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Abstract—Special case of amperometric biosensors is inves-
tigated in this paper. Processes of substrate as well as product
inhibition take place during the operation of these biosensors.
The operation of biosensors is modelled by employing non-
stationary reaction-diffusion equations containing a non-linear
term related to non-Michaelis-Menten kinetics. The equation
system is solved numerically using finite difference technique.
Apparent Michaelis constant is chosen as a good indicator
of biosensor reliability. Its dependency on the substrate and
product inhibition as well as the diffusion modulus and the
Biot number was investigated.

Keywords-modelling; simulation; apparent Michaelis constant;
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I. INTRODUCTION

A biosensor is a device designed to measure concentra-
tion of some specific substance in a solution. Biosensors
incorporate some biological material, usually an enzyme,
thus its name. Enzymes are organic catalysts which catalyze
very specific chemical reactions and do not infuence or
participate in other reactions. This feature of enzymes is
employed in biosensors for the recognition of particular
chemicals in solutions [1]–[3]. Amperometric biosensors
measure changes in the output current on the working
electrode that occur due to the direct oxidation or reduction
of products of the biochemical reaction. The output current
is usually proportional to the concentration of an analyte
(substrate) in a buffer solution. The concentration of an
analyte is determined using the calibration curve prepared
beforehand. Amperometric biosensors are known to be reli-
able, cheap and highly sensitive for environment monitoring,
food analysis, clinical diagnostics, drug analysis and some
other purposes [4]–[7].

Very frequently biosensors operate following the
Michaelis-Menten kinetics scheme [2], [3],

E + S
k1

GGGGGGBFGGGGGG

k−1
ES

k2
GGGAE + P, (1)

where E is the enzyme, S is the substrate, ES is the enzyme
and substrate complex, and P is the reaction product, ki is
the reaction rate constant, i = −1, 1, 2. However, sometimes
the kinetics of enzyme-catalysed reactions is much more

complex. An inhibition, an activation, an allostery and other
types of non-Michaelis-Menten kinetics are known for the
diversity of enzymes [8]–[12].

This paper investigates the case when the standard scheme
(1) is augmented with two more reactions

ES + S
k3

GGGGGGBFGGGGGG

k−3
ESS, (2)

E + P
k4

GGGGGGBFGGGGGG

k−4
EP, (3)

where ESS is a non-active complex with substrate molecule
and EP is a non-active complex with product molecule, ki
is the reaction rate constant, i = 3,−3, 4,−4. The overall
effect of reaction (2) is called substrate inhibition and the
overall effect of reaction (3) is called product inhibition.

It is very important to investigate kinetic peculiarities of
the biosensors [1]–[3]. In order to perform such investigation
a model of a biosensor should be built [13], [14]. A thorough
review on the modelling of the amperometric biosensors
has been presented by Schulmeister [15] and more recently
by Baronas et al. [16]. The same type of biosensors has
been investigated in the paper by the same authors [17].
This paper enhances the results of investigation [17] and
emphasizes on the sensitivity of biosensor at wide range of
the inhibition constants, diffusion modulus and Biot values.
Apparent Michaelis constant is used as a good indicator
of biosensor sensitivity. A numerical simulation has been
carried out using a finite difference technique [18], [19].

The rest of the paper is organised as follows: in Section II
the mathematical model is described; Section III briefly de-
scribes the numerical model and the simulator; in Section IV
we present results of numerical experiments; and, finally, the
main conclusions are summarized in Section V.

II. MATHEMATICAL MODEL

Main parts of the amperometric biosensor are an electrode
and a layer of enzyme applied on the electrode surface. The
mathematical model consists of two layers: enzyme layer
and diffusion layer. In enzyme layer enzymatic reaction and
diffusion take place while in diffusion layer only diffusion
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takes place. Outside the diffusion layer is the part of solution
where the concentration of the analyte is kept constant.

Consideration that electrode and enzyme layer are sym-
metrical as well as consideration of homogeneous distribu-
tion of the immobilized enzyme in the enzyme membrane
allows definition of one-dimensional-in-space mathematical
model of the biosensor [15].

A. Governing Equations

By omitting the details of the catalysis mechanism, re-
action scheme (1)–(3) may be generalized to the following
form:

S
E

GGGGGAP. (4)

Applying the quasi-steady-state approximation the rate of
the reaction (4) may be expressed as follows [17]:

v(se, pe) =
Vmaxse

kM (1 + pe/kp) + se (1 + se/ks)
, (5)

where se(x, t) and pe(x, t) are the molar concentrations of
the substrate S and the product P in the enzyme layer, x and
t stand for space and time, respectively, Vmax is the maximal
enzymatic rate, kM is the Michaelis-Menten constant, ks is
the substrate inhibition rate, and kp is the product inhibition
rate [1], [2], [20]. These latter parameters are expressed as
follows:

Vmax = k2e0 = k2(ee + ees + eess + eep) , (6a)

kM =
k−1 + k2

k1
, ks =

k−3
k3

, kp =
k−4
k4

, (6b)

where ee(x, t), ees(x, t), eess(x, t) and eep(x, t) are molar
concentrations of the enzyme E, the ES complex, the ESS
complex and the EP complex, respectively. e0 is the total
sum of the concentrations of all the enzyme forms, e0 =
ee + ees + eess + eep. e0 is assumed to be constant in the
entire enzyme layer.

Let x = 0 represents the electrode surface, x = de is the
boundary between the enzyme and the diffusion layers, and
x = de+dd is the boundary between the diffusion layer and
the bulk solution.

The governing equations for a chemical reaction network
can be formulated by the law of mass action [1], [21].
Coupling of the enzyme-catalysed reaction in the enzyme
layer with the one-dimensional-in-space diffusion, described
by Fick‘s law, leads to the following equations of the
reaction–diffusion type (t > 0):

∂se
∂t

= Dse

∂2se
∂x2

− v(se, pe), (7a)

∂pe
∂t

= Dpe

∂2pe
∂x2

+ v(se, pe), 0 < x < de, (7b)

where de is the thickness of the enzyme layer, Dse and
Dpe

are the diffusion coefficients of the substrate and the
reaction product in the enzyme layer.

Outside the enzyme layer only the mass transport by
diffusion of the substrate and the product takes place.
We assume that the external mass transport obeys a finite
diffusion regime,

∂sd
∂t

= Dsd

∂2sd
∂x2

, (8a)

∂pd
∂t

= Dpd

∂2pd
∂x2

, de < x < de + dd, t > 0, (8b)

where sd(x, t) and pd(x, t) stand for concentrations of the
substrate and the product in the diffusion layer, dd is the
thickness of the external diffusion layer, Dsd and Dpd

are
the diffusion coefficients in the diffusion layer.

B. Initial and Boundary Conditions

The biosensor operation starts when some substrate ap-
pears in the bulk solution (t = 0),

se(x, 0) = 0, pe(x, 0) = 0, 0 ≤ x ≤ de, (9a)
sd(x, 0) = 0, pd(x, 0) = 0, de ≤ x < de + dd, (9b)

sd(de + dd, 0) = s0, pd(de + dd, 0) = 0, (9c)

where s0 is the concentration of the analyte (substrate) in
the bulk solution.

Due to the electrode polarization, concentration of the
reaction product at the electrode surface (x = 0) is per-
manently reduced to zero [15],

pe(0, t) = 0. (10)

Since the substrate is not ionized, the substrate concen-
tration flux on the electrode surface equals zero,

Dse

∂se
∂x

∣∣∣∣
x=0

= 0. (11)

The external diffusion layer (de < x < de+dd) is treated
as the Nernst diffusion layer [18]. According to the Nernst
approach the layer of the thickness dd remains unchanged
with time. It is also assumed that away from it the solution
is uniform in the concentration (t > 0),

sd(de + dd, t) = s0, (12a)
pd(de + dd, t) = 0. (12b)

On the boundary between two regions having different
diffusivities, the matching conditions have to be defined
(t > 0),

Dse

∂se
∂x

∣∣∣∣
x=de

= Dsd

∂sd
∂x

∣∣∣∣
x=de

, (13a)

se(de, t) = sd(de, t), (13b)

Dpe

∂pe
∂x

∣∣∣∣
x=de

= Dpd

∂pd
∂x

∣∣∣∣
x=de

, (13c)

pe(de, t) = pd(de, t). (13d)
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According to these conditions, the substrate and the prod-
uct concentration fluxes through the external diffusion layer
are equal to the corresponding fluxes entering the surface of
the enzyme layer. The concentrations of the substrate as well
as the product from both layers are equal on the boundary
between these layers.

C. Biosensor Response

The electric current is measured as a response of a
biosensor in a physical experiment. The current depends
on a flux of reaction product at an electrode surface. Thus
the density i of the current at time t is proportional to the
gradient of the product at the electrode surface, i.e., at the
border x = 0, as described by Faraday’s law,

i(t) = neFDpe

∂pe
∂x

∣∣∣∣
x=0

, (14)

where ne is a number of electrons involved in the elec-
trochemical reaction, and F is Faraday’s constant (F =
96486C/mol) [2], [15].

Usually the steady-state current is used as a response of
amperometric biosensor. However usage of steady-state cur-
rent is not convenient when biosensor exhibits substrate and
product inhibition, because steady-state current is directly
proportional to s0 only in part of the calibration curve [17].
The maximal biosensor current does not have this drawback,

imax = max
t>0

i(t), (15)

where imax is the density of the maximal biosensor current.

D. Apparent Michaelis Constant

At the ideal conditions of the Michaelis-Menten model
the rate of generalized reaction (4) is defined as follows:

v(s0) =
Vmaxs0
kM + s0

.

The maximal possible rate of generalized reaction (4) is
equal

lim
s0→∞

v(s0) = lim
s0→∞

Vmaxs0
kM + s0

= Vmax

If the concentration s0 is numerically equal to kM then
the rate of reaction (4) is equal to half the maximal possible
reaction rate,

v(kM ) =
VmaxkM
kM + kM

= 0.5Vmax

If the biosensor would work at ideal Michaelis-Menten
conditions, it would be possible to calculate kM using the
calibration curve imax(s0), because v(s0) is proportional to
imax(s0),

Vmax ∼ lim
s0→∞

imax(s0), 0.5Vmax ∼ 0.5 lim
s0→∞

imax(s0).

When the Michaelis-Menten constant is calculated for the
particular biosensor from the calibration curve it is called the
apparent Michaelis constant kapp,

kapp =

{
s∗0 : imax(s

∗
0) = 0.5 lim

s0→∞
imax(s0)

}
. (16)

Greater kapp value means longer range of substrate con-
centrations in which the calibration curve resembles a linear
function. Whereas other parts of the curve are largely not
suitable for the biosensor operation. This is the reason why
kapp is an attractive parameter that helps to measure the
sensitivity of biosensor.

Usually, for real biosensors kapp 6= kM [3]. Theoretical
modelling has shown that under certain conditions kapp
depends on the biosensor geometry [22]. It has been shown
that kapp can be increased by the restriction of the substrate
diffusivity [23]. This result can be easily applied for the
biosensor improvement by covering the enzyme layer of a
biosensor with a permeable membrane [23].

E. Limitations of Mathematical Model

The presented mathematical model is a simplified view of
processes taking place during physical biosensor operation.
Some processes are not reflected in the mathematical model.
Physical experiments must obey some constraints in order
to minimize the influence of those neglected processes.

The quasi-steady-state approximation used in the math-
ematical model neglects the fact that concentrations of
enzyme forms (ee, ees, eess and eep) change at the beginning
of a physical experiment. If the equilibrium between enzyme
forms is reached fast enough this approximation is quite
accurate though [20].

The enzyme layer should be of uniform thickness and
the enzyme should be homogeneously distributed throughout
this layer. This is an assumption leading to the construction
of one-dimensional mathematical model. This approach is
widely used and reliable, even though these conditions are
not always satisfied because the enzyme layer often has more
complicated geometry [16].

III. NUMERICAL SIMULATION

The non-linearity of the governing equations prevents us
from solving the initial boundary value problem (7)–(13)
analytically, hence the numerical model is constructed and
solved using finite difference technique [15], [18], [24]. An
implicit finite difference scheme was built on a uniform
discrete grid with 200 points in space direction [11], [17],
[25], [26]. The simulator has been programmed by the
authors in C language [27].

In the numerical simulation, the biosensor response time
was assumed as the time when the change of the biosensor
current over time remains very small during a relatively long
term or when the biosensor current reaches local maximum
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(which is the global function maximum too). A special
dimensionless decay rate ε was used,

tr = min
i(t)>0

{
t :

t

i(t)

di(t)

dt
< ε

}
, i(tr) ≈ imax, (17)

where tr is the biosensor response time. The decay rate value
ε = 10−3 was used in the calculations.

In all numerical experiments the following values were
kept constant:

Dse = Dpe
= 100µm2/s,

Dsd = 2Dse , Dpd
= 2Dpe

,

kM = 0.01M, de = 10µm, ne = 1.

(18)

IV. RESULTS AND DISCUSSION

In order to conveniently analyse the simulation results,
five dimensionless parameters were introduced:

Kapp =
kapp
kM

, Ks =
ks
kM

, Kp =
kp
kM

,

α2 =
Vmaxd

2
e

DSekM
, Bi =

de/DSe

dd/DSd

=
DSd

de
DSedd

,

(19)

where Kapp, Ks and Kp are the dimensionless apparent
Michaelis constant, dimensionless substrate inhibition con-
stant and dimensionless product inhibition constant, respec-
tively, α2 is called the diffusion mudulus and Bi is the Biot
number.

A. Apparent Michaelis Constant vs. Substrate and Product
Inhibition

The dependence of the apparent Michaelis constant on
the substrate and product inhibition rates were investigated
in a wide range of inhibition constant values (Ks,Kp ∈
[10−4..104]). The dependence on the substrate inhibition was
investigated at three fixed rates of the product inhibition: no
product inhibition (Kp → ∞, curve 1), moderate product
inhibition (Kp = 1, curve 2) and high product inhibition
(Kp = 0.01, curve 3). In the case of no product inhibition,
the reaction scheme (1)–(3) reduces to scheme (1), (2). The
dependence on the product inhibition was investigated at
three fixed rates of the substrate inhibition: no substrate
inhibition (Ks →∞, curve 4), moderate substrate inhibition
(Ks = 1, curve 5) and high substrate inhibition (Ks = 0.01,
curve 6). In the case of no substrate inhibition, the reaction
scheme (1)–(3) reduces to scheme (1), (3). Other parameters
were kept as follows: α2 = 0.01, Bi = 1/15(dd = 300µm).
The results of the numerical simulation are depicted in
Figure 1.

The apparent Michaelis constant does not dependent
on the product inhibition rate at the very wide range of
product inhibition constant values (Kp ∈ [10−2..104]).
However at extremely high rates of product inhibition
(Kp ∈ [10−4..10−2]) and no substrate inhibition (curve 4),
the apparent Michaelis constant is dependent on product
inhibition rate change. Kapp is inversely proportional to the
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Figure 1. The dependence of the apparent Michaelis constant Kapp on
substrate (1, 2, 3) and product (4, 5, 6) inhibition constants Ks and Kp,
respectively.

Kp. However, the presence of substrate inhibition eliminates
the effect. In the case of a moderate substrate inhibition
(Ks = 1, curve 5) the infuence is barely observable and in
the case of high substrate inhibition (Ks = 0.01, curve 6)
the effect vanishes.

As one can see from the Figure 1 (curves 1, 2 and
3) the apparent Michaelis constant continuously and non-
linearly increases with an increase in Ks. At low rates of
the substrate inhibition the slope of curves starts to decrease
as the function approaches the maximal value of Kapp at
these particular biosensor parameters. As moderate and low
product inhibition rates do not influence Kapp value, all
three curves depicting the dependence on Ks almost entirely
coincide. However at low substrate inhibition values (high
Ks values), the curve 3 representing high product inhibition
(Kp = 0.01) slightly separates from curves 1, 2 representing
no product inhibition and low product inhibition (Kp = 1).
This is the same positive effect of the product inhibition that
is clearly observed on curve 4.

After examination of Figure 1 we can conclude that the
substrate and product inhibitions have opposite effects on
the apparent Michaelis constant. However, the infuence of
the substrate inhibition is evident at the very wide range
of substrate inhibition values, while infuence of the product
inhibition is evident only at the very high rates of product
inhibition and when this effect is not masked by the opposite
effect of substrate inhibition.

B. Apparent Michaelis Constant vs. Diffusion Modulus

To investigate the dependence of the apparent Michaelis
constant on the diffusion modulus α2, Kapp was calculated
simulating biosensor action at three values of the substrate
inhibition: high substrate inhibition (Ks = 0.01), moderate
substrate inhibition (Ks = 0.1) and low substrate inhibition
(Ks = 1) as well as at three values of the Biot number:
Bi = 0.01, Bi = 1 and Bi = 100. Calculation results are
depicted in Figure 2.

As it is evident from Figure 2, the apparent Michaelis
constant is directly proportional to the diffusion modulus
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Figure 2. The dependence of the apparent Michaelis constant Kapp on
the diffusion modulus α2 at three rates of the substrate inhibition (Ks):
0.01 (1, 2, 3), 0.1 (4, 5, 6), 1 (7, 8, 9) and at three rates of the Biot number
Bi: 0.01 (1, 4, 7), 1 (2, 5, 8), 100 (3, 6, 9), Kp = 0.1.

α2, not in a whole range of α2 though. The value of Biot
number determines the point at which the diffusion modulus
starts to infuence the Kapp value. As one can see from
Figure 2, when the Biot number is low (curves 1, 4 and
7) the diffusion modulus starts infuencing the Kapp at the
values as low as α2 = 0.01, when the Biot number is
moderate and high (curves 2, 5, 8 and 3, 6, 9, respectively)
the diffusion modulus starts infuencing the Kapp at the
values of α2 = 0.1. By comparing the steepness of curves
we can deduce that the Biot number also determines the
sensitivity of the Kapp to the α2. The curves 1, 4 and 7 that
represent a small value of the Biot number (Bi = 0.01) are
steeper than curves 2, 5, 8 that represent a moderate Biot
number value (Bi = 1) which are steeper than curves 3,
6, 9 that represent a high Biot number value (Bi = 100)
accordingly. The more steep the curve is, the more sensitive
is the apparent Michaelis constant to the diffusion modulus.

The substrate inhibition rate influences the apparent
Michaelis constant in the whole investigated range of the
diffusion modulus α2 as well as at all investigated values
of the Biot number. Kapp is directly proportional to the
substrate inhibition constant Ks.

The apparent Michaelis constant is inversely proportional
to the Biot number. The values of Kapp are higher at low
Biot number values Bi = 0.01 (curves 1, 4, 7) than at high
and moderate Biot number values Bi = 100 (curves 3, 6,
9) and Bi = 1 (curves 2, 5, 8), respectively. However when
the Biot number is moderate and high and at lower values
of diffusion modulus, the Biot number does not influence
Kapp.

C. Apparent Michaelis Constant vs. Biot Number

Figure 3 represents the effect of the Biot number on
the apparent Michaelis constant. One can see in Figure 3,
that Kapp is a monotonous descreasing function of Bi.
However, at higher values of Bi the function reaches the
steady-state and Kapp value sets in. The range of Bi where
the function Kapp(Bi) is at steady-state depends on the

diffusion modulus though. When the diffusion modulus is
low α2 = 0.1 (curves 1, 4), the range of steady-state is
wide (Bi ∈ [1..100]), when diffusion modulus is moderate
and high α2 = 1 and α2 = 10, respectively, the range of
steady-state is narrower.
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Figure 3. The dependence of the apparent Michaelis constant Kapp on
the Biot number Bi at two rates of the substrate inhibition (Ks): 0.01 (1,
2, 3), 1 (4, 5, 6) and at three rates of the diffusion modulus α2: 0.1 (1, 4),
1 (2, 5), 10 (3, 6), Kp = 0.1.

V. CONCLUSION

The mathematical model (7)–(13) of the amperometric
biosensor with the substrate and product inhibition can
be successfully used to investigate the behaviour of the
biosensor response at various sets of parameters. The model
can be used as a tool to optimize the biosensor configuration
prior to the experimental stage.

The substrate inhibition decreases the value of the ap-
parent Michaelis constant, hence designers of biosensors
should avoid the substrate inhibition if possible. Whereas
the product inhibition may increase the value of the apparent
Michaelis constant and make the biosensor more attractive
(Figure 1).

If the substrate inhibition is unavoidable and the apparent
Michaelis constant is low, the biosensor can be improved
by increasing the diffusion modulus α2 (Figure 2). Practi-
cally this can be achieved be increasing the enzyme layer
thickness de or by increasing enzyme concentration e0.

Another possibility to improve the biosensor is to increase
the external diffusion layer thickness dd or decrease the sub-
strate diffusivity DSd

. This can be achieved be decreasing
the intensity of solution stirring or by covering the enzyme
layer of a biosensor with a permeable membrane which
would decrease the substrate diffusivity. In worst cases this
method may at least move the value of apparent Michaelis
constant close to the Michaelis-Menten constant. In the
best cases, apparent Michaelis constant may overwhelm the
Michaelis-Menten constant by a few orders of magnitude
(Figure 3).
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