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Abstract— Fixed-Point FFT implementation is very sensitive to 

finite-word-length-effects due to the large quantization noise 

that is being accumulated throughout the FFT stages. In FFT 

implementations on fixed register size processors like CPUs and 

DSPs, Block-Floating-Point (BFP) is a well-known scheme for 

controlling the tradeoffs between the fixed-point register size 

and the resultant accuracy. The performance of the ideal BFP 

FFT, in terms of the output Signal to Quantization Noise Ratio 

(SQNR), has been investigated in depth. However, ideal BFP-

FFT suffers from implementation complexity, and especially 

non-deterministic latency. This is caused by the inherent 

mechanism that requires to re-calculate an entire FFT stage if 

one of the stage’s output overflows. Because of this, most of the 

implementations are of a more practical variant for the BFP-

FFT that does guarantee fixed latency. This, however, comes on 

the expense of reduced accuracy (degraded SQNR). In this 

paper, we derive the SQNR formulas for the practical BFP-FFT 

for radix-2 and radix-4 Cooley-Tukey Decimation-In-Time 

(DIT) FFTs. The derived model is compared to computer 

simulations and found highly accurate (less than 0.2dB 

difference). We use the derived model to compare the SQNR 

performance of the practical algorithm to the ideal one and 

show a 6-14dB penalty cost for guaranteeing fixed latency 

implementation.  
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I. INTRODUCTION 

The Fast Fourier Transform (FFT) serves as an important 
tool in many signal processing applications. Throughout the 
Years it has been successfully used in radar application, 
spectral analysis, filtering, voice enhancement, advanced 
audio codecs (like MP3 and AAC), and during the last three 
decades, with the introduction of multitone modulations, it is 
also being successfully used in wired and wireless modems 
such as discrete-multi-tone in Digital-Subscriber-Line (DSL) 
modems [1], Orthogonal-Frequency-Division-Modulation 
(OFDM) in several wireless modems, e.g., [2] and in 
advanced fiber optic modems [3]. 

Finite-word-length effects (denoted hereafter also as 
quantization noise) have substantial effect on the accuracy 
performance of FFTs. This is a result of the native 
characteristic of the FFT in which quantization noise that is 
added at the output of each stage of the FFT is accumulated 
toward the FFT output. Since the maximal value at each 
stage’s output grows as we proceed with the stages [4], in 
many hardware implementations, the performance 

degradation due to the quantization noise is mitigated by 
adapting the register size at each stage to accommodate the 
signal growth [5]-[7]. On the other hand, in software 
implementations (as in CPUs and Digital Signal Processors - 
DSPs), or hardware implementations where intermediate 
values are forced to be written to memory, increasing the bit-
width of the stored values is not possible. For those cases, a 
dynamic-scaling BFP based schemes are commonly used.  

The straight-forward dynamic-scale BFP is such that 
throughout the calculation of each FFT stage, the butterflies’ 
outputs are tested for an overflow. If an overflow is detected, 
the entire stage is recalculated and scaled down before stored 
to memory. The advantage of this BFP scheme is that the 
scale down is done only on a concrete need, which leads to 
the best accuracy performance among other BFP-FFT 
schemes. For that reason, we relate to the straight-forward 
dynamic-scale BFP-FFT as “ideal BFP-FFT” herein. The 
drawbacks of this scheme are its complexity and the fact that 
it results in non-deterministic latency. Deterministic latency 
may have high importance when the FFT is used within a 
synchronized pipelined system, such as a modulator or 
demodulator in OFDM modems [8]. 

Multiple schemes that overcome the non-deterministic 
latency drawback have been proposed, e.g., [9] [10], but they 
all involve non-negligible SQNR performance degradation as 
compared to the ideal BFP. Among the class of the 
deterministic latency BFP-FFTs, the one proposed by Shively 
[11] leads to the least SQNR loss as compared to the ideal 
BFP-FFT. Thanks to this fact, it turns to be among the most 
common schemes for practical implementations, e.g., [12] 
[13]. We refer to the Shively’s scheme herein as “practical 
BFP-FFT". 

The ideal BFP-FFT was originally analyzed in [14], 
which provided a lower and upper bound for the output 
quantization noise variance. In [4] and [9], a more accurate 
statistical model was used to project the expected value of the 
ideal BFP-FFT output noise power for an uncorrelated input 
sequence. Although the practical BFP-FFT is widely used in 
practical systems for deterministic latency BFP-FFT, to the 
best knowledge of the author, its accuracy performance has 
not been analyzed. 

In this work, we refine the commonly used statistical 
model of quantization noise within FFTs, apply this 
refinement to the SQNR of the ideal BFP-FFT, and derive the 
analytical model of the SQNR of the practical BFP-FFT. We 
adapt the noise models to represent modern processor having 
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embedded complex multipliers and wide accumulators, and 
we evaluate the accuracy degradation of the practical BFP-
FFT as compared to the ideal one. 

The paper is organized as follows: Section II introduces 
the models used throughout the paper covering the DIT FFT 
model, the underline processor model, and the quantization 
noise models. In Section III the analytical SQNR formulas of 
a generic scaling policy are derived and in Section IV the 
associated scaling policies for the ideal and practical BFP 
FFT are described. Section V applies the SQNR formulas to 
the associated scaling policies while the results are presented 
in Section VI., Finally, conclusions are given in Section VII. 

II. FFT, PROCESSOR AND QUANTIZATION NOISE 

MODELS 

We relate to fixed-point representation of fractional 
datatypes. We assume a processor having registers of 𝑏 bits 
(including sign) and accumulators of at least 𝐵 = 2𝑏 +
⌈log2 𝑅⌉ + 1  bits, where 𝑅  is the FFT radix and ⌈𝑎⌉  is the 
smallest integer that is larger than 𝑎. The numbers represented 
by the registers are in 2’s complement representation and in 

the range −1 ≤ 𝑥 ≤ 1 − 2−(𝑏−1). The numbers represented 

by the accumulators are in the rage −2⌈log2 𝑅⌉+1 ≤ 𝑥 <
2⌈log2 𝑅⌉+1. The width of the data stored to memory is always 
of 𝑏 bits. 

Our focus is of fixed-radix, Cooley-Tukey, DIT-FFTs of 
radix-2 and radix-4. A generic model of a finite-word-length 
radix-2/radix-4 butterfly of the DIT-FFT is given in Figure 1. 

In the DIT topology the inputs loaded from the memory 

are first multiplied by the Twiddle Factors (TFs), 𝑤𝑁
𝑘𝑛, then 

multiplied by the butterfly’s coefficients 𝛾𝑟,𝑡  ; 𝑟, 𝑡 ∈
{0, 1, … , 𝑅 − 1}, and then summed up within the butterfly 
before being stored back to the memory. The processing 
model that we will deal here with is a model that is most 
common to DSPs and dedicated FFT processors. In this 

model the inputs 𝑥𝑛  and the TFs 𝑤𝑁
𝑘𝑛  are represented by 𝑏 

bits per component (b bits for the real component and b bits 
for the imaginary component) and are within the range of 
[−1 , 1 − 2−(𝑏−1)] . When multiplied, the multiplication is 

spanned over 2𝑏 + 1  bits (recalling that the TF 
multiplication is a complex multiplication). Since in radix-2 
and radix-4 FFTs the butterfly’s internal coefficients,  𝛾𝑟,𝑡  , 

belong to the sets  {1, −1}  and {1, −1, 𝑗, −𝑗}  ;   𝑗 = √−1 
respectively, there are no truly multiplications within the 
butterfly. The bit-width of the butterfly’s output can grow to 
span over up to 𝐵 bits and then potentially scaled down by a 
factor of 𝛼, where we restrict 𝛼 to be a power of 2. The scaled 
down butterfly output is quantized to 𝑏 bits per component 
via rounding before being stored to memory.  

The quantization model that we use here is the so-called 
Rounding-Half-Up (RHU) [15], which is also known as 
hardware-friendly-rounding and is being used in most digital 
signal processors and hardware implementations of digital 
signal processing functions. The mathematical function of 
RHU rounding to 𝑏 bits is 

 𝑦 = 𝑄[𝑠] ≜ 2−𝑏 ∙ ⌊𝑠 ∙ 2𝑏 + 0.5⌋ (1) 

where ⌊𝑎⌋ is maximal integer lower than 𝑎 and 𝑠 ∈ [−1,1 −

2−(𝑏−1)] . The quantization error is 𝑣 = 𝑠 − 𝑦  and in the 

general case is modeled as an additive noise having uniform 
distribution [16] 

 𝑣 ~ 𝑈[−2−𝑏 , 2−𝑏) (2) 

and is independent of 𝑠. As we deal here with finite-word-
length, in fact 𝑣  has a discrete distribution. However, for 
large enough 𝑏  it is common to treat it as a zero mean 
continuous uniform distribution. As such its variance is 

 
𝜎𝑣
2 =

2−2(𝑏−1)

12
 . (3) 

In addition, throughout the FFT there are plenty of cases 
where all the TFs preceding a given butterfly are among the 
set  

 𝒯1 ≜ {1,−1, 𝑗, −𝑗}  ;   𝑗 = √−1 . (4) 

In such cases, the multiplication of a 𝑏 -bits value 𝑥 ∈
[−1 , 1 − 2−(𝑏−1)] by the TF 𝑤 ∈ 𝒯1  would result in a 2𝑏-

bits number, 𝑡 = 𝑤 ∙ 𝑥, that it’s lower 𝑏 bits are equal to zero. 
If all the TFs preceding a given butterfly are among the set 
𝒯1 , then the lower 𝑏  bits of the butterfly’s outputs, before 
down scaling, are also equal to zero. When such a number is 
scaled down by very few bits, the quantization noise does not 
obey to the uniform distribution anymore [16]. In this case 
we get a Random Variable (RV) having discrete distribution 
and non-zero mean. For example, in the case that such a 
number is shifted one bit to the right, the quantization noise 
𝜀1 is distributed as  

 

𝜀1 = {

0                  𝑤. 𝑝. 0.5

−
1

2
2−(𝑏−1)  𝑤. 𝑝. 0.5 ,

 (5) 

where the subscript 1 in 𝜀1 refers to the case of quantization 
noise generated by right shift of the 𝑏-bits number by one bit.  

The expected value of this noise equals −2−(𝑏−1)/4  and 
hence when dealing with Signal-to-Quantization-Noise-
Ratios of those RVs we will relate to the noise power rather 
than to its variance. To distinguish the power from the 
variance we use the symbol 𝜌2 for power. The expected value 
of the power of 𝜀1 RV then is 

 
𝜌𝜀1
2 =

1

2
∙ 0 +

1

2
∙ (
1

2
2−(𝑏−1))

2

=
2−2(𝑏−1)

8
 . (6) 

As expected, this is larger than the variance of the zero mean 
uniformly distributed quantization noise of (3). In a similar 
way we can calculate the noise power of quantization noises 
that are generated due to the rounding after right shift of a 𝑏-
bits number by 𝑞 bits. In most FFT topologies and radices up 
to Radix-5, the right shifts are in the range of 0  to 3 . 
Moreover, for right shifts of 4 and above the quantization 
noise power is very close to the variance of the zero mean 
uniform quantization noise of (3). Therefore, for our 
analytical derivations we use 
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𝜌𝜀𝑞
2 =

{
 
 
 
 

 
 
 
 
0                        ;     𝑞 = 0
1

8
2−2(𝑏−1)        ;    𝑞 = 1   

3

32
2−2(𝑏−1)     ;    𝑞 = 2   

11

128
2−2(𝑏−1)   ;    𝑞 = 3    

1

12
2−2(𝑏−1)     ;    𝑞 ≥ 4 .  

 (7) 

 
In the sequel, we designate the set of butterflies that all their 
inputs were multiplied by TFs belonging to 𝒯1, as the ℬ1 set 
or ℬ1 butterflies. 

III. SQNR OF A GENERIC BFP-FFT 

By “generic BFP-FFT” we refer to a BFP-FFT that 
incorporates policy for down-scaling by right shifts at the 
outputs of the FFT stages, where the decision at which stages 
to scale down and by what factor are the policy parameters. 
In the following paragraphs we will relate to specific BFP 
scaling policies and will analyze their SQNR performance. 
We assume zero mean i.i.d. input sequence, 𝑥(𝑛), and that 
the quantization is regarded as an i.i.d. noise source. 
Moreover, multiple quantization noises at the input to a given 
butterfly that have been generated at earlier stages are 
mutually uncorrelated [9]. In order to derive the analytical 
expression of the SQNR, we will adopt the analysis strategy 
of Weinstein [9]. Let us relate to an input sequence of length 
𝑁 , 𝑥(𝑛) , and a fixed-radix FFT of radix R. Define 𝑀 =
log𝑅 𝑁, and 𝛼𝑚 as the scale value at the output of the 𝑚𝑡ℎ 
stage, 𝑚 ∈ {1, 2, … ,𝑀}, where we restrict 𝛼𝑚  to be of the 
form 𝛼𝑚 = 2−𝑞𝑚  and 𝑞𝑚  is a positive integer. We denote 

𝑥𝑚(𝑛)  as the array values at the output of the 𝑚𝑡ℎ  stage, 
where 𝑥𝑀(𝑘) ≜ 𝑋(𝑘) is the FFT output, and 𝑥0(𝑛) ≜ 𝑥(𝑛) 
is the FFT input. For a zero mean, i.i.d. sequence 𝑥(𝑛), the 
variance of the signal at the FFT output is given by 

 

𝜎𝑥𝑀
2 = 𝑁𝜎𝑥0

2 ∏𝛼𝑚
2

𝑀

𝑚=1

= 𝑁𝜎𝑥0
2 2−2∑ 𝑞𝑚

𝑀
𝑚=1  . (8) 

The noise at the output of a given butterfly is composed of  
 

 
Figure 1. Generic model of DIT FFT Butterfly 

two components: the noise that is generated by that particular  
butterfly, which we call butterfly self-noise, and the noise that  
is propagated through the butterfly (noise that was generated 
at earlier stages), which we call propagated-noise. The 
propagated-noise power is multiplied by a factor of 𝑅𝛼2 as 
each butterfly output is composed of the sum of 𝑅 i.i.d. noise 
values and is multiplied by a scaling factor 𝛼. The self-noise, 
𝑣, is the noise generated by the quantization at the butterfly 
output after being multiplied by 𝛼 as depicted in Figure 1. Its 
variance is denoted as 𝜎𝑣

2 (or power of 𝜌𝑣
2). Looking at the 

output noise of an M stages FFT, it is observed that the noise 
from the first stage propagates through the following M-1 
stages, which results in accumulation of 𝑅𝑀−1  such i.i.d. 
noise sources, each attenuated by a factor of ∏ 𝛼𝑚

2𝑀
𝑚=2 . The 

propagation of the noise from the second stage results in 
accumulation 𝑅𝑀−2 such i.i.d. noise sources, each attenuated 
by a factor of ∏ 𝛼𝑚

2𝑀
𝑚=3 , and so on. The total output noise 

variance, 𝜎𝐸
2 , for an M stages FFT, assuming all the 

quantization operations are modeled as uniform RVs, 

𝑈[−2−𝑏 , 2−𝑏),  is given by the following expression  

 

𝜎𝐸
2 = 𝜎𝑣

2 (1 + ∑ ∏ 𝑅𝛼𝑖
2

𝑀

𝑖=𝑚+1

𝑀−1

𝑚=1

) 

= 𝜎𝑣
2 (1 + ∑ 𝑅𝑀−𝑚 ∏ 𝛼𝑖

2

𝑀

𝑖=𝑚+1

𝑀−1

𝑚=1

) . 

(9) 

In (9) it was assumed that the self-noise is a continuous RV 
and have the same PDF at all the butterflies. For 𝑏 
sufficiently large (e.g., 𝑏 = 16) this assumption is commonly 
accepted. However, this is not the case for butterflies 
belonging to the ℬ1  set in which their outputs are discrete 
RVs with Probability-Mass-Function (PMF) that depend on 
the number of right shifts took place at the butterfly output. 
The power of those noise sources is larger than that of the 
uniform RV, and hence they have negative effect on the 
quantization noise power at the FFT output. In order to be 
able to evaluate the effect of those noise sources, we want to 
incorporate their statistical model in the derivation of 𝜌𝐸

2. 
Let us denote by 𝛽𝑚  the fraction of the butterflies 

belonging to the ℬ1 set at stage 𝑚, and by 𝜌𝑞𝑚
2  the self-noise 

power at the output of those butterflies. Using those 
notations, and relating to power-of-two FFTs, we can now re-
write (9) as 

 

𝜌𝐸
2 = 𝜎𝑣

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

+∑ 𝛽𝑚(𝜌𝑞𝑚
2 − 𝜎𝑣

2)𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 , 

(10) 

where we defined a virtual 𝛼𝑀+1 set to 𝛼𝑀+1 = 1/√𝑅. 
The second term in (10) is a positive quantity that represents 
the increased output noise power caused by butterflies of the 
set ℬ1. As we are dealing with power-of-two DIT FFTs, we 
can write the precise expression of 𝛽𝑚 as a function of the 
radix R. This is easily extracted from the flow graphs of those 
FFTs and is equal to 
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𝛽𝑚(𝑅) = {
𝑅−(𝑚−1)             ;   𝑅 > 2                   
1                          ;   𝑅 = 2,𝑚 = 1     

𝑅−(𝑚−2)             ;   𝑅 = 2,𝑚 > 1 .   

 (11) 

Now we can plug 𝛽𝑚 into (10) and get for 𝑅 = 2 

 

𝜌𝐸
2 = 𝜎𝑣

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

          +(𝜌𝑞1
2 − 𝜎𝑣

2)𝑅𝑀∏𝛼𝑖
2

𝑀+1

𝑖=2

 

+ ∑(𝜌𝑞𝑚
2 − 𝜎𝑣

2)𝑅𝑀−2𝑚+3 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=2

 

(12) 

 
and for 𝑅 > 2 

 

𝜌𝐸
2 = 𝜎𝑣

2 ∑𝑅𝑀−𝑚+1 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 

+∑(𝜌𝑞𝑚
2 − 𝜎𝑣

2)𝑅𝑀−2𝑚+2 ∏ 𝛼𝑖
2

𝑀+1

𝑖=𝑚+1

𝑀

𝑚=1

 . 

(13) 

Using (8), (12) and (13), the SQNR for a given scale 

pattern, 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑀],  can be calculated by 𝜎𝑥𝑀
2 /𝜌𝐸

2 

where assigning 𝛼𝑖 = 2−𝑞𝑖 . 

IV. SCALING POLICIES 

In most FFT realizations, we wish to select a scaling 
policy that maximizes the SQNR under the constraint of zero-
overflows. At the ideal BFP-FFT, the scaling policy is such 
that throughout the butterflies’ computation, every butterfly’s 
output is tested for an overflow before it is quantized down 
to 𝑏  bits. If the real or the imaginary components of the 
butterfly output overflows, the entire stage is re-calculated 
where the butterflies’ outputs are scaled down by 𝑞  bits 
before being rounded to 𝑏 bits and stored to memory. The 
value 𝑞 is selected to guarantee that the scaled result does not 
overflow anymore. For example, if one of the absolute values 
of the real or imaginary butterfly’s outputs is within the range 
[1, 2 − 2−(𝑏−1)], the entire stage will be re-calculated while the 

butterflies’ outputs will be scaled by one bit to the right (𝑞 =
1). If one of the absolute values of the real or imaginary 
butterfly’s outputs is within the range [2, 4 − 2−(𝑏−1)] , the 

entire stage will be re-calculated while the butterflies’ outputs 
will be scaled by two bits to the right and so on. The more 
common, fixed latency policy proposed by Shively [11] 
guarantees deterministic latency at the expense of decreased 
SQNR. In this policy, the decision by what factor to down-
scale the outputs of stage 𝑚 is taken based on the values of 
the outputs of stage 𝑚 − 1, which are guaranteed to fit in the 
range [−1 , 1 − 2−(𝑏−1)]. While writing the outputs of stage 

𝑚 − 1  to the memory, the processor finds the maximal 
absolute value among the real and imaginary components of 
the whole stage, which serves for the down-scaling decision 
for the next stage. The down-scaling criteria is similar to that 
being used at the ideal BFP-FFT, i.e., to guarantee zero 

overflow at the output of the next stage. Here, there is a need 
to consider the fact that the maximal absolute value at the 
next stage (stage 𝑚 ) butterflies’ output would grow by a 

factor that is between 1 and √2𝑅 relative the outputs of the 
current stage (stage 𝑚− 1). In order to formalize this, let us 
define 𝑥𝑚

𝑐 (𝑛) for 𝑛 ∈ {0, 1, … , 𝑁 − 1} as 

 𝑥𝑚
𝑐 (2𝑛) = 𝑟𝑒𝑎𝑙(𝑥𝑚(𝑛)) 

𝑥𝑚
𝑐 (2𝑛 + 1) = 𝑖𝑚𝑎𝑔(𝑥𝑚(𝑛)) 

(14) 

and 

 𝑥̃𝑚 = max
𝑛
{|𝑥𝑚

𝑐 (𝑛)|} . (15) 

Using those, the scaling policy of the practical BFP-FFT can 
be written as 

 

𝑞𝑚 =

{
 
 
 
 
 

 
 
 
 
 0                          ;  𝑥̃𝑚−1 <

1

√2𝑅
               

1                          ;  
1

√2𝑅
≤ 𝑥̃𝑚−1 <

2

√2𝑅

2                          ;  
2

√2𝑅
≤ 𝑥̃𝑚−1 <

4

√2𝑅
⋮
⋮

⌈𝑙𝑜𝑔2(𝑅)⌉ + 1    ;
1

√2
≤ 𝑥̃𝑚−1      .               

 (16) 

V. SQNR CALCULATION 

It is now clear that the SQNR at the FFT output of a 
particular realization of the FFT depends on the scale pattern 
that has been used throughout this realization. Each scale 
pattern, 𝒒, is associated with a resultant SQNR. We adopt 
Weinstein’s definition for “theoretical” SQNR as the 
weighted sum of the SQNR per scale pattern over all possible 
patterns [9]. The probability of a scale pattern depends solely 
on the PDF of the input sequence and the scaling policy. In 
the sequel we will derive the scale patterns probabilities as 
well as the SQNR of the practical BFP-FFT and of the ideal 
BFP-FFT algorithms for Gaussian input sequences.  

A. Scale patterns probabilities of practical BFP-FFT 

We start with the derivation of the probabilities of scale 
patterns. Given the practical BFP-FFT’s scaling policy, the 
probability that there will be exactly 𝑞 > 0  right shifts at 
stage 𝑚 is equal to 

 
𝑃𝑟(𝑞𝑚 = 𝑞) = 𝑃𝑟 (

2𝑞−1

√2𝑅
≤ 𝑥̃𝑚−1 ≤

2𝑞

√2𝑅
) 

= 𝑃𝑟 (−
2𝑞

√2𝑅
≤ 𝑎𝑙𝑙

𝑛
{𝑥𝑚−1

𝑐 (𝑛)} ≤
2𝑞

√2𝑅
) 

  −𝑃𝑟 (−
2𝑞−1

√2𝑅
≤ 𝑎𝑙𝑙

𝑛
{𝑥𝑚−1

𝑐 (𝑛)} ≤
2𝑞−1

√2𝑅
) 

(17) 

whereas for 𝑞 = 0  

 
𝑃𝑟(𝑞𝑚 = 0) = 𝑃𝑟 (𝑥̃𝑚−1 ≤

1

√2𝑅
). (18) 

By the assumption that the input sequence, 𝑥𝑚−1
𝑐 (𝑛); 𝑛 ∈
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{0, 1, … , 2𝑁 − 1} is an i.i.d. sequence, (17) and (18), can be 
written as 

 𝑃𝑟(𝑞𝑚 = 𝑞) = 

[𝑃𝑟 (−
2𝑞

√2𝑅
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
2𝑞

√2𝑅
)]

2𝑁

 

−[𝑃𝑟 (−
2𝑞−1

√2𝑅
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
2𝑞−1

√2𝑅
)]

2𝑁

 

(19) 

whereas for 𝑞 = 0  

 𝑟(𝑞𝑚 = 0) = 

[𝑃𝑟 (−
1

√2𝑅
≤ 𝑥𝑚−1

𝑐 (𝑛) ≤
1

√2𝑅
)]
2𝑁

. 
(20) 

We now define the following auxiliary variables 

 
𝑄𝑚 =∑𝑞𝑖

𝑚

𝑖=1

 ;  𝑚 ∈ {1, 2, … ,𝑀}  ,   𝑄0 = 1  (21) 

and 

 𝑇𝑚 = 2−2𝑄𝑚 . (22) 

Using those, the variance of the sequence at the output of the 

𝑚𝑡ℎ stage is  

 𝜎𝑥𝑚
2 = 𝜎𝑥0

2 𝑅𝑚𝑇𝑚 (23) 

and the variance of the real and imaginary individual 

components at the output of the 𝑚𝑡ℎ  stage is 𝜎𝑥0
2 𝑅𝑚𝑇𝑚/2. 

For an i.i.d complex Gaussian input sequence, 

𝑥0
𝑐(𝑛)~𝑁(0, 𝜎𝑥0

2 /2) ;  𝑛 ∈ {0, 1, … , 2𝑁 − 1}, it can be shown 

that all the intermediate sequences 𝑥𝑚
𝑐 (𝑛) , 𝑚 ∈ {1, 2, … ,𝑀} 

are also Gaussian i.i.d [9]. Therefore, the probability that the 

outputs of the 𝑚𝑡ℎ stage would be shifted by exactly 𝑞𝑚 > 0 
right shifts, given that there were accumulated 𝑄𝑚−1  right 
shifts at the stages preceding stage 𝑚 is 

 𝑃𝑟(𝑞𝑚 | 𝑄𝑚−1; 𝜎𝑥0
2 ) 

=

[
 
 
 

𝑒𝑟𝑓

(

 
2𝑞𝑚

𝜎𝑥0√2𝑅
𝑚+1𝑇𝑚−1)

 

]
 
 
 
2𝑁

−

[
 
 
 

𝑒𝑟𝑓

(

 
2𝑞𝑚−1

𝜎𝑥0√2𝑅
𝑚+1𝑇𝑚−1)

 

]
 
 
 
2𝑁

 

(24) 

and the probability that there would be no right shifts (𝑞𝑚 =
0) is given by 

 𝑟(𝑞𝑚 = 0 | 𝑄𝑚−1; 𝜎𝑥0
2 ) 

= [𝑒𝑟𝑓 (
1

𝜎𝑥0√2𝑅
𝑚+1𝑇𝑚−1

)]

2𝑁

 
(25) 

where 𝑒𝑟𝑓(𝑥) is defined by 

 

𝑒𝑟𝑓(𝑥) =
2

√𝜋
∫𝑒−𝑡

2
𝑑𝑡

𝑥

0

 . (26) 

B. Scale patterns probabilities of ideal BFP-FFT 

At the scaling policy of the ideal BFP-FFT there are no 

per-stage scaling pre-decisions. An FFT stage is calculated 

without scaling and throughout the calculations, if any of the 

stage’s outputs overflows, the whole stage is re-calculated 

while the outputs are down-scaled before being written to 

memory. Note that in the ideal policy there may be multiple 

re-calculation of the same stage if the strategy is to initiate 

the re-calculation upon the first detected overflowed value. 

Different strategies may eliminate the multi re-calculations of 

the same stage, for example set the scale value to the maximal 

scale upon the detection of the first overflow, or always 

calculate the stage to its end and if overflows have been 

detected, set the scale value according the largest magnitude 

among the overflowed values. Some strategies suffer 

degradations in the SQNR performance due to potential 

mismatch between the scale value and the actual overflowed 

value. Nevertheless, here, for the sake of SQNR comparison, 

we assume a strategy that determine scale value according to 

the largest magnitude output sample, and hence no 

performance loss is involved. 

As opposed to the practical case, at which the scale 

decision for stage 𝑚 depends on the outputs of stage 𝑚 − 1 

after being scaled down, the scale decision of the ideal BFP-

FFT depend on the outputs of stage 𝑚 before being scaled 

down. Let us denote those values as 𝑠𝑚(𝑛), i.e. 

 𝑥𝑚(𝑛) = 𝛼𝑚𝑠𝑚(𝑛) (27) 

and define 𝑠𝑚
𝑐 (𝑛) and 𝑠̃𝑚 in analogous to (14) and (15) as 

 𝑠𝑚
𝑐 (2𝑛) = 𝑟𝑒𝑎𝑙(𝑠𝑚(𝑛)) 

𝑠𝑚
𝑐 (2𝑛 + 1) = 𝑖𝑚𝑎𝑔(𝑠𝑚(𝑛)) 

(28) 

and  

 𝑠̃𝑚 = max
𝑛
{|𝑠𝑚

𝑐 (𝑛)|} . (29) 

Now, the SQNR analysis using the ideal BFP-FFT policy 

follows the steps of the analysis of the practical BFP-FFT 

scheme. The output signal variance and the output noise 

power follow (8) and (10) respectively. The probability that 

there will be exactly 𝑞 > 0 right shifts at stage 𝑚 is equal to  

 𝑃𝑟(𝑞𝑚 = 𝑞) = 𝑃𝑟(2𝑞−1 ≤ 𝑠̃𝑚 ≤ 2𝑞) 

= 𝑃𝑟 (−2𝑞 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 2𝑞) 

−𝑃𝑟 (−2𝑞−1 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 2𝑞−1) , 

(30) 

and the probability that there will be no right shifts at stage 

𝑚, i.e. 𝑞 = 0, is  

 𝑃𝑟(𝑞𝑚 = 0) = 𝑃𝑟(𝑠̃𝑚 ≤ 1) = 

𝑃𝑟 (−1 ≤ 𝑎𝑙𝑙
𝑛
{𝑠𝑚
𝑐 (𝑛)} ≤ 1) . 

(31) 

Under i.i.d. Gaussian input assumption, we get for 𝑞𝑚 > 0 
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 𝑃𝑟(𝑞𝑚 | 𝑄𝑚−1 ;  𝜎𝑥0
2 ) 

= [𝑒𝑟𝑓 (
2𝑞𝑚

𝜎𝑥0√𝑅
𝑚𝑇𝑚−1

)]

2𝑁

− [𝑒𝑟𝑓 (
2𝑞𝑚−1

𝜎𝑥0√𝑅
𝑚𝑇𝑚−1

)]

2𝑁

, 

 

(32) 

and for 𝑞𝑚 = 0 

 𝑃𝑟(𝑞𝑚 = 0 | 𝑄𝑚−1 ;  𝜎𝑥0
2 ) = 

[𝑒𝑟𝑓 (
1

𝜎𝑥0√𝑅
𝑚𝑇𝑚−1

)]

2𝑁

. 
(33) 

 

C. SQNR calculation 

We use the per-stage probabilities to calculate the 
probability of a specific scale pattern, 𝒒 = [𝑞1, 𝑞2, … , 𝑞𝑀],  

 𝑃𝑟(𝒒; 𝜎𝑥0
2  )

= 𝑃𝑟(𝑞1; 𝜎𝑥0
2 )∏𝑃𝑟(𝑞𝑚|𝑄𝑚−1; 𝜎𝑥0

2 )

𝑀

𝑚=2

 
(34) 

and the output SQNR is calculated by the weighted sum of 
the SQNRs per scale pattern as 

 
𝑆𝑄𝑁𝑅 =∑𝑃𝑟(𝒒; 𝜎𝑥0

2 ) ∙ 𝑆𝑄𝑁𝑅(𝒒, 𝜎𝑥0
2 )

𝒒

 

=∑𝑃𝑟(𝒒; 𝜎𝑥0
2 ) ∙

𝜎𝑥𝑀
2 (𝒒, 𝜎𝑥0

2 )

𝜌𝐸
2(𝒒)

𝒒

  . 

(35) 

In (35) the expression 𝑃𝑟(𝒒; 𝜎𝑥0
2 )  is calculated by (34), 

𝜎𝑥𝑀
2 (𝒒, 𝜎𝑥0

2 ) is calculated by (8) and 𝜌𝐸
2(𝒒), with 𝛼𝑖 = 2

−𝑞𝑖 , 

is calculated by (12) or (13) for Radix-2 and Radix-4 
respectively.  

VI. RESULTS 

The derived models of the SQNR for the practical and the 
ideal BFP-FFT have been validated against simulation. The 
model and the simulation results for 16-bit datatype (𝑏 = 16) 
and Gaussian i.i.d input with standard deviation of 𝜎𝑥0 =
0.15  are shown in Figure 2 and Figure 3 for radix-2 and 
radix-4 respectively. For the simulation results we have 
averaged the SQNR of 1000 FFT runs per FFT length. As can 
be seen, there is a very good match between the simulation 
results and the derived model. The gap between the refined 
statistical model (that incorporate the refinement for ℬ1 
butterflies) and the simulation result for the practical BFP- 
FFT is in the order of 0.2dB. The results for the ideal BFP-
FFT are not shown in the figures since the model has almost 
perfect match to the simulation result with gaps that are in the 
order of 0.05dB. 

In Figure 2 and Figure 3 we can also see the effect of the 
refined statistical model for the ℬ1 butterflies. The model 

 
Figure 2.  Radix-2 Practical BFP-FFT 

 

 
Figure 3.  Radix-4 Practical BFP-FFT 

neglecting the effects of the ℬ1 butterflies, for radix-2 BFP-
FFT, is optimistic by about 0.5dB for the practical BFP-FFT 
and by about 1dB for radix-4. 

One of the main goals of the paper is to provide an 
analytical tool that enables the prediction of the SQNR 
penalty one needs to pay for getting fixed latency BFP-FFT. 
This penalty is clearly seen for radix-2 and radix-4 in Figure 
2 and Figure 3 respectively. We see that such a penalty is in 
the order of 6dB when the number of stages is above five, and 
grows up to 13.5dB for lower number of stages as seen at the 
case of 64 points radix-4 FFT. 

Another interesting observation that the model reveals 
relates to the comparison of the SQNR between radix-2 and 
radix-4 BFP-FFT implementations. It is well known that from 
complexity perspective, the radix-4 has advantages over 
radix-2 (at least in the number of multiplications). From the 
results in Figure 2 and Figure 3, we can also see that radix-4 
have better SQNR in the ideal BFP-FFT implementation. We 
get 4dB advantage for 64-points FFT down to about 2dB 
advantage for 4096-points FFT. However, for the practical 
BFP-FFT we see an opposite behavior. The radix-2 practical 
BFP-FFT results in 2.8dB better SQNR for 64-point FFT, 
down to 1.2dB better SQNR for 4096-points FFT.  
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VII. CONCLUSIONS 

In this paper, we refined the analytical model of the finite-
word-length-effects of Cooley Tukey DIT BFP-FFT to 
incorporate butterflies belonging to the ℬ1  set, as well as 
extended the model for the commonly used practical BFP-
FFT. The refined analytical model was validated against 
simulation and found highly accurate for ideal and practical 
BFP-FFTs. The model enables to accurately predict the 
SQNR for the practical BFP-FFT and the performance 
degradation compared to the ideal BFP-FFT scheme. 

The analysis covers DIT-FFT for radix-2 and radix-4, but 
can be easily adapted to DIF FFT topologies and be extended 
for non-power-of-2 BFP-FFTs as well as for mixed radices, 
such as the ones used in LTE wireless modems. 
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