
Distributed Simulation of Dense Crowds
Sergei Gorlatch, Christoph Hemker, and Dominique Meilaender

University of Muenster, Germany
Email: {gorlatch,hemkerc,d.meil}@uni-muenster.de

Abstract—By extending previous approaches, we develop an
agent-based model for the simulation of large, dense groups
(crowds) of individuals. The model reflects behavioral complexity
by assigning psychological and physiological attributes to the
agents. In order to cope with the computational complexity,
we design and implement a distributed, multi-server simulation
framework in which the user can flexibly change both the simula-
tion environment and parameters at runtime. We implement the
simulation system using our Real-Time Framework (RTF) and
demonstrate its scalability and speedup over multiple servers.

Index Terms—Crowd simulation, Agent-based simulation, Par-
allel and distributed simulation, Real-Time Framework (RTF).

I. INTRODUCTION AND STATE OF THE ART

The simulation of the behavior of large and dense human
crowds is a socially important and technologically challenging
task. To represent the behavior of a crowd, three different kinds
of models have been proposed in the literature: flow-based,
entity-based, and agent-based models.

This paper develops an agent-based model for computer-
based simulations that reproduces the motion of a crowd of
individuals by a combination of psychological and geometrical
rules with social and physical forces. We also design and
implement a new approach to parallelize the simulation across
several servers, using the Real-Time Framework (RTF) [2],
developed at the University of Muenster.

In developing our model for crowds, we start with the
HiDAC (High-Density Autonomous Crowds) model [5] based
on the previous work [3] and improving the models suggested
in [1], [4]. The resulting agent-based model has no central
controlling unit; each agent corresponds to a simulated person
with its own individual behavior.

We aim at a model for the challenging case with dense
crowds, complex indoor scenarios with many rooms and large,
unobstructed areas, with a possibility of panic situations. Our
agents are designed to react dynamically to changes in their
environment (e.g., if a door is interactively closed during
simulation) and can select alternative routes. Agents pursue a
global goal, e.g., leaving the building by following a sequence
of waypoints at those doors that lead to the exit.

The high density of crowds and the complicated scenarios
lead to highly intensive calculations. Therefore, we develop a
distributed implementation of the simulation system that can
run on multiple servers. We address the critical problem of
scalability, which should allow for significantly higher num-
bers of agents than the sequential version, and we demonstrate
the achieved speedup of simulation by conducting experiments
with real-world scenarios.

II. THE MODEL FOR CROWDS

We implement several extensions and optimizations to Hi-
DAC [5], in particular: a) the opportunity for dividing big
rooms in several smaller rooms in order to balance the com-
putations; b) adaptable creation of rooms, with nearly arbitrary
number and arrangement of walls; and c) the introduction of
local waypoints which are used for avoiding collisions and for
moving around walls standing in the way.

Virtual World Representation. A map of the virtual world,
e.g., a building, consists of several rooms which are augmented
with walls and obstacles. We construct maps under the con-
dition that walls and doors geometrically form polygons. This
quite realistic assumption allows us to apply Jordan’s curve
theorem and to use the so-called ”Ray casting algorithm” for
deciding about the viewfield of the agents.

Collision recognition. Figure 1 shows how an agent recog-
nizes a wall standing in its way (for that, test calculations are
performed which we omit here because of lack of space) and
runs around the wall. The values used for the corresponding

Fig. 1: Recognizing a wall standing in the way

calculations are as follows: the normalized vector nw , the
orientation vector ow, the startpoint S and enpoint E, the
current (global or local) goal T of the agent, the position P
and its shortest distance to the wall dw, and L is a potential
local waypoint on one of its ends.

Pathfinding. Agent’s movement is simulated by first as-
signing the agent a start room and a target room. Pathfinding
reduces to the problem of finding the shortest path along the

27Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Fig. 2: Alternative routes for closed (left) and open (right) doors

edges of the graph that represents the simulated rooms. The
weight of the graph edges plays an important role: the more
agents stand before a door, the greater is door’s weight: every
single agent contributes to it by its diameter. The agent is
excluded from the door weighting, as soon as it crosses the
door or chooses another door. By using Dijkstra’s algorithm
for finding the shortest path, we determine the list of rooms
which the agent should cross. During simulation, every agent
selects the way on which it would bump into as few other
agents as possible. Using door weights, the agent learns about
the blocked and free passageways beyond its current room.

Alternative routes. An agent decides from one path to
another in one of two cases: either a door on agent’s way
turns out to be closed or this door is blocked by other agents.

Closed doors which are located in the direct viewfield of
an agent (see Figure 2, left) trigger a re-calculation of the
shortest path; doors which are known to be closed/blocked are
removed from this calculation by removing the corresponding
edges from the graph of the building. For the doors which are
blocked but not closed (Figure 2, right), the patience attribute
of the agent is used for deciding either to wait or to aim
at another door. The patience attribute is implemented as a
counter: our model avoids too long detours by comparing the
advantage of an alternative route with its overhead.

Agent’s perception. Agents are designed to be similar to
people in their perception of the environment. Every agent has
its viewfield, which we also call its influence rectangle.

Within its viewfield, the agent tries to avoid collisions,
see Figure 3. A collision is interpreted geometrically as
an overlapping of an agent with another agent, an obstacle
or a wall. The recognition and the consequent handling of
the collisions is based on recognizing this overlappings and
restoring an overlapping-free situation.

In the model, we express also pushing behaviour which
means that an agent is actively pushing onto other agents,
in order to reach its goal faster, in spite of possibly bringing
the others to falling down. An opposite behavior to pushing is
the agent waiting patiently: every agent owns a circular area

Fig. 3: The viewfield of an agent

within its viewfield, so-called circle of influence, such that if
another agent appears within this circle then the agent waits
till the other leaves. In order to avoid the situation that two
agents block each other, each agent has a timeout value, which
limits its waiting and which depends on its level of patience.
Similarly, we model the effects of hectic running forwards and
backwards in very dense scenarios.

Intelligent collision avoidance. In the model, we must
avoid the situation that if after the collision of an agent with
an object, the priorities and the external influences on the
object do not change, then the agent will collide with the
same object again and again. Therefore, we implement two
additional features: a) intelligent collision avoidance changes
the priorities of the agent for a short period of time after the
collision; b) modified collision avoidance changes the external
influence onto the agent after the collision, such that the same
collision becomes very improbable.

Agents’ falling down. An agent can be brought to falling
down when other agents are pushing it too hard. In order to
ensure that the simulation is near to reality, the other agents
try to avoid the fallen agents considering them as obstacles;

28Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Fig. 4: Dynamic change of viewfield

however, if the pushing is too hard then it may happen that the
agents are running directly on the fallen agents. This is done
by assigning parameter values in the equations which compute
agents’ movements.

Panic propagation. For modeling panic behaviour, we
modify physiological and psychological parameters of an
agent. The panic factor of an agent, if increased, allows for
a higher maximum speed and acceleration rate. In addition,
panicing agents do not wait for others, and their personal
circle is decreased, thus making such agents more active at
pushing. Panic propagation is modeled by means of the panic
level parameter: this level gets increased by each contact with
a panicing agent, and as soon as it is greater than the patience
factor, the agent itself becomes panicing.

Right move preference. In order to realistically model the
collision prevention among two agents, we provide agents with
a preference to move rather to the right than to the left.

Dynamic sight adaptation. We adapt the viewfield of
agents depending on the density of the crowd: in a very dense
environment, the agent takes care of its near neighborhood and
ignores the agents which are far from it, see Figure 4.

III. DISTRIBUTED SIMULATION SYSTEM

In order to organize an efficient simulation process for our
crowd model, we address two issues: 1) we reduce the amount
of information which is updated in each simulation step by
means of the intelligent interest management, and 2) we par-
allelize/distribute the simulation computations by employing
multiple servers and thus accelerating the computations.

Interest management. Interest management stands gener-
ally for the differentiation between important and not im-
portant information. With it, each client receives only those
information updates which are relevant of its simulation state.
The AoI (Area of Interest) management deals with the updates
of not only agents but also other entities, e.g. obstacles.
Figure 5 shows the effect of applying the AoI management.

Distribution of simulation. For distributing the simulation
among several servers, we use the Real-Time Framework

Fig. 5: Area of Interest: off (left) and on (right)

(RTF). The intuitive technique traditionally used in many
distributed applications is ’zoning’: the environment is split
into disjoint zones, in which computations are handled by
different servers. For crowd simulations, the ’zoning’ approach
has several drawbacks. First, agent interaction over zone
borders is prevented, since information is exclusively available
only to one responsible server. Thus, an agent cannot make a
decision based on observing other remote agents, which is
often necessary in practical scenarios. Moreover, when simu-
lating dense crowds, we cannot distribute the computational
workload where it is especially needed: zone borders can
only be placed in sparsely populated areas, thus eventually
leaving the simulation of a very densely populated area to one
server. Finally, strict separation of data among servers requires
the client, responsible for visualization, to communicate fre-
quently with every single server in order to render a complete
picture of the simulation state.

The novelty of our system is the use of ’replication’ rather
than ’zoning’ for computation distribution. Replication means
that each server holds the complete simulation data, see Fig. 6.
Each server is computing updates only for its so-called active
agents; all other agents are called shadowed on this server,
and their updates are computed by other servers (every agent
is active on exactly one server) and received from them. This
allows us to distribute the workload evenly between servers,
even in densely crowded scenarios, without hindering agent
interaction as with ’zoning’. Additionally, a client now only

29Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Fig. 6: Replication: active and shadow agents

needs to connect to one server to receive a complete picture of
the simulation state for visualization. Replication in our system
is implemented using RTF which supports both replication and
zoning and advanced combinations of both. The simulation
environment is described on a high level of abstraction in
an RTF-specific ’map’ which determines the distribution of
geometrical space on available servers. Our current system
employs a single area replicated over the network: each server
comes with its own HiDAC unit. Using mechanisms offered
by RTF, agents can be added to a unit, removed from it, and
migrated to a different unit at runtime.

IV. EVENT MANAGEMENT

An event in our simulation system is a short-lived, seri-
alizable object which is used within the simulation process
to send messages between the hosts (clients and servers). The
event management subsystem is usually initiated by the client,
e.g., to add or remove a particular obstacle. Another kind of
interactions happen among servers in order to reflect changes
of the simulation state.

The transparent distribution of simulation is supported by
event management: interactions concerning the whole sim-
ulation are implemented as atomic multicasts; interactions
concerning different servers are forwarded automatically; in-
teractions must not bring the simulation into a non-consistent
state.

Fig. 7: Event ClientRefreshCameraPosition

As an example, we consider the situation when a client
changes its camera focus (viewfield) during the simulation
process. In this case, the new position and the orientation of
the camera are read from the data of the virtual camera. As
soon as these values’ changes are greater than a predefined
threshold, the client sends an event with the actual data to the
server to which this client is connected. The server updates the
viewfield of the client and uses it for the AoI management.
The event is implemented as a message which is sent only to
the connected server, see Figure 7.

Another example is the ClientToggleDoorState
event for opening/closing a particular door. As a rule, doors
are managed by a single server, such that a client which is not
connected to this server should forward the event to it, see
Figure 8.

Fig. 8: Event ClientToggleDoorState

A special case is the event ClientAddAgent, with a
possibility for a server to forward the event to another server.
This happens if this other server manages fewer agents than
the server to which the event was initially sent. Forwarding
the message allows to balance the load between servers.

The only exception in the event management is the event
ServerSendDoorWeights which is not sent from a client
but rather from each replicated server to the activating server.
This server manages a global object which contains the actual
door weights of the simulation. The event sends the difference
vector which reflects the change during the previous simulation
step on the server. This vector is then used for computation
on the server which manages the global object.

V. EXPERIMENTAL RESULTS

In order to assess the performance of our simulation system,
we conducted a series of tests in a high-load setup which
emphasized those elements of a simulation scenario that

30Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Fig. 9: Simulation speed on 1 to 12 servers.

lead to bottlenecks in the system’s performance. We studied
a complex indoor environment with many rooms and one
large, unobstructed area, which is much more challenging
than the simpler scenarios which are usually studied in the
literature. While other agents hidden from agent’s sight can
be disregarded in many calculations, open space takes away
this potential performance gain. Also, our testing setup ensures
permanent agent movement because this induces additional
computational workload. E.g., a scenario with 400 stationary
agents may require less computing power than a scenario with
200 moving agents. Measurements were conducted on a local
network of common desktop PCs (servers).

The measured value in the experiments is the rate of
simulation in frames per second (fps) on the weakest system
server. Measurements were done as follows: First, the server
environment was prepared, comprising 1, 2, 4, 6, 8, 10, or
12 servers. Then, the test scenario was populated with 20
agents. After 1 minute runtime, the server simulation speed
was measured. The simulation then again was populated with
40 to 400 agents, with a step of 20 agents, and measurements
were taken again after 1 minute.

Our series of tests with the evacuation scenario for the St.
Paulus Cathedral in Muenster (a medieval building of about
5000 sqm with a complex system of doors) produce the results
shown in Figure 9. We observe that an increase in the number
of servers allows for the simulation of more agents, or, at a
fixed number of agents, increases the rate of simulation in
fps. A value of 10 fps is an empirically found threshold to
ensure correct calculations in our implementation: rate <<10
fps may lead to calculation errors, e.g., agents passing through
walls. As shown in Figure 9, four servers already suffice
to achieve this threshold for up to 395 simulated agents.

Regarding scalability, one server can simulate 170 agents at
10 fps, whereas two servers manage 280 agents at the same
frame rate (an increase of 64%), and four servers can increase
this number further to 395 (132%).

VI. CONCLUSION

In this paper, we extended and modified the HiDAC ap-
proach to crowd simulation [5]. The advantages of our system
include: flexibility (interactive changes at runtime), extensi-
bility (accommodating new behavioral factors) and efficiency
(real-time response) and, most importantly, the scalability over
the number of servers used for the simulation of especially
large, dense crowds. We also demonstrated that our Real-
Time Framework (RTF) [2], originally created for applications
like multi-player online games, supports high-performance dis-
tributed implementation of agent-based simulations at runtime
and ensures their high scalability.

REFERENCES

[1] Michael Batty. Polynucleated Urban Landscapes. Urban Stud, 38(4):635–
655, 2001.

[2] Frank Glinka, Alexander Ploss, Sergei Gorlatch, and Jens Müller-Iden.
High-level development of multiserver online games. Int. Journal of
Computer Games Technology, 2008(5):1–16, 2008.

[3] D. Helbing, L. Buzna, A. Johansson, and T. Werner. Self-organized pedes-
trian crowd dynamics: Experiments, simulations, and design solutions.
Transportation Science, 39(1):1–24, 2005.

[4] R. L. Hughes. The Flow of Human Crowds. Ann. Rev. of Fluid Mechanics,
35:169–182, 2003.

[5] Nuria Pelechano, Jan M. Allbeck, and Norman I. Badler. Virtual crowds:
Methods, simulation, and control. Synthesis Lectures on Computer
Graphics and Animation, 3(1):1–176, 2008.

31Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

