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Abstract—The estimation of fish biomass plays a crucial role in
aquaculture. Performing this task automatically using machine
learning algorithms has attracted the attention of the scientific
community. This work describes the application of Supervised
Spatial Divide-and-Conquer net to counting the number of larvae
present in an image of an aquaculture tank. SS-DCNet is among
the most robust object counters in the state of the art when
applied to different datasets. It is trained with labeled images of
turbots in breeding tanks, taking into account that the sizes can
be variable and that they can be grouped and overlapped. Data
augmentation is applied to obtain a greater number of training
instances. The application of this model to counting turbots in
images provides a mean relative error lower than 3.5%, which
is an acceptable accuracy for this task. The main advantage of
the model studied is its generalization ability, confirmed by its
performance in counting objects in images where the density and
the total number of objects are much higher than for the training
images. Adapting the model for counting other types of fish, or
turbot in other stages of growth, is straightforward since it is
not necessary to build large training datasets.

Index Terms—Image processing, Object detection, SS-DCNet,
biomass estimation

I. INTRODUCTION

Biomass estimation, that is, knowing the number of fish
and their weight, allows fish farmers to optimize the amount
of feed, plan later stages of farming, and make decisions at
the right times. Traditionally, biomass estimation has been
carried out by people using invasive procedures that are usually
slow and laborious and require great expertise, experience, and
knowledge of the conditions of the farm and the environment
[1].

Technological advances in recent decades have allowed the
development of systems that offer automatic estimation of
biomass based on artificial vision, acoustic signals, environ-
mental deoxyribonucleic acid (DNA), or resistivity counters.
These methods are objective, noninvasive and produce repeat-
able and reliable results. In contrast, they can be expensive
and not easily adaptable to variations in the environment [1].

Recently, machine learning (ML) techniques have grown
remarkably in applicability to the fields of industry, social
networks, etc. In aquaculture, they have been used to predict
water quality [2], identify and distinguish among fish types
[3], diagnose diseases [4], estimate biomass [5], etc. Both
image recording technology and computer services have been
generalized and cheapened so that biomass estimation systems
can currently be developed cheaply and reliably. The number
of fishes in an image is among the parameters required for
biomass estimation. For the purpose of estimating it, the
algorithmic approaches used for counting objects in RGB
images can be adapted.

To date, approaches used for counting objects in images
can be grouped in roughly three types: counting by detection,
regression, and density estimation [6]. Counting by detection
is based on the position of each object in the image using the
extracted image features. These methods have shown good
results in datasets where the objects are separated from each
other. However, in scenes where the objects are next to each
other or even overlapping, the results have not been good.
Some recent proposals in this area, using local features instead
of global features, have improved counting results in images
with high object density [6].

Alternatively, counting based on regression models attempts
to establish a relationship between image features and the
number of objects using supervised machine learning tech-
niques. These models do not use datasets based on the location
of individual objects but require only the total number of
objects in the image. Thus, although the results of these models
are generally better than those based on detection, they usually
require large datasets to be trained [6].

The two model types previously described ignore the spa-
tial information of the images; the solution proposed in [7]
incorporates this information. In this work, a mapping of the
features in the images and their corresponding density maps
are developed that improves the accuracy of the counting
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(a) (b)
Figure 1. Example of frames captured at a frequency of 15 f/s. (a)
High density of turbots and (b) Low density of turbots.

results compared to previous approaches [8]. The advantages
of this proposal are the following: the density maps provide
more information about the distribution of the objects, and the
algorithm is more adaptable to objects with different sizes and
more tolerant to different images [8].

Aforementioned research suggests that the application of
ML algorithms to images of fish larval tanks can enable the
implementation of low-cost, accurate, and reliable biomass
estimation systems. In this paper, we develop a system that
allows obtaining an estimated number of turbot larvae present
in RGB (red, green, blue) images. For this purpose, a deep
learning algorithm is trained with labeled images of a fish
larval tank, taking into account that fish sizes can appear to
be variable in the image due to differences in depth, and that
there can be grouped and overlapped objects.

The organization of the document is as follows: section
II.A explains the experimental setting and construction of the
dataset. Section II.B describes the implemented machine learn-
ing algorithm and the evaluation of several hyperparameters.
Furthermore, the influence of different hyperparameter values
on the prediction is measured with error metrics. The optimal
values of the hyperparameters and the generalization capacity
of the neural network were verified in section III: Results and
Discussion. Finally, section IV presents the conclusions of the
work.

II. MATERIALS AND METHODS

This section describes the neural network used to count the
number of turbot larvae in an image, as well as the dataset used
to train and test the model. In addition, the parameters that
characterize a neural network and the metrics used to evaluate
its performance and generalization capacity are explained.

A. Dataset
The dataset consists of 156 RGB images with a resolution

of 2560 × 1920 pixels. Two sample frames are shown in
Figure 1. The images were manually annotated in the Group
of Multimedia and Acoustic Applications (GAMMA) in our
university with a Matlab® application specifically developed
for this purpose.

Figure 1 shows two frames prototypical of two different
cases: the left frame shows a high density of turbots while
density is low in the right one. These images were captured
in the same tank at different moments.The implemented algo-
rithm must produce equally acceptable results in both cases,
and also in intermediate ones.

Figure 2. Segmentation of turbots, the red and blue boundaries stands
out a single turbot and a group of turbots, respectively.

All images were taken from turbot larval tanks. The camera
was located with the lens axis perpendicular to the water
surface. In order to avoid the glaring of lighting reflections
on the water, the camera focused only in part of the tank
surface. Users of the annotation application were provided
with images for which a segmentation by threshold had been
applied to identify the objects present in the image (see
Figure 2). Annotators were asked to check whether each object
corresponded to a turbot larva or not. The process was made
manually, and image by image, which is laborious and time
consuming. But it is the most confident procedure to get a
ground-truth fish count for each frame.

To train and test the neural network, the images were
randomly divided into training and testing sets: 124 (80%) for
training and 32 (20%) for testing. The distribution of turbots in
both sets averaged 246 and 273 turbots per image, respectively.

B. Machine learning algorithm

1) Neural Network: The convolutional neural network
model implemented in our proposal for counting objects shows
the best results in the application of counting people [6]
[8]. The chosen model is the Supervised Spatial Divide-and-
Conquer for Object Counting model (SS-DCNet) because it
has been reported to produce low errors [9] and the applica-
bility of the model beyond counting people has already been
assessed: for counting vehicles [10], and grains of corn [11].
Thus, it is expected to be adaptable to alternative datasets too.

SS-DCNet learns from a closed set of counts and it gener-
alizes to scenarios with open sets. This model was designed to
approach the problem that only finite local patterns (a closed
set) can be observed, but new scenes in the reality have a
high probability of containing out of range objects (an open
set). Specifically, SS-DCNet (see Figure 3) uses a 16-layer
deep neural network (VGG16) as encoder and a Convolutional
Networks for Biomedical Image Segmentation (UNet) like
decoder to generate multi-resolution feature maps in frames
of 64× 64 pixels. All feature maps share the same counter, in
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Figure 3. Diagram of SS-DCNet algorithm. C0, C1 y C2 are the
estimation counters for three different resolutions; the parameters U
y W allows to combine the values of estimation counters to obtain
the density map.

these are obtained C0, C1 y C2 for three different resolutions.
Then is applied two-stage spatial divide and conquer (S-DC)
process to estimate the density map related to sub-image
selected. The density map is used to calculate the local count.
The final count of the image can be recovered by combining all
sub-image counts into one count map with the same size as the
test image. For each pixel, a normalization step is performed
by dividing the number of sub-images that yield a prediction
for the pixel [9]. In local counter modeling, one of the ways
to define a counter in the closed set is [0, Cmax]. In practice,
Cmax should not be larger than the maximum local count
observed in the training set. If the predicted counts are greater
than Cmax, the predictions are simply truncated to Cmax.

Although the authors of the SS-DCNet model [9] have
published source code to evaluate the accuracy of their model,
their implementation only has the ability to evaluate an already
trained model and does not have routines to train a model with
a specific dataset. For this reason, the basic source code used
in this project is that published by Dmitry Burdeiny [12] on
the Github platform as free code. The code has been adapted
to meet the design specifications and to make it compatible
with the current dataset.

Analyzing the distribution of objects on 64 × 64 squares,
it is observed in Table I that the 95th percentile corresponds
to the value of 5 turbots per square. Therefore, following the
recommendations of the model developers, a value of 5 was
chosen as a starting point for model training. However, tests
were performed with the lower and upper values to analyze
their variation.

TABLE I. PERCENTILES OF TURBOTS COUNTED IN
FRAMES OF 64× 64 PIXELS

Percentil Value
65 1
75 2
85 3
95 5

2) Density map: Density maps in SS-DCNet are generated
using a Gaussian kernel. The density estimation based ap-
proach uses an adaptive geometric density mapping system.
This implies that the standard deviation (σ) is calculated
dynamically for each labeled point. This value is usually calcu-
lated as the product of the mean distance to nearest neighbors
and a mitigation coefficient, usually 0.3 [13]. However, the
adaptive calculation of the standard deviation is applied to
images where the size of the object is evenly distributed among
different image regions. For example, an image of a street
where people’s heads have similar size means that they are
in the same image region (foreground, background, other).
However, in our dataset, the turbot size is not distributed across
the image regions, the size varies mainly with distance to the
water surface. Turbots closer to the surface are larger than
those in the depth, therefore neighbors in the same region
can be in different planes. For this reason, a fixed standard
deviation was chosen to create the density maps.

To measure how the value of σ affects the accuracy of the
model, the density map was created with different values of σ
between 3 and 15 in intervals of three, all with a kernel size
of 30 pixels, as shown in Figure 4.

In Figure 4 can be seen that when the parameter σ is
increased, the algorithm detects objects where there are none,
while at a low sigma of 3 it detects fewer objects.

3) Train and validation test: A random division of the
training dataset is made to apply double cross validation:
90% of images for training and 10% for validation. Note that
this validation is different from the final evaluation of the
error on the test set. The goal of this evaluation is to check
during training the evolution of accuracy after certain training
iterations.

Moreover, the technique of data augmentation or artificial
data generation is used to obtain a larger number of training
instances. The strategy followed is to generate nine sub-images
with a quarter of the total image resolution, as in [9] [14].
Four sub-images are drawn from the four corners without
overlapping, and the other five are drawn randomly from the
image. These images need to be normalized, so the average
pixel value was calculated for each RGB channel using all
images set. The calculated average pixel subtracted from pixels
of each RGB channel, and then divided by 255 was the
normalization process implemented.

The Stochastic Gradient Descent (SGD) optimization al-
gorithm is chosen as the learning algorithm of the model.
The implementation uses an initial learning rate of 0.0001,
which is divided by a factor of 10 for each iteration of
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Figure 4. Examples of density maps for different values of σ. The
original frame (top), maps with σ equal to 3 (center-left), 6 (center-
right), 9 (down-left) and 12 (down-right)

the training process. A random Gaussian initialization with a
standard deviation of 0.01 is used to compute the weights. The
convolutional neural network is pre-trained with the ImageNet
dataset and the batch size is equal to 1 in our proposal.

In addition, the following techniques are used to improve
the SGD optimization algorithm:

• Momentum: It is used to reduce excessive fluctuations
in the weight changes in successive iterations and thus
improve the learning rate [15]. The value used for this
parameter is 0.9.

• Weight decay: This is a regularization technique whose
main goal is to avoid overfitting that would affect general-
ization for new data. This technique introduces a penalty
in the cost function to reduce the weights during the
backward propagation of the error [16]. The value used
for this parameter is 10−4.

III. RESULTS AND DISCUSSION

In order to obtain the optimal parameters for the generation
of the density maps and Cmax of the classifier, experiments
began with σ equal to 12 and Cmax equal to 5. The impact of
these parameters was analysed training the system with their
extreme values to appreciate the change of these parameters.

1) Relationship between σ and density map: In order to
evaluate how the choice of σ for the Gaussian kernel affects the
accuracy of the model when generating density maps, it was
trained with a value of Cmax equal to 5 and the density maps

were generated for different σ values, between 3 and 15 in
steps of three. As can be seen in Table II, there is no significant
effect on the model errors at small standard deviations.

TABLE II. ERRORS OBTAINED BY DIFFERENT DEN-
SITY MAPS

σ MAE RMSE MAPE (%)
3 9.00 18.82 3.52
6 11.66 19.46 4.04
9 11.05 19.22 3.56
12 9.66 18.20 3.48
15 10.62 18.09 3.69

A value of 12 was used for σ to create the density maps
for the rest of tests. Although it has a slightly worse Mean
Absolute Error (MAE) value than the map created with a
σ = 3, the Mean Square Error (MSE) and Mean Absolute
Percentage Error (MAPE) values are better and the deviations
are therefore more homogeneous. The Root Mean Square Error
(RMSE) is similar in all cases.

2) Selection of Cmax value: The developers of the SS-
DCNet model obtained the best model accuracy results for a
Cmax value corresponding to the 95th percentile of the objects
distribution in 64 × 64 pixels. This value is 5 for the current
dataset. The validity of that conclusion was verified training
the model with Cmax values below and above 5.

As can be seen in Table III, for Cmax = 5 , the smallest
errors are obtained for both MAE and MAPE. However, for
Cmax = 6, the RMSE is slightly smaller, meaning that there
is less variation. Nevertheless, the difference between MAE
and MAPE is considered to be more significant than RMSE,
so a value of Cmax equal to 5 is used for the further tests.

TABLE III. ERRORS OBTAINED BY DIFFERENT Cmax

Cmax MAE RMSE MAPE (%)
2 14.45 25.98 3.90
3 15.02 27.26 4.13
4 14.67 26.49 4.09
5 9.66 18.20 3.48
6 10.39 18.05 3.64

3) Generalization capability / ability: In order to evaluate
how the model generalizes for frames with higher concentra-
tion of turbot larvae, it was re-trained with images that had
a low density of individuals, less than 350 per frame, and
tested with images that had a high density, between 350 and
898 individuals. For this experiment, 129 and 27 images were
used for training and testing, respectively.

Figure 5 shows a low deviation for predictions in test
images. Therefore, the model maintains an acceptable accuracy
for images with a higher density and number of objects than
that of the training set.
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Figure 5. Generalization capability of SS-DCNet. The Label and
Prediction axes represent the real and estimated number of turbots in
a tank, respectively. The orange dots are the data of training set and
the blue dots are the new data with high turbots density. The broken
line shows the ideal estimation model

IV. CONCLUSIONS

Applying a convolutional neural network model to count
turbot larvae in breeding tanks from images yields a mean
error lower than 3.5%, which is acceptable accuracy for this
task. Adaptation of the model to count other fish species or
turbot at other growth stages is feasible, as it is not necessary
to use large datasets for training. The evaluated model exhibits
a remarkable generalization ability, providing good counting
estimates even when the density and total number of objects
in test images is much larger than in the training images.

While the characteristics of the dataset used do not allow the
application of the adaptive geometry strategies used in people
counting, other strategies for creating the density maps can
be explored, such as adjusting the value of σ for each labeled
point based on the morphological features extracted during the
label segmentation process.

While using a pre-trained VGG16 encoding network helps
in reducing the need for a large training dataset, it is possible
that training the encoder from scratch with application specific
images could improve accuracy, as there may be few or no
images about larval turbot in the ImageNet dataset with that
the encoder was pre-trained, despite its large expansion of
images and categories.

ACKNOWLEDGMENT

This work has been funded by Ministerio de Agricultura,
Pesca y Alimentación, Plan de Recuperación, Transformación
y Resiliencia, NextGenerationEU. Project: Aplicación de tec-
nologı́as de visión e inteligencia artificial a la mejora del
proceso productivo (Acuicultura 4.0)

REFERENCES

[1] D. Li, Y. Hao, and Y. Duan, “Nonintrusive methods for biomass
estimation in aquaculture with emphasis on fish: a review,” Reviews
in Aquaculture, vol. 12, no. 3, pp. 1390–1411, 2020.

[2] A. Najah Ahmed, F. Binti Othman, H. Abdulmohsin Afan, R. Khaleel
Ibrahim, C. Ming Fai, M. Shabbir Hossain, M. Ehteram, and A. Elshafie,
“Machine learning methods for better water quality prediction,” Journal
of Hydrology, vol. 578, p. 124084, 2019.

[3] V. Kandimalla, M. Richard, F. Smith, J. Quirion, L. Torgo, and C. Whid-
den, “Automated detection, classification and counting of fish in fish
passages with deep learning,” in Frontiers in Marine Science, 2022.

[4] M. S. Ahmed, T. T. Aurpa, and M. A. K. Azad, “Fish disease detection
using image based machine learning technique in aquaculture,” Journal
of King Saud University - Computer and Information Sciences, vol. 34,
no. 8, Part A, pp. 5170–5182, 2022.

[5] N. Abinaya, D. Susan, and R. K. Sidharthan, “Deep learning-based
segmental analysis of fish for biomass estimation in an occulted environ-
ment,” Computers and Electronics in Agriculture, vol. 197, p. 106985,
2022.

[6] B. Li, H. Huang, A. Zhang, P. Liu, and C. Liu, “Approaches on
crowd counting and density estimation: a review,” Pattern Analysis and
Applications, vol. 24, no. 3, pp. 853–874, 2021.

[7] R. Perko, M. Klopschitz, A. Almer, and P. M. Roth, “Critical aspects
of person counting and density estimation,” Journal of Imaging, vol. 7,
no. 2, 2021.

[8] W. Li, Z. Fangbo, and H. Zhao, “Crowd density estimation based on
global reasoning,” Journal of Robotics, Networking and Artificial Life,
vol. 7, no. 4, pp. 279–283, 2021.

[9] H. Xiong, H. Lu, C. Liu, L. Liu, C. Shen, and Z. Cao, “From open set to
closed set: Supervised spatial divide-and-conquer for object counting,”
ArXiv, vol. abs/2001.01886, 2020.
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