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Abstract—We describe the construction and performance eval-
uation of a new distributed discrete events simulation (DDES)
tool, based on the Peer-to-Peer (P2P) paradigm. This approach
allows the utilization of redundant resources in order to withstand
failures on the very processing entities in charge of the simulation
work. Our results show that the mechanisms supporting depend-
ability are expensive and are only recommended for long-lasting
and very processing-demanding simulations.
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I. INTRODUCTION

Distributed Discrete Events Simulation (DDES) has found
applications to study those systems made up from a massive
number of components interacting over a time scale, where
it is also necessary to reproduce their complex behavior under
controlled conditions and with very fine granularity, i.e., with a
high degree of realism. This is the case, for instance, of modern
telecommunications systems, very large scale of integration
(VLSI) circuits or even some biological models.

The basic operation of DDES consists in dividing the model
that represents the system under study, in such a way that each
of the resulting parts is simulated using a different computer.
This also implies that the supporting computers should be
connected by means of a communications network, in order
to simulate the possible interactions among the parts of the
model.

It is considered that the fundamentals of DDES were settled
by Misra [1] with his seminal paper from 1986. Nevertheless,
the major breakthroughs on the subject were achieved with
the development of high speed networks over the last fifteen
years about. Despite of the fact that DDES has evolved to be
part of the ordinary toolbox of many research teams, there are
open issues on the subject representing a challenging area of
opportunity. This is the case of dependability. Suppose that
in the middle of a long-lasting simulation, a given computer
crashes. The ongoing simulation should be restarted from zero
unless a fault-tolerant mechanism is implemented.

In the meantime, new paradigms have been developed in
the fields of parallel and distributed computing. These new
approaches foster the cooperative work among the components
of the very system, in order to tackle complex problems. P2P
systems, for instance, have found applications in situations
where it is required to split up a big task to render smaller
problems that can be assigned to a given number of appointed
peers. Projects like seti@home [22], or einstein@home [23],
and more recently folding@home [21] or rosetta@home [24],
are representatives of this new trend.

In this work, we introduce the construction and performance
assessment of a new prototype DDES tool based on the P2P
paradigm. Our proposal supports crash failures as well as peer
departures. If necessary, a missing component can be replaced
by a spare peer and the ongoing simulation can be restored to a
previously recorded global state, instead of starting over again.
Our prototype is built using JXSE [20], the Java platform for
P2P applications development.

The rest of this paper includes the following parts: Section
II introduces the basic concepts of discrete event simulation,
Section III gives a general view about related work, Section IV
describes the operations of our prototype, Section V presents
the results of the tool’s performance evaluation, and Section VI
shows our conclusion and future work.

II. BASIC CONCEPTS

A discrete event simulation can be understood as a collection
of logical processes. The interaction between any couple of pro-
cesses is modelled by the exchange of time-stamped messages.
This exchange is said to follow the restriction of local causality,
if and only if each logical process dispatches all its schedulled
events, including the messages that receives, according to their
timestamps.

Notice that a logical process should stop any activity until it
receives a message from each of the processes that interact
with it, to be sure that it chooses the message with the
smallest timestamp. Nevertheless, this approach poses the risk
of creating a deadlock among a set of entities interacting in a
circular way.

There exist two types of methods that deal with the risk
of blocking in distributed simulations. On one side, we found
the optimistic procedure. In the other side, we have the
conservative procedure. In the first case, messages can be
exchanged as they are produced. This decision may lead to
a potential violation on the causal order of events, which is
detected when a given entity receives a straggler message and
it finds out that its corresponding timestamp is smaller than
the timestamps of a number of messages already processed.
This means that the straggler should have been dispatched
before any of them. To fix this condition, the receiver starts
a local procedure called rollback, that restores its local state to
a previous one where the new set of messages can be processed
accordingly. If necessary, the entity in charge of rollback must
send the corresponding anti-message(s) to cancel the effect of
any message that could have been issued out of order. In the
other side, the conservative procedure avoids the possibility of
executing actions out of chronological order. This time, entities
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exchange the so-called null-messages, which do not carry any
physical meaning. The transmitter of a null-message sets a
lower bound on the timestamp for the next meaningful message
that could be issued. Each entity knowing the least timestamp
that can receive from any of its incoming channels, will be able
to dispatch any message in the right order.

The use of an optimistic synchronization mechanism also im-
plies that the involved participants should take the responsibility
of saving their local states to support rollback. Therefore this
solution implies the utilization of bounded storage capacities.
To prevent storage overflow, it is necessary to implement a
fossil recollection mechanism. This is, a mechanism to dismiss
previous recorded states that can not be reached, by no means,
during rollback. It is known that no rollback can restore the
state of any processing unit beyond the so-called global virtual
time (GVT) [1][11][14][15].

Let pi be a process that takes part in a distributed execution,
such that σ0

i is the initial state of pi, and let σk
i be the state

of the process right after executing its k-th local event eki . The
global state of the distributed execution will be the n-tuple Σ =
(σ1 . . . σn), made up with the local states of the participating
processes. We now define a cut C = hc1

1 ∪ . . .∪hcn
n , where hck

i

is the ordered set of events dispatched at process i, up to its last
local event ck. Indeed, the cut can also be described in terms
of the tuple (c1 . . . cn). The set (ec11 . . . ecnn ), including the last
event on each process, is called the border of the cut. Evidently,
each cut (c1 . . . cn) defines a global state (σc1

1 . . . σcn
n ). Based

on the “happened before” relation (→), it is possible to define
a consistent cut if, for any to events e y e′:

(e ∈ C) ∧ (e′ → e) ⇒ e′ ∈ C. (1)

Otherwise, we said that we deal with an inconsistent cut.
Therefore, a consistent global state will be a global state
corresponding to a consistent cut. There exist a well-known
collection of distributed mechanisms that can be employed to
produce the global state of an ongoing distributed execution
[18][10].

III. RELATED WORK

In this section, we present a collection of discrete events sim-
ulators, whose functionalities address many of the features of
our proposal. By no means we intend to present an exhaustive
description, but a sample of the systems that we consider to be
closely related to ours.

The list of tools that we decided to consider includes the
following simulators: Parsimony [2], GPDES [3], Omnet++ [4],
POSE [6], µsik [7], and Aurora [8]. We also present Table I,
where we describe the features that led our search. These are
general purpose tools. The label “C-C” stands from “Client-to-
Client”, which means that the tool supports the communications
between any processing unit. In contrast, “C-S” means that each
client, or processing unit, is only aware of the existence of the
server from which receives workload and to which sends the
results of its local processing. The rest of the columns are self-
explanatory.

It is apparent that only Aurora supports either fault-tolerance,
or changes on the underlying communications network. Nev-
ertheless, it is also important to point out that this system can

not be considered a real DDES tool, as it does not partition
the instance of the model under study to allocate each of
the resulting parts to a different processing unit. Instead, it
allocates a completely different instance of the model to each of
the available processing components, pretty much in the spirit
of systems like seti@home, folding@home, among others. In
contrast, distributed DES techniques take for granted that the
processing units are required to exchange information among
themselves in order to produce the trace that represents the
behavior of the system under study.

Fault-tolerance is a pending issue do not addressed on any
of the tools of our list. The difficulties of building a DDES
supporting fault-tolerance lie on the fact that it is required a
thorough design including three types of redundancy: i) space
or component redundancy offering spare units to replace any
possible active unit that may go out of service, ii) information
redundancy to regularly record a snapshot or global state of
the ongoing distributed execution, and iii) time redundancy to
repeat a given distributed execution from a previously recorded
snapshot, when a faulty component was still active (before
the last failure ocurred). For this purpose the missing unit is
previously replaced by a spare unit, which now starts from
the corresponding local state of the unit that replaces. Previous
works [9][19] have recognized that the toughest problem comes
from the construction of a global state of the underlying
asynchronous execution, specially when it can not be granted
the existence of FIFO channels.

IV. ARCHITECTURE

The design of our proposal is based on two types of entities,
in charge of a simulation: the coordinator, implemented by a
rendezvous type peer, and the workers, implemented by full-
featured edge peers [13]. A worker contacts the coordinator to
offer its processing capacities. From the coordinator’s perspec-
tive these cooperative peers are regarded to be either as idle,
or active workers (see Figure 1).

Coordinator

Rendezvous Peer

 Full - edge peers

Active Workers

Idle Workers

 Full - edge peers

Figure 1. Architecture of our P2P-based simulator.

At the starting stage, the coordinator considers that any
available worker is idle. The coordinator knows the graph
representing the system about to be simulated (see Figure 2(a)).
Then, it splits up (partitions) the graph into a fixed number o
subgraphs (see Figure 2(b)) and allocates each of the resulting
parts to an idle worker, which now is consider to be active (see
Figure 2(c)) and (see Figure 2(d)).
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Table I
SOME GENERAL PURPOSE DDES

Project Comms. Synch. Network Fault-tolerance
Parsimony C-C both static N

GPDES C-S — static N
OMNeT++ C-C both static N

POSE C-C optimistic static N
µsik C-C both static N

Aurora C-S — dynamic Y

The coordinator triggers the simulation sending a message
to the active worker(s) in charge of the node(s) which is (are)
supposed to receive the starting event(s). On each active worker
there is a single execution thread that processes all possible
messages sent to the given peer.

(a) System Model

(b) Partition of the system

(c) Allocation and logic communication

(d) Real communication

Figure 2. System’s graph partition and allocation.

Our simulation tool supports two different restoration me-
chanisms, the so-called local rollback or restoration of type
1, which is trigered when some straggler message is received
out of order and threatens the causal delivery of events. The
restoration of type 2, or global rollback, happens when an active
worker leaves the system or crashes, and the whole system
must be restarted from a previously recorded global state. In
both cases the evolution of any logical process is recorded by
3 complementary queues: the input message queue, the output
message queue, and the former states queue.

In the case of local rollback, only the logical processes
directly involved are restored to a previous state in order to
guarantee the causal delivery of the late message. If necesary,
this procedure may imply the transmission of some anti-
messages that start a similar procedure at the receiving peers.
Also, each peer is required to store by itself the states of
the local processes that allocates. In contrast, global rollback
happens when the coordinator detects that an active peer is
missing. In this condition, it stops the overall ejecution, then
it enables an idle peer to replace the missing one. Finally,
the coordinator “rewinds” the whole system to a previously
recorded snapshot. This also means that the coordinator is
responsible for storing and updating the snapshots that regularly
takes. By updating we mean that when the last state has
been recorded, the coordinator eliminates the previous one, in
order to maintain a limited amount of storage to support this
mechanism.

It is apparent that the coordinator is also responsible for
recording the global state or snapshot (SN) of the ongoing
distributed execution. To accomplish this task, it regularly stops
the overall execution and sends a snapshot message to an
appointed worker which starts the Chandy-Lamport protocol
among the active workers. When each worker recognizes that
it has finished the protocol, it sends its local records to the
coordinator which collects these results to put the pieces
together and store the resulting snapshot. This procedure is
the key to support the global rollback mechanism.

Similarly, the coordinator is also responsible for triggering
the distributed procedure that determines the GVT. When each
worker has finished its local procedure, it sends its local
proposal to the coordinator, which collects this value from
every worker and picks up the smallest result, now considered
the new GVT. Finally, the coordinator broadcast this new value
to every active peer. The GVT enables the active workers
to proceed with their fossil recollection process which, in
turn, complements the local restauration process. SN and GVT
messages have the first and second highest priority above any
possible message that can be received at any worker.

Last, the coordinator collects the traces generated by the
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active workers, containing the partial results of the simulation.
It is able to recognize when the GVT reaches a predefined value
+inf , which implies that the running simulation is finished.

V. PERFORMANCE ASSESSMENTS

We devised a comprehensive set of experiments to evaluate
our tool’s performance under different conditions. We also
considered that the selection of the type of system to be
simulated was a key aspect for this experimental assessment.
We looked for a simple system with a deterministic behavior,
where the complexity of its operations comes from the size
of the system and the connection among its elements. We also
looked for a type of system ranging from very small to massive
instances.

Each instance of the system to be studied is represented
by a connected graph, called the communications graph. The
simulation to be run on this graph consists in the execu-
tion of the PIF algorithm (which stands from Propagation of
Information with Feedback)[17]. An appointed node in the
communications graph, from now on called the root, starts
sending an information unit to each of the nodes that share an
edge with it, i.e., to its neighbors. A node is said to be “woken”
(see Figure 2(a)), when it receives this information unit for the
first time, it also considers that its “father” is the node that woke
it. On due time, each of the receiving nodes forwards the same
unit to its corresponding neighbors but to its father. Only when
the node has received this unit from each incoming link, it is
able to send this information back to its father. The global effect
of this simple algorithm is observed in two consecutive phases.
During phase one (propagation or broadcast) we can imagine
an expanding wave that goes from the root to the rest of the
graph. When this wave reaches the boundaries of the graph it
starts the second phase (convergecast). This time, information
travels back to the root on top of the three induced on the graph
during phase one.

We selected this simple algorithm to simulate, for we know
in advance the place where action starts and finishes. Indeed,
we fix this point. Also, we know the total number of infor-
mation units to be exchanged. Besides, the simulation time
depends only on the underlying graph diameter.

We stressed our tool with three different types of experi-
ments:

a. In the first group of experiments, we tested a fixed set
of systems under 3 different conditions, using a centralized
simulation, using a distributed simulation with 2 active workers
in charge and finally, a distributed simulation with 3 active wor-
kers. We compared the time required to finish the simulation
under each of these cases.

b. In the second group of experiments, we measured the
global added cost required to support a fault-tolerant sys-
tem. We considered that this feature is mainly based on the
capability of recording snapshots and the evaluation of the
GVT. Therefore, we ran new system instances, but this time
with the snapshot and GVT procedures switched on and off,
respectively. Notice that, we did not inject faults, but we
evaluated the price of the “insurance” mechanisms, although
these mechanisms were never invoked.

c. In the third group of experiments, we wanted to evaluate
the tool’s resilience. In order to trigger the global restoration

procedure, we dismissed an active worker immediately after
the first snapshot was already stored at the coordinator. We
used the same system instances from the previous study. We
compared the time required to finish the simulation under each
of the cases, with and without failure.

About the graph representing the model of the system under
study, we tested 10 different graph orders, from 100 up to 1000
nodes. For each order we created 10 different graph instances.
Each instance is a graph randomly created.

A. First group of experiments: centralized vs distributed

In this experimental design we simulated the PIF algorithm,
with two types of configurations: centralized (1 active worker)
and distributed (2 and 3 active workers). Communication chan-
nels are assumed to have constant delay. Distributed simulations
include snapshot and GVT mechanisms.

Results show that (Figure 3) the graph order is a key
element to decide the best configuration that supports the fastest
simulation, i.e., a distributed simulation is not necessarily the
fastest, specially when we deal with small graph orders.

Figure 3. Centralized simulation vs distributed simulation.

B. Second group of experiments: the added cost of fault-
tolerance mechanisms

In this new set of experiments we evaluated the involved
cost, measured in simulation time, required to deploy the
fault-tolerance mechanisms. We consider that this capabil-
ity basically depends on the utilization of the snapshot and
GVT procedures. For this purpose we tested 2 distributed
configurations, with 2 and 3 active workers, respectively. On
each case, we measured the elapsed time required to finish a
given simulation, with and without fault-tolerance mechanisms
included. It is very important to quote that not any worker was
dismiss, but we simply switched on and off these mechanisms
to measure how much the processing time is lengthened, when
these “insurance policies” are included. Also, it is important
to notice that, for those cases where mechanisms are included,
they are only executed once, during the overall elapsed time.

Results show that (see Figures 4(a) y 4(b)) the extra re-
sources, required to support fault-tolerance, depend on the
number of involved peers that share these mechanisms. In these
particular cases, 3 peers apparently have a smaller impact on
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(a) 2 Workers

(b) 3 Workers

Figure 4. Simulation with/without GVT and SN.

the simulation added cost, compared to the impact observed on
the configuration made up with 2 peers only.

C. Third group of experiments: fault injection

Finally, in this set of experiments we wanted to know
whether it is worth using fault-tolerance mechanisms or it is
better to start over a simulation from the very beginnig. In
order to compare these two possibilities, we assume that an
active worker may go out of service an instant before the fi-
nalization of the underlying simulation. We tested 2 distributed
configurations with 2 and 3 active workers. In both cases we
compared the elapsed simulation time with and without fault
injection. A fault is produced by dismissing an active worker
immediately after the snapshot and the GVT mechanisms have
been executed. Results show that (see figs. 5(a) y 5(b)) the
graph order is the key to answer this question.

VI. CONCLUSION AND FUTURE WORK

In this work, we described the construction of a prototype
that demonstrates the viability of a DDES tool based on P2P
entities. The design of our proposal is based on two types of
peers: the coordinator, implemented by a rendezvous type peer,
and the workers, implemented by full-featured edge peers. This
solution supports workers failures, as well as departures. We

(a) 2 Workers

(b) 3 Workers

Figure 5. The effect of fault injection

focused our work on measuring the costs associated to de-
pendability. Fault-tolerance mechanisms are expensive and it is
worth their utilization provided that we deal with a long lasting
simulation. New open issues are pending, such as the optimal
snapshot recording frequency, the efficient storage of the global
state, the possibility of load rebalancing on the fly and the
possibility of supporting a failure at the very coordinator. In
contrast to the “@home” type applications, DDES requires a
strong interaction between participants. Therefore, we consider
that this new approach will turn into a feasible solution only
when final users, behind the altruistic peers, will be connected
by high-speed channels.
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