus, V. Kirejev, R. Mekiené, and R. Mezkys, “Torus
The mathematical model (2)-(4) and the corresponding ~ generated byEscherichia cofl Exp. Fluids vol. 46, no. 2,
dimensionless model (6), (8), (9) of the bacterial self- pp. 365-369, 2009.
organization in a circular container as detected by biolumi . ) ) ]
nescence imaging may be successfully used to investigatél]l S- Dauneret al, “Genetically engineered whole-cell sensing
L . . systems: coupling biological recognition with reportengs,
the pattern formathn in a colony of luminous coli. Chem. Rey.vol. 100, no. 7, pp. 2705-2738, 2000.
A constant function X(u,v) as well ash(n,c)) of the
chemotactic sensitivity can be used for modeling the formafi2] R. J. M. M. B. Gu and B. C. Kim, “Whole-cell-based
tion of the bioluminescence patterns in a colony of luminous ~ biosensors for environmental biomonitoring and applaali
E. coli Oscillations and fluctuations similar to experimental ~ AdV- Biochem. Eng. Biotechnolol. 87, pp. 269-305, 2004.
ones can be computationally smulated ignoring the signal 13] R. Simkus and R. Baronas, “Metabolic  self-
dep?nden9§ as well as the density-dependence of the chemo-" grganization of bioluminescentEscherichia cofl Lu-
tactic sensitivity. minescence DOl 10.1002/bio.1303. [Online]. Available:
The more precise and sophisticated two- and three- http://onlinelibrary.wiley.com/doi/10.1002/bio.1303! (Ac-
dimensional computational models implying the formation cessed Aug. 27, 2011).

of structures observed on bioluminescence images are now4] A. A. Samarskii,The Theory of Difference SchemesNew

under development. York-Basel: Marcel Dekker, 2001.
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