
Tunnel Simulator for Traffic Video Detection

Sofie Van Hoecke∗†, Steven Verstockt∗†, Koen Samyn∗†, Mike Slembrouck‡, Rik Van de Walle†
∗Electronics and Information Technology Lab (ELIT), Howest, Ghent University Association, Belgium

†Multimedia Lab (MMLab), ELIS, IBBT - Ghent University, Belgium
‡Traficon, Trafic Video Detection, Belgium

Email: {sofie.van.hoecke, steven.verstockt, koen.samyn}@howest.be, ms@traficon.be, rik.vandewalle@ugent.be

Abstract—Testing and evaluating advanced traffic video
detection algorithms and systems requires photorealistic source
material to be generated. As recording real life traffic situations
has severe limitations, a Tunnel Simulator is developed to create
custom test scenarios within tunnels. The Tunnel Simulator
enables the creation of custom tunnels by setting properties
for the tunnel and individual traffic events. Based on the
settings, a photorealistic scene is generated with the specified
tunnel, traffic events and ground truth. The scene can then
be previewed in real time 3D view and/or rendered in order
to test the video detection algorithms on it. The presented
Tunnel Simulator is the first high-quality traffic simulator that
succeeds in generating photorealistic source material that can
be used to evaluate traffic video detection algorithms.

Keywords-simulator, traffic video detection, photorealism.

I. INTRODUCTION

Over the years, traffic volume and complexity have been
growing at a steady pace. As a result, traffic managers
are faced with an increased demand in automated traffic
monitoring systems. These systems do not prevent primary
incidents, but once an incident has been positively identified,
protocols for reducing secondary incidents are initiated such
as tuning green-red cycles of traffic lights, closing the tunnel
entrance to prevent collisions, adjusting tunnel ventilation to
cut off oxygen supply to fires, or providing paramedics with
accurate information and images.

New algorithms and features for automated traffic moni-
toring using video image processing need extensive testing
in order to assess quality and reliability under various condi-
tions. In order to test and evaluate new detection algorithms,
accurate video source material is required. This real life
recorded video source footage is then fed to the traffic
monitoring system and the generated output is compared
to a ground truth. In order to do so, a ground truth needs to
be manually created for each relevant video feed. As traffic
and system complexity grows, developers no longer find
the appropriate source material. Despite numerous videos
documenting real traffic incidents, many possible scenarios
and events remain uncaptured on film. Up till now this has
been resolved by creating and recording custom traffic sce-
narios. However, this method does not allow for dangerous
situations to be created, e.g., driving a burning bus through
a tunnel filled with regular traffic. Such an event is a good

example of potentially catastrophic situations that have to be
detected as soon as possible in order to minimize casualties.

As a solution, a Tunnel Simulator was designed and
developed that generates user specified video source material
and ground truth. The choice for focusing on tunnels was
straightforward as a tunnel is potentially the most dangerous
place for incidents, illustrated by the tragic disaster in the
Gotthard tunnel in 2001 where a collision between two
trucks resulted in a fire incident in which eleven persons
died and that lasted over 24 hours before fire-fighters were
able to bring the situation under control. Ever since, traffic
video detection is mandatory in tunnels. Road tunnels must
be equipped with the appropriate equipment for detection
and monitoring, including sensors for temperature, visibility,
CO2, and smoke, as well as video cameras [1]. Incident
detection in tunnels became a key safety aspect for every
major traffic manager, and, even today, it remains a very
important aspect of automated traffic detection systems.

The remainder of this paper is as follows. Section II
outlines the state of the art. Subsequently, Section III defines
the advanced features of our tunnel simulator. Section IV
covers the internal design details. Next, Section V covers
the evaluation results, after which we summarize the most
important conclusions of our work in Section VI.

II. STATE OF THE ART

During the past decades, a considerable amount of re-
search has been done on developing real-time traffic surveil-
lance algorithms based on roadside video aiming to extract
reliable traffic state information [2]-[4]. However, the re-
search is limited to detecting events such as stopped vehicles
or car collisions in open road. As a result, ground truth
material is widely available.

Also different traffic models [5] and simulators have
been built [6]-[9]. These simulators are however intelligent
transportation systems (ITS) and flow control systems and
focus on optimal traffic flow control and calculating the most
efficient route to go from A to B.

Closests to our research goal is the tunnel simulator of the
Swedish Road Administration (SRA). The SRA has built
a Tunnel Simulator [10] in order to provide training for
traffic managers, staff, and paramedics. The large variety
of objects (e.g., grass, trees, vehicles, billboards, buildings,

49Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

railings and lights) allows to create accurate descriptions of
real tunnels, but the quality of rendered computer-generated
imagery (CGI) is low compared to today’s standards. To
the authors’ knowledge, no high-quality traffic simulator has
been reported upon yet.

III. TUNNEL SIMULATOR

Road tunnel operation depends heavily on traffic control
and monitoring, as well as on well prepared and tested
emergency and rescue plans [1]. However, the principle
risk in road tunnels is the driver, a risk that can never
be excluded. Therefore, new algorithms using video image
processing are constantly developed to positively identify
incidents better and faster.

In order to allow extensive testing of these algorithms
to assess quality and reliability, a Tunnel Simulator was
designed and developed to generate user specified video
source material and ground truth. Figure 1 presents the
general concept and Figure 2 a screenshot of the final result.

Figure 1. General concept of the Tunnel Simulator

As can be seen on Figure 1, the Tunnel Simulator consists
of a scene generating module, a traffic generating module
and a module to gather the user’s input. The front-end
enables users to create a custom tunnel by setting and
editing tunnel properties such as height, length, lighting,
angle and direction. Similar steps can be followed to cre-
ate custom traffic events inside the tunnel. The front-end
checks if properties are valid before passing them on to
the scene and/or traffic generator. Communication between
the generators and the 3D application is necessary to create
a virtual world with traffic events. The scene generator
provides the necessary information to build the tunnel, while
the traffic generator adds vehicles and animation paths to
the scene, to set up the animations. Each generator provides
information to the ground truth module in order to build
the based Object Video File (OVF). The 3D application will
use its internal render engine to render the CGI. Optional
tools (e.g., a render farm) are provided to speed up the
rendering process. These loosely coupled modules ensure
easy adaptation/replacement to meet future requirements.
The Tunnel Simulator will generate two outputs: a video

containing the rendered animation and a reference OVF file,
containing a description what happens in the video. This
video can then be fed to a detection system that will generate
a second OVF file. Both OVFs can then be compared in
order to assess and evaluate detection accuracy and quality.

Figure 2. Screenshot of a created tunnel scene by the Tunnel Simulator

The Tunnel Simulator offers advanced features listed
below:

1) User-friendly creation and configuration: Creating
and configuring the tunnel and according scenes is
straightforward by using a user-friendly interface so
that application training can be minimized. Within this
user interface (see Figure 3) all parameters can be set
to shape a tunnel and define a traffic situation.

Figure 3. User interface for tunnel creation and traffic event configuration

2) Photorealism: The traffic detection algorithms use
specular lightning spots, intensity and reflections to
detect vehicles and objects so photorealism is required.
In order to achieve this, for example, two light types
are used per car: spots to light up the environment,
and normal lamps as visible lights on car. Figure 4
shows the result.

3) Adjustable tunnel shape and driving lanes: Dif-
ferent shapes of tunnels can be created using the
simulator by configuring straight and curved sections,
the tunnel shape (e.g., cylinder, rounded rectangle), the
height and width, amount of lanes, uni- or bidirectional

50Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Figure 4. Modeling the car lights using two light types

traffic, and dead zones at the sides. Also markings are
added on the road to visualize individual driving lanes.
Both markings and lanes are in accordance with road
administration guidelines.

4) Custom traffic events: Users can create a tunnel with
custom traffic events by setting properties for each
individual event. As each car gets a speed description
in advance, this description will determine the car’s
behaviour during the animation. This way, any traffic
event can be generated. Currently supported traffic
events are: regular traffic, cars stopping on specific
lane, traffic jam, falling objects (see Figure 5), and
ghost driver. More events will be added in the future.

Figure 5. Traffic event in which fallen object hinders regular traffic

5) Adjustable lighting: Lighting is another crucial ele-
ment for the scene generation as it changes perception
dramatically. Height, position and amount of light
sources can be configured, as well as the color, inten-
sity and range for each light source. Slight variations
in color and intensity change the level of perceived
realism. This way, physically correct lighting can be
achieved in the tunnel. This is important for detec-
tion algorithms as changes in intensity (e.g., specular

lighting spots) and reflections are means of detecting
vehicles and other objects.

6) Adjustable camera settings: According to the ad-
justable lighting, the amount, height and position of
cameras can be configured, as well as the viewing
angle, focal point and lens.

7) Modular design: The simulator is designed in a mod-
ular way, with loosely coupled modules so that third
parties can create and/or integrate their own modules
into the simulator. This way, the Blender render engine
can be easily replaced by more performant render
engines such as 3ds Max and Maya. Additionally, new
scenarios, such as urban settings and highways, can be
built and easily integrated into the tunnel simulator.

8) Material / texture for road and tunnel: As each
material has unique properties and reacts differently
to light, the best materials are chosen in order to
ensure proper perceived realism. Currently one preset
material is used for the road, and another preset
material is used for the tunnel. However, due to the
modular design, easy integration of new materials and
textures is possible, should the need arise.

9) Preview functionality: The simulator provides the
ability to preview current settings at all times, in order
to facilitate fine tuning and check settings before start-
ing the rendering process. A simplified visualization
of the generated tunnel and traffic events is herefore
constructed and allows real time 3D preview. Once
a satisfactory tunnel is constructed, users can save
the tunnel settings in an XML-file. Scene and traffic
specifications can be saved separately, enabling users
to create custom content blocks and linking them.

10) Performance optimization: Based on the parameters
set in the user interface, a scene is built and the traffic
flow is created. The animation is rendered at a chosen
quality, resulting in a video file and photorealistic,
accurate image suitable for video detection. In order
to improve performance, only what can be seen is
created. As viewing distance inside tunnels is ob-
structed by curves, this improves the rendering process
by not wasting resources on visualizing invisible ob-
jects. Additionally, quality options such as resolution,
oversampling, ambient occlusion and motion blur can
be turned down to speed up the render process. And
finally, a render farm can be used for quicker results.
In our implementation, Farmerjoe was used, but thanks
to the modular design, this can easily be replaced by
another render farm.

IV. INTERNAL DESIGN DETAILS

The Tunnel Simulator has been implemented and is cur-
rently evaluated by Traficon. Below is an overview of the
main internal design details.

51Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

A. Constructing the 3D tunnel using Blender

Due to the high license costs of 3ds Max and Maya,
Blender was chosen to develop the Tunnel Simulator.
Blender features an internal render engine capable of fea-
tures such as ray-tracing, motion blur, oversampling and
ambient occlusion, but lacks real global illumination capa-
bilities, apart from using the radiosity solver, which requires
enormous amounts of processing power.

Creating a 3D tunnel model using Blender can be done
in several ways. One approach is to use basic objects such
as triangles and squares, and use them like building blocks
by scaling, translating and rotating them in order to create
surfaces. Joining multiple surfaces creates objects, called
meshes. The process of joining multiple surfaces can be
compared to welding two metal sheets together. Another
method for constructing a 3D tunnel, and the one we used, is
by moving a cross section along a path in order to define the
tunnel’s shell, similar to extrusion. The first step is creating
a guiding path for the cross section, such as a curve. Blender
has three main types of curves: Bezier curves, NURBS and
paths. Essentially, paths are the same as Bezier curves, but
are initially locked to a 2D plane and have a start and ending
point, giving them a direction from start to end. Any of
these types can be used as a guiding path for the cross
section. Figure 6 displays a path, which was used to create
the outer shell. The path is constructed by seven control
points, called knots. The curve is generated by a Bezier
algorithm. All kinds of free form curves can be created by
manipulating knots (e.g., translations, insertions and adding
weight to knots).

Figure 6. A path created by using Blender

Once the path is created, a cross section needs to be
constructed. This cross section will then be extruded along
the path in order to create the shell. The cross section is
created by using a closed curve such as a Bezier circle or
NURBS circle. The actual shape in Figure 7 is generated by
four Bezier circles, each one creating a quadrant and joined
together. The final step for creating the shell is extrusion,
realized by setting the cross section as the curve’s bevel
shape (see Figure 7). The main advantage of this method is
its easy adjustability. By adjusting the knots and handles, the
shape, length and curvature of the tunnel can be adjusted.

Finally, a road needs to be constructed and placed inside
the shell. This process is similar to creating the shell. A new

Figure 7. Modeling the 3D tunnel with Blender

cross section needs to be constructed. This object is a line
with identical width as the tunnel cross section. An identical
path is created by duplicating the tunnel path and placing it
on top of the tunnel path.

Once the tunnel shape is created, materials are assigned
to it in order to define its appearance. Each material has
unique properties, and reacts differently to light. Therefore,
different (fixed) materials are chosen for the tunnel and road
to ensure proper perceived realism. As already stated, due
to the modular design, easy integration of new materials and
textures is possible, should the need arise.

Changing the tunnel’s width and cross section shape
cannot be directly controlled by users through the graphical
user interface in order to prevent mismatches between cross
section diameter and road settings. The user is only allowed
to change road settings such as number of lanes, driving
lane width and dead zone space. Adjusting these settings
will automatically cause the tunnel cross section to scale to
a suitable size.

B. Creating the vehicle database
The 3D cars and SUVs used by the Tunnel Simulator are

provided by Marlin Studios. Each vehicle is constructed by
approximately 2100 to 4000 polygons and is made up by
four groups of sub objects and a high resolution texture:
glass windows, body, interior and wheels. The high resolu-
tion texture is improved by implementing normal mapping
and ambient occlusion baking. Most of the car’s interior was
removed since this is not visible when rendering.

As no (free) models of trucks with good quality and level
of detail for Blender could be found, we built the truck
model ourselves. The model uses 3789 polygons and texture
mapping to provide extra detail. Figure 8 presents the three
different trucks currently supported in the Tunnel Simulator.

C. Creating the lighting setup
Now that the scene and vehicle database is created, the

lighting setup needs to be constructed to mimic lighting
conditions inside a real life tunnel. Adding lights to a closed
scene can change perception dramatically.

There are five different kinds of lights available in
Blender: a normal lamp, sun, spot, hemi and area light. Test-
ing indicated that spots produced the most realistic lighting

52Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Figure 8. Blender truck models

effect inside the tunnel, followed closely by regular lamps.
However, regular lights considerably reduce rendering time,
making these lamps the best choice for the scene generator.

Finding the correct lighting setup was done by studying
real videos taken inside a tunnel and analyzing intensity,
color and positioning, and trying out those settings inside the
virtual environment. Additionally, the lighting setup must be
flexible in order to correspond with tunnel customization. In
Blender this problem can be solved by parenting the lights
to an identical Bezier curve that defines the tunnel’s path.
Next, the lights need to placed at a regular interval along
the tunnel, creating a specific pattern. This process can be
accelerated by using Blender’s DupliFrame function.

DupliFrames stands for Duplication at Frames and is a
modeling technique for objects which are repeated along a
path, such as the wooden sleepers in a railroad, the boards in
a fence or the links in a chain and thus also for creating the
lighting setup along the tunnel’s path. Figure 9 displays the
results from the DupliFrame process. In this case, 22 lights
are equally placed along the tunnel’s path. This process is
also used to position lamp placeholders along the ceiling
and sides of the tunnel and to place markings on the road.

Figure 9. DupliFramed lights are equally placed along the tunnel’s path

D. Adding a camera to the scene and generating traffic

The next step for the scene generator is defining a view
by placing a camera into the scene. Rendered images are
created from the camera’s point of view, similar to shooting
a real life video. At this point the entire 3D tunnel has been

built, a lighting setup has been added, and the camera has
been placed inside the tunnel.

The final step is generating the traffic, linking the traffic
to the tunnel by copying the tunnel’s path, and setting up
individual animations for each vehicle.

The real time event character of game engines, where one
can intervene and influence the scene in real time, is not
possible using Blender to slow down or speed up a car.
Neither is it possible to detect speed changes of cars in order
to slow down or speed up other vehicles too. As Blender can
only render predefined animations, each car needs to have a
given speed description.

Figure 10. Exemplary speed description for a car

Once the animation is created and starts, nothing can
be changed. Whenever the user changes some settings, the
animation needs to be built again. Each animation consists
of three parts: (i) the object that is animated, in this case
the vehicle, (ii) the path to follow, i.e., an offset to the
middle of the tunnel in order to choose a lane, and (iii)
the speed description using interpolation curves. Note that
a small, random deviation is added to the offset so that not
every car drives exactly in the middle of the lane. Figure
10 presents an exemplary speed description for a car. The
speed of a car can be set by tuning the frame rate. This
frame rate is divided by the requested speed (in m/s), and
multiplied with the total length of the visible route section
(in m). This way, the number of frames for the entire route
is retrieved. As presented in Figure 10, from the perspective
of one specific camera, the car starts to drive at frame 100.
About 180 frames later, the car arrives at the end of the
visible route section for that camera. As the speed follows a
straight line from 0 to 1, the position of the car will change
linearly in time. As a result, the car will drive with constant
speed from start to end. The speed description uses Bezier
curves, composed out of Bezier triples (two handlers, one
knot), linked by a smooth line.

Normal traffic occurs when no special events, such as
traffic jams or collisions, occur during the traffic flow. In this
case, the user can set four parameters: speed, flow rate (i.e.,
cars per minute), statistical distribution of vehicle classes,
uni- or bidirectional traffic. These four parameters are used
to simulate the desired traffic by repeating the animation
for a random car and placing it in the scene. A Gaussian
distribution is used to average the distance between the cars.

53Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Figure 11. Speed description for a car that halfway stops and then speeds
up again

Figure 12. Detection testing using video generated by Tunnel Simulator

Also special traffic events can be implemented. Figure 11
presents the speed description for a car that stops halfway.

The car after a stationary car should also stop to avoid
a collision. Therefore, a custom speed description for these
cars need to be provided as well by slightly shifting the new
speed curve to the right and lowering this curve to make the
car stop after this first car. A for loop is used to repeat this
and let more than one car stop after the stationary car.

In order to make the stops more photorealistic, both back
lights and flashes are added to the cars, lighting up when the
car brakes, respectively warning when standing still. Both
features are implemented using layer descriptions.

The same way, also traffic jams, falling objects, and ghost
driver events are implemented in the Tunnel Simulator.

V. EVALUATION

The Tunnel Simulator fully works according to the speci-
fications. Users are able to create a small tunnel segment (a
single driving lane) to a large (four driving lanes) tunnel
segment. Evaluations at Traficon indicated that all scene
generator properties are intuitive for most of the users.
Users were able to create the desired tunnel with custom
traffic events, which ultimately resulted in a movie and OVF
file. Detection testing at Traficon (see Figure 12) indicated
that the generated movies are well suited for their intended
purpose, with high correlation between both OVF files.
Video footage and a demonstration of the finished project
can be found on [11].

VI. CONCLUSION

The developed Tunnel Simulator enables users to create
a tunnel with custom traffic events by setting properties for
the tunnel and each individual event. As a result, a scene
is generated with the specified tunnel, traffic events and
ground truth. The scene can then be rendered in order to
use it for testing video dectection algorithms. This way, the
quality and reliability of new video detection algorithms can
be extensively tested without the need to create and record
dangerous traffic situations to have video source material.

Future work includes the development of new scenes
(e.g., intersections), vehicle tracking, the addition of fire and
smoke events (e.g., burning vehicle), and pedestrian traffic.

ACKNOWLEDGMENT

The authors would like to thank Frédérique Vanneste,
Karel Azou and Kristof Hennebel for their valuable work.

REFERENCES

[1] M.P. Müller, Tunnel Safety: where are we now, Swiss Re, Risk
Engineering Services, 2005.

[2] G. Wang, D. Xiao, and J. Gu, Review on vehicle detection
based on video for traffic surveillance, Proc. of IEEE Inter-
national Conference on Automation and Logistics, pp. 2961-
2966, 2008.

[3] A. Bevilacqua and S. Vaccari, Real time detection of stopped
vehicles in traffic scenes, Proc. of IEEE Conference on Ad-
vanced Video and Signal Based Surveillance, pp. 266-270,
2007.

[4] O. Akoz and M.E. Karsligil, Video-based traffic accident
analysis at intersections using partial vehicle trajectories, Proc.
of 17th IEEE International Conference on Image Processing,
pp. 4693-4696, 2010.

[5] N. Farhi, M. Goursat, and J.P. Quadrat, The traffic phases of
road networks, Transportation Research Part C, 19(1), pp. 85-
102, 2011.

[6] J. Miller and E. Horowitz, FreeSim - a free real-time free-
way traffic simulator, Proc. of IEEE Intelligent Transportation
Systems Conference, pp. 18-23, 2007.

[7] T. Ishikawa, Development of a road traffic simulator, IEEE
Vehicular Technology Society, 47(3), pp. 1066-1071, 1998.

[8] T. Winters, M. Johnson, and V. Paruchuri, LITS: Lightweight
Intelligent Traffic Simulator, Proc. of International Conference
on Network-Based Information Systems, pp. 386-390, 2009.

[9] L. Yong and C.Y. Li, A microscopic simulator for urban
traffic systems, Proc. of 5th IEEE International Conference on
Intelligent Transportation System, pp. 622- 626, 2002.

[10] P. Wessel and J. Rossberg, Increase traffic safety by increasing
traffic management skills using advanced training simulator,
Proc. of 4th International Conference on Traffic and Safety in
Road Tunnels, pp. 1-10, 2007.

[11] Tunnel Simulator demonstration, http://elit.howest.be/demos.

54Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

