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Abstract—The best selling computer game of all times,
Minecraft, represents the world as discrete blocks. The
Minecraft-like worlds may be unknowingly created by many
mathematical models of the real-world systems, when their
inputs and outputs are discretized. This paper investigates system
modeling and identification with noisy, discretized, but otherwise
static inputs and outputs. Such a scenario occurs, for example,
when configuring and measuring the system is time-consuming
and costly. The task is to infer the model parameters from
a limited number of input-output measurements. It is shown
that, in this setting, the traditional least-squares model fitting
is ineffective. A better strategy is to first accurately estimate
the static input and output values, and then obtain the model
parameters by inverting the model numerically by solving an
underlying set of equations for the same number of unknown
model parameters. These results have direct implications on
creating and interpreting mathematical models of systems, and
even physical laws, when the noisy measurements are implicitly
or explicitly discretized.

Keywords—Linear model; Mean-square error; Minecraft; Quan-
tization; Parameter estimation; System identification.

I. INTRODUCTION

Mathematical models are used extensively in many appli-

cations. The models are usually represented by the sets of

parameterized equations describing the model input-output

relationships. The aim of model identification is to recover

the model parameters from the noisy measurements of its

inputs and outputs. These measurements may be explicitly or

implicitly quantized. The former is used to reduce the storage

and transmission requirements, and to speed-up computations

at the expense of loosing some information and accuracy. The

implicit quantization is more subtle, and it occurs when the

resolution of measured samples is insufficient, for example,

due to the use of inexpensive measuring equipment.

Simply inverting the model in order to recover the model

parameters from the measurements of its inputs and outputs

is often unacceptable. The model inversion tends to greatly

amplify the measurement noises, which leads to large es-

timation errors [1]. The model-based parameter estimation

methods are often used to obtain the optimum and numerically

efficient estimators in the presence of strong measurement

noises. However, for model identification [2] and supervised

machine learning [3], an alternative strategy can be adopted.

In particular, the input and output values can be estimated

independently from their noisy, and possibly discretized mea-

surements. For static values, this corresponds to estimating

unknown constants in additive noises. If the estimators used

are unbiased and consistent, the measurement noises can be

sufficiently suppressed, so the model inversion is acceptable

to accurately infer the model parameters.

The paper [4] is one of the earliest studies on estimating the

state of dynamic linear systems from quantized measurements.

The authors demonstrated that Kalman filtering is still effective

even under these conditions. This problem was considered

again in [5] as a joint design of the quantizer and the estimator.

The classical textbook [2] covers a wide range of topics in

adaptive filtering including system identification and adaptive

filter design with quantized inputs. The paper [6] investigates

the optimum techniques for signal detection and estimation,

and evaluates the corresponding performance losses due to

uniform signal quantization. The confidence intervals of the

discretized likelihood-based estimators with quantized inputs

were studied in [7]. The encoding and decoding schemes for

quantized random processes were designed in [8] to enable

their efficient transmissions under the age-of-information con-

straints. The Cramér-Rao bounds for estimating the parameters

from quantized measurements were derived in [9].

In this paper, we consider the problem of identifying the

model parameters from quantized noisy measurements of both

the model inputs and outputs. The model inputs and outputs

are assumed to be static, so their values can be inferred with

a high accuracy from a sufficient number of measurements

assuming the consistent and unbiased estimators. The model

parameters are then obtained by solving a set of linear or

non-linear equations. It is also shown that the traditional least

squares fitting of the model to the input and output data is

much less effective, when the input and output measurements

are noisy and quantized. This is also an important issue, for

example, in supervised machine learning.

The following notations are adopted in the paper: Av[·] =
(1/T )

∫ T/2

−T/2
(·) dt, and, Av[·] = (N + 1)−1 ∑

N/2

i=−N/2
(·), are the

time-averaging (arithmetic average) operators in continuous

and discrete time, respectively, E[·] is the statistical expecta-

tion, xxx denotes a column vector, whereas XXX denotes a matrix,

(·)T and (·)−1 denote the matrix transpose and inverse, respec-

tively, 〈·, ·〉 denotes the dot-product, ḟ is the first derivative

of function, f , ⌊·⌋, ⌈·⌉, and sign(·) are the floor function, the

ceiling function, and the sign function, respectively, and R and

Z represent the sets of real numbers and integers, respectively.

The rest of the paper is organized as follows. Section II

outlines system model with uniformly, and also binary quan-

tized inputs and outputs. The estimation of model parameters

is described in Section III. The estimator variances are studied

in Section IV. Discussion and future work are in Section V.
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II. SYSTEM MODEL

A general parameterized model with multiple inputs and

outputs (MIMO) is shown in Figure 1. Such a model can be

succinctly described by a single equation,

f (xxx,yyy,aaa) = 0 (1)

relating the model inputs, xxx, outputs, yyy, and a given set of

model parameters, aaa. Importantly, it is assumed that the input

as well as output measurements of model (1) are first quantized

and de-noised, before estimating the parameters, aaa.
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Figure 1. Modeling and measurements of a static (M×N) MIMO system.

Note that, here, the system modeling assumes the expected

values of the inputs and outputs. In practice, measuring the

statistical means can be problematic, when the random pro-

cesses are non-stationary or non-ergodic [10]. The measuring

instruments usually report the time-averaged values over a

certain time-window. On the other hand, the expected values

are more a theoretical concept, which is used, for example,

when deriving the estimators of random signals to minimize

the given risk. However, under the law of large numbers, the

expectations can be replaced by the time averages. These dif-

fering views and assumptions can be reconciled by assuming

the statistical and time averaging at the same time, i.e., by

assuming, Av[E[·]] = E[Av[·]]. Depending on the type of a

random process, x(t), different averages are related as:

E[x] = Av[E[x]] = Av[x] ⇔ ergodic &

stationary,

E[x] 6= Av[E[x]] = Av[x] ⇔ ergodic &

non− stationary,

E[x] = Av[E[x]] 6= Av[x] ⇔ non− ergodic &

stationary,

E[x] 6= Av[E[x]] 6= Av[x] ⇔ non− ergodic &

non− stationary.

(2)

A. Linear SISO model

For the sake of notational simplicity, consider a single-input,

single-output (SISO) model.

The linear SISO model is described by a linear combination

of p basis functions, φi(x), i.e.,

y = a0 +
p

∑
i=1

ai φi(x). (3)

If the functions, φi(x), are mutually orthogonal, i.e., the dot-

product,
〈

φi,φ j

〉

6= 0, for ∀i 6= j, then p is also the dimension

(rank) of the linear model. The n output measurements, yi,

collected at n input values, xi, are related as,
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yyy = ΦΦΦ(xxx) ·aaa.

(4)

The basis functions are generally non-linear, however, they

can be linearized about a chosen value, x0, as,

φi(x)
.
= φi(x0)+ φ̇i(xo)(x− x0). (5)

Such linear approximations can be also defined in multiple

dimensions [11]. The caveat is that the approximation (5) is

only valid in the vicinity of x0, and choosing the suitable value

can be problematic. For example, if linear model (3) represents

a polynomial regression, then it can be rewritten assuming the

linearized basis functions as,

y = a0 +
p

∑
i=1

ai(Aix+Bi) (6)

where Ai = φ̇i(x0), and, Bi = φi(x0)− φ̇i(x0)x0.

B. Quantized measurements

The measurements are quantized for various reasons. For

instance, the explicitly quantized values require less memory

for storage, and the numerical computations become faster to

perform. The implicit quantization occurs when the resolution

of the measurements is insufficient with respect to a given

modeling application. The most common is a uniform quanti-

zation having the equidistant quantization intervals of length,

∆, i.e.,

x̌ = Q (x) =

⌊

x−∆/2

∆

⌋

+1 ∈ Z (7)

so that the quantization error, ε∆ = x−∆x̌, and,

∆(x̌−1/2)≤ x < ∆(x̌+1/2). (8)

Note also that, ⌊x⌋+ 1 6= ⌈x⌉, for the integer values of the

argument. In addition, the quantized values are often bounded

to a finite set of integers between, −x̌max, and, x̌max.

Alternatively, the binary quantization,

x̌ = Q2(x) = sign(x) ∈ {−1,+1} (9)

can be sufficient in some applications.

The issue with implicit quantization due to insufficient

resolution is illustrated in Figure 2, assuming a linear system,

y = 3x/2, and the uniform quantization with ∆ = 1/2. It
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can be observed that, the model having only the quantized

inputs, y = aQ (x), is nearly identical to the unquantized

model, y = ax. However, when both the input and the output

are quantized, a formerly linear model becomes a staircase

function (red dashed line), Q (y) = aQ (x). In this case, only

one noise-free measurement is necessary to determine the

constant, a. If such a measurement is taken at points, A, B,

or C, the proportionality constant is inferred to be equal to 1,

5/4, or 7/4, respectively. Consequently, the implicit or explicit

quantization of the output values have a severe impact on

identifying the model parameters.
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Figure 2. The consequences of the input-output uniform quantization on
modeling linear SISO systems.

III. ESTIMATING MODEL PARAMETERS

Assume that n noisy measurements can be written as,

yi = ȳ+ εyi

xi = x̄+ εxi

(10)

where the additive noises, εyi, and, εxi, have zero means, i.e.,

E[yi] = ȳ, and, E[xi] = x̄. Even when the measurements at

different time instances can be assumed to be independent,

the input-output correlations,

E[xiyi] = x̄ȳ+E[εxiεyi] (11)

are affected by the noise covariances, E[εxiεyi] 6= 0.

Provided that the measurements are noisy, the input-output

relationship (4) can only be satisfied approximately. The over-

determined linear systems with n ≫ p measurements can be

solved by considering the least-squares (LS) model fitting.

The closed-form expression for the LS estimate of the model

parameters is well-known, i.e., [12]

âaaLS =
(

ΦΦΦT (xxx)ΦΦΦ(xxx)
)−1

ΦΦΦT (xxx)yyy. (12)

Substituting the noisy measurements (10) into (12), while also

assuming a linearization of the basis functions (5) about the

mean, x̄, the resulting linear model (4) can be written as,

yyy =
[

1(n,1) | Φ̄ΦΦ(x̄)+ εεεx · φ̇φφT
(x̄)

]

·aaa (13)

where 1(n,1) is the all-ones column vector, the constant matrix,

Φ̄ΦΦ(x̄), has identical rows with the elements, φi(x̄), the column

vector, εεεx, contains additive noises, εxi, at the model input, and

the constant column vector, φ̇φφ(x̄), has the elements, φ̇i(x̄).
In order to obtain an insight into the LS solution of (13)

for the model parameters, aaa, consider the LS sum over the n

measurements, i.e.,

LS(a0,aaa) =
n

∑
i=1

(

yi −a0 −
(

φ̇φφεxi +φφφ
)T ·aaa

)2

(14)

where the parameter, a0, was taken out of the p-element vector,

aaa, φφφ represents the row of the matrix, Φ̄ΦΦ(x̄), transposed to

become a column vector, and let the vector of derivatives,

φ̇φφ(x̄) ≡ φ̇φφ. Note that both vectors, φ̇φφ, and, φφφ, are independent

of the index, i. The model parameters minimizing the LS value

are the solution of the set of linear equations, i.e.,

∂

∂a0
LS(â0, âaa) = 0

∂

∂aaa
LS(â0, âaa) = 0.

(15)

After some lengthy, but otherwise straightforward manipula-

tions, we get,

â0 = Av[yi]−
(

φ̇φφAv[εxi]+φφφ
)T

âaa (16)

where Av[yi] = (1/n)∑n
i=1 yi, and, Av[εxi] = (1/n)∑n

i=1 εxi.

Noticing that, yi −Av[yi] = εyi, we obtain the solution for aaa,

which can be substituted into (16), i.e.,

φ̇φφAv[εxiεyi]+φφφAv[εyi] =
(

Av
[

(

φ̇φφεxi+φφφ
)(

φ̇φφεxi+φφφ
)T

]

−Av
[

φ̇φφεxi+φφφ
]

Av
[

φ̇φφεxi+φφφ
]T
)

aaa.

(17)

The right-hand side of (17) can be further simplified as,

φ̇φφAv[εxiεyi]+φφφAv[εyi] = φ̇φφφ̇φφ
T

Av
[

(εxi − ε̄x)
2
]

aaa (18)

where ε̄x = Av[εxi]. Finally, the LS estimates of the model

parameters are then computed as,

âaa =
(

φ̇φφφ̇φφ
T
)−1

φ̇φφ
Av[εxiεyi]

Av[(εxi − ε̄x)2]
+
(

φ̇φφφ̇φφ
T
)−1

φφφ
Av[εyi]

Av[(εxi − ε̄x)2]
.

(19)

For a large number of samples, n ≫ 1, Av[εyi]
.
= 0, and the

final expression for estimating the model parameters becomes,

âaa =
(

φ̇φφφ̇φφ
T
)−1

φ̇φφ
Av[εxiεyi]

Av[(εxi − ε̄x)2]
. (20)

As an illustrative example, assume a simple linear SISO

model, yi = a1xi +a0, with p = 2 parameters. Assuming (20),

the LS estimates of the model parameters are,

â0 = ȳ− â1x̄

â1 =
Av[(yi − ȳ)(xi − x̄)]

Av[(xi − x̄)2]

(21)
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where ȳ = Av[yi], and, x̄ = Av[xi]. The resulting mean-square

error (MSE) is equal to,

MSE(â0, â1) =
n

∑
i=1

(yi − â1xi − â0)
2

=
n

∑
i=1

((yi − ȳ)− â1(xi − x̄))2

= Av
[

(yi − ȳ)2
]

− Av[(xi − x̄)(yi − ȳ)]2

Av[(xi − x̄)2]
.

(22)

Moreover, for the specific model of measurements (10), and

an asymptotically large number of measurements, n ≫ 1, the

LS estimate of a1 can be rewritten as,

â1 =
E[εxiεyi]

E
[

ε2
xi

] =
cov[εxiεyi]

var[εxi]
. (23)

In this case, the resulting MSE is equal to,

MSE(â0, â1) = E
[

ε2
yi

]

− E[εxiεyi]
2

E
[

ε2
xi

] . (24)

Importantly, examining eqs. (22) and (24), it can be ob-

served that the achievable MSE is greatly affected by the

cross-covariance terms, Av[(xi − x̄)(yi − ȳ)]2, and, E[εxiεyi], re-

spectively. In practice, this cross-covariance can be expected to

be much larger between the zero-mean processes representing

the model inputs and outputs than between the measurement

noises at the model inputs and outputs. Consequently, the LS

estimation of the model parameters performs poorly when the

input and output signals are noisy constants as assumed in

(10). In such a case, some other strategy for identifying the

model parameters has to be adopted.

A. Estimating the model inputs and outputs

In the absence of measurement noises, the n = (p + 1)
measurements are sufficient to obtain the model parameters

in (4) by inverting the matrix, ΦΦΦ, i.e.,

aaa = ΦΦΦ−1(Q (xxx))Q (yyy) . (25)

However, theoretical guarantees about the existence of the

inverse, ΦΦΦ−1, are not considered further in this paper.

The noise in the measurements of the static model in-

puts and outputs can be suppressed statistically by taking

repeated measurements. In particular, considering the input-

output model (10), this leads to the problem of estimating the

deterministic, but otherwise unknown constants in the zero-

mean, stationary additive noises from multiple measurements.

Several strategies were proposed in the literature for estimat-

ing the deterministic (without any prior knowledge) parameters

[12]. The minimum variance unbiased (MVUB), and among

them, the best linear unbiased (BLUE) methods yield the

estimators with the minimum variance, provided that they

exist, and that they can be found. The LS estimator will

perform poorly as argued in the previous subsection. The

maximum-likelihood (ML) estimator is relatively easy to ob-

tain for simple input-output signal models (10), and since it is

asymptotically unbiased as well as consistent, this estimator

is selected here. Furthermore, note that it is sufficient to only

consider the estimators for one input-output signal, since all

these input-output signals have the same model (10).

In particular, given n quantized measurements, xi, i =
1,2, . . . ,n, the task is to derive an ML estimator of the constant,

x̄, in an additive noise, εxi. In this paper, we assume that

the additive noise is zero-mean, Gaussian, and stationary with

the variance, σ2. If the measurements are unquantized, it is

straightforward to show that the ML estimator is the arithmetic

mean, i.e., [12]

ˆ̄x =
1

n

n

∑
i=1

xi =
1

n

n

∑
i=1

(x̄+ εxi) = x̄+ ε̄xi. (26)

In the case the measurements are quantized into integer val-

ues using the mapping (7), the probability of the measurement,

x̌i = k, where k ∈ Z can be computed as,

Pr(x̌i = k) = Q

(

∆(k−1/2)− x̄

σ

)

−Q

(

∆(k+1/2)− x̄

σ

)

(27)

where the Q-function for the standard Gaussian variable is

defined as,

Q(t) =

∫ ∞

t

1√
2π

e−t2/2 dt. (28)

Provided that the additive noise is also white, the measure-

ments are independent, and the ML estimator maximizes the

joint probability density,

Pr({x̌i}i) =
n

∏
i=1

Q

(

∆(x̌i −1/2)− x̄

σ

)

−Q

(

∆(x̌i +1/2)− x̄

σ

)

.

(29)

Taking the logarithm, and then the derivative by x̄ (i.e., the

parameter to be estimated), we obtain,

∂

∂x̄
logPr({x̌i}i) =

− 1

σ

n

∑
i=1

Q̇

(

∆(x̌i−1/2)−x̄

σ

)

− Q̇

(

∆(x̌i+1/2)−x̄

σ

)

Q

(

∆(x̌i−1/2)−x̄

σ

)

−Q

(

∆(x̌i+1/2)−x̄

σ

) . (30)

In order to find, for which value of x̄, the expression (30)

becomes zero to maximize the log-likelihood, we can linearize

the Q-function and its derivative about the point, x0, i.e.,

Q(x)≈ Q(x0)−
1√
2π

e−x2
0/2(x− x0)

Q̇(x)≈ 1√
2π

e−x2
0/2(x0x− x2

0 −1).
(31)

The corresponding approximations are then,

Q(x0 −b)−Q(x0 +b)≈ be−x2
0/2

√

2

π

Q̇(x0 −b)− Q̇(x0 +b)≈−x0 be−x2
0/2

√

2

π
.

(32)

Assuming x0 = (∆x̌i − x̄)/σ, and, b = (∆/2)/σ, in approxima-

tions (32), the derivative of the log-likelihood function (30)

can be greatly simplified as,
n

∑
i=1

∆x̌i − x̄

σ2

!
= 0. (33)
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Consequently, we find that the ML estimator of x̄, from the

quantized noisy measurements, x̌i, is again a simple arithmetic

average, i.e.,

ˆ̄x = ∆
1

n

n

∑
i=1

x̌i. (34)

However, and importantly, note that the ML estimator was

derived under the assumption that, b = (∆/2)/σ, is relatively

small (i.e., b < 1), so that the linearization is sufficiently

accurate. The value, ∆/2, also represents the maximum quan-

tization error, and thus, we can conclude that the arithmetic

average estimator can be expected to perform comparatively

well as the arithmetic average estimator for the unquantized

measurements, when (∆/2)≪ σ.

The similar derivation can be performed for the case of

binary quantization (9) when the measurements are quantized

to, −1, and, +1, values. Under the assumption that, x̄ ≪ σ,

the ML estimator (which, in this case, can be shown to be

actually the MVUB estimator) becomes,

ˆ̄x = σ

√

π

2

1

n

n

∑
i=1

x̌i, x̌i ∈ {−1,+1}. (35)

Thus, the estimator for the binary quantized measurements

requires knowledge of the noise standard deviation, σ.

IV. ESTIMATOR VARIANCES

In this section, the goal is to compare the variances of the

estimation errors for different estimators considered in the

previous section. In particular, when the measurements are

unquantized, the estimator (26) is unbiased, and its variance

is simply,

E
[

( ˆ̄x− x̄)2
]

= σ2/n. (36)

When the measurements are uniformly quantized, the ML

estimator (34) may be biased, i.e.,

E
[

ˆ̄x
]

=
∆

n

n

∑
i=1

E[x̌i] =
∆

n

n

∑
i=1

∞

∑
k=−∞

k Pr(x̄ = k)

=
∆2

√
2πσ

∞

∑
k=−∞

k e
− (∆k−x̄)2

2σ2

(37)

where we assumed linearization (32) of the Q-function.

Further insight can be obtained by analyzing the best

case, and the worst case quantization scenarios. In particular,

without loss of generality, the best case scenario occurs, when

x̄ = 0 (more precisely, if x̄ is an integer multiple of ∆); then,

the mean, E
[

ˆ̄x
]

= 0, and the ML estimator (34) is unbiased. On

the other hand, the largest bias occurs for the values, x̄=±∆/2

(more precisely, if x̄ is an odd-integer multiple of ∆/2). Hence,

let, x̄ = −c∆/2, where c = 0, represents the best case, and

c = 1, represents the worst case scenario, respectively.

The ML estimator (34) with quantized measurements has

the variance,

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

=
∆2

n2
E

[

n

∑
i, j=1

x̌ix̌ j

]

−∆2E[x̌i]
2

=
∆2

n

(

E
[

x̌2
i

]

−E[x̌i]
2
)

. (38)

To simplify the notation, define the moment [cf. (37)],

Zm(∆/σ) = E[x̌m
i | x̄ =−c∆/2]

=
∞

∑
k=−∞

km Pr(x̌ = k | x̄ =−c∆/2)

=
∆√
2πσ

∞

∑
k=−∞

k e
− (k+c/2)2

2
∆2

σ2 .

(39)

After substituting Zm(∆/σ) into (38), the final expression for

the estimator variance becomes,

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

=
∆2

n

(

Z2(∆/σ)−Z2
1(∆/σ)

)

. (40)

The derived MSE expression (40) is compared with the

computer simulations in Figure 3 assuming n = 100 measure-

ments, and the quantization intervals with ∆ = 1/2. It can be

observed that the derived expression is in a good agreement

with simulations, provided that the condition, ∆ ≪ σ, is

satisfied. For larger values of ∆/σ, the derived expression rep-

resents a loose lower bound of the actual MSE. As expected,

when the estimator with quantized inputs is unbiased (the best

case scenario), the MSE continues to be reduced by reducing

the amount of measurement noise. When the quantization

error makes the estimator to be biased, the MSE eventually

saturates, as might be expected.
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Figure 3. The MSE of the ML estimator with uniformly quantized
measurements corresponding to the best case and the worst case

quantization errors, respectively.

The variance of the MVUB estimator (35) with the binary

quantized measurements can be shown to be,

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

=
π

2

σ2

n
. (41)

Thus, it is (π/2) times larger than the variance (36) of the

estimator from unquantized measurements, and importantly,

provided that the condition, x̄ ≪ σ is satisfied.
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The Cramér-Rao bound can be derived using again a lin-

earization of the Q-function in the low signal-to-noise ratio

(SNR) regime to obtain, [13]

E
[

(

ˆ̄x−E
[

ˆ̄x
])2

]

≥ J−1 =
σ2

n

(1−Q(x̄/σ))Q(x̄/σ)

Q̇(x̄/σ)
(42)

where J denotes the Fisher information matrix (a scalar value,

here). The normalized Cramér-Rao bound, nJ−1/σ2, is shown

in Figure 4 (black-line), together with the MSE of the estima-

tor having the binary quantized measurements (41) (blue-line),

and the MSE of the estimator with unquantized measurements

(36) (red-line). It can be observed that the MSE raises quickly

with improving SNR. In such a case, the binary quantization

error starts dominating, and it cannot be reduced, for example,

by simply increasing the number of measurements.
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Figure 4. The Cramér-Rao bound of the estimator with the binary quantized
measurements (black line), the actual MSE in the low-SNR regime (blue
line), and the MSE of the estimator with the unquantized measurements

(red-line).

V. DISCUSSION AND FUTURE WORK

Our investigations showed that the quantization noise can be

neglected, provided that it is comparable with the measurement

noise. If this condition is not satisfied, the estimators are

only unbiased and consistent with respect to the additive

measurement noise, and the estimation error is dominated by

the residual quantization noise. The measurements obtained

at both the system inputs and outputs represent a classical

problem of system identification. When the inputs and outputs

are static, i.e., they are constant values observed in an additive

noise, the recommended strategy for estimating the model

parameters is to first clean the input-output measurements

by suppressing the measurement noises. This can be done

independently for each input and output using different types

of estimators. The noise-free input and output values can be

then substituted into the model, and the model parameters

are obtained by solving the same number of linear or non-

linear equations representing the system model. This strategy

is superior to classical least-squares model fitting (i.e., without

suppressing the measurement noises first), provided that the

inputs and outputs are noisy constant values. Furthermore,

estimating the model parameters from input-output data pairs

resembles a supervised machine learning. The main difference

is that the data examples for machine learning are usually

assumed to be noise-free, and the number of parameters

assumed in machine learning models can be excessively large.

In this paper, our focus was on identifying relatively small

linear models from their input-output measurements. Such

models are common not only in engineering, but they also

represent many physical laws. For example, Schrödinger and

Maxwell’s equations are both linear. It was shown in Figure 2

that the coarse-grained quantization can substantially affect

the model, and also our perception of reality, if the model

represents a physical law. This phenomenon is referred to here

as Minecraft of system modeling, since the quantization makes

the reality to appear as if it consisted of discrete blocks.

The future work can investigate the optimum representations

of MIMO systems with discretized inputs and outputs. The

non-linear systems can be modeled by recursive structures

[14]. The fundamental question is how to suppress the quan-

tization noise akin to suppressing the measurement noise. In

this paper, the static input and output values were considered.

Measuring the systems having the random processes as their

inputs and outputs is more challenging, as it requires precise

time-synchronization of the measurements at all the system

inputs and outputs.
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