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Abstract—In speaker verification, Time Delay Neural Networks
(TDNNs) and Residual Networks (ResNets) are currently achiev-
ing cutting-edge results. These architectures have very different
structural characteristics, and development of hybrid networks
appears to be a promising path forward. In this study, inspired by
the combination of Convolutional Neural Network (CNN) blocks
and multi-scale architectures we present a Residual-based CNN
TDNN (RCT) system and evaluate the performance of integrating
different residual blocks into a TDNN-based structure. We
extend the state-of-the-art speaker embedding model for speaker
recognition, namely Emphasized Channel Attention, Propagation,
and Aggregation based CNN-TDNN (ECAPA CNN-TDNN), by
gradually incorporating the proposed 2D convolutional stem with
various bottleneck residual blocks. We evaluate the performance
of our models on standard VoxCeleb1-O test set to investigate
the performance of residual blocks and TDNN in the speaker
verification domain. As a result, the proposed models significantly
outperform the state-of-the-art by up to 14.6% of EER.

Index Terms—ResNet, Residual blocks, TDNN, RCT-Net,
speaker verification, automatic speaker verification (ASV)

I. INTRODUCTION

Current state-of-the-art speaker verification systems try to
improve the most popular neural network topology based on
ECAPA-TDNN by incorporating multiple ideas and techniques
inspired by convolutional blocks, feature aggregation, and
frequency-channel attention methods. ECAPA CNN-TDNN
[6] introduced a 2D convolutional stem for the ECAPA-
TDNN, incorporating frequency translational invariance in the
four top layers of the network. Liu et al. [7] proposed MFA-
TDNN, a Multi-scale Frequency-channel Attention (MFA)
framework, that captures the local information and frame-level
temporal information by the dual-pathway multi-scale mod-
ule while emphasizing the important frequency and channel

components in TDNN systems. Inspired by ECAPA CNN-
TDNN, which enhances ECAPA-TDNN by incorporating a
CNN-based front-end, the MFA module is created as a front-
end module for TDNNs in order to learn multi-scale and
extract high resolution feature representations from short ut-
terances. [8] and [13] adapt the frame-level processing in
ECAPA-TDNN. In [8], their experiments focus on bottleneck
residual blocks, attention mechanisms, and feature aggregation
based on ECAPA-TDNN. They replaced the Res2Block with
SC-Block and proposed the hierarchical feature aggregation
method to build their final model.

Many recent studies have focused on expanding the re-
ceptive field of the convolutional layer on Residual Network
(ResNet) [1]. The first technique integrates the ResNet with
the concept of inception [2] and proposes ResNext, a split-
transform-merge strategy [3]. The introduced cardinality is
intended for processing different sizes of receptive fields in
order to obtain multi-scale features. Furthermore, Res2Net
[4] improves multi-scale feature extraction capability by con-
structing hierarchical residual-like connections within one
single residual block. The preceding ideas are similar to
the TDNN, which obtains a wide range of time information
through convolution with different dilation rates. We believe
that development of hybrid networks to generate multi-scale
features influences the final representation and appears to be
a promising direction moving forward. The ECAPA-TDNN
model [5], as an example, combines the benefits of Res2Net
and TDNN.

Inspired by these recent progresses, we propose Residual-
based CNN TDNN RCT-Net using 2D convolutions based on
different residual blocks as the foundation for the initial net-
work layers. We evaluate the performance of various residual
blocks using the most recent speaker embedding model for
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Fig. 1. The diagram of the proposed architecture.

speaker recognition, ECAPA CNN-TDNN [6], and experiment
with the proposed 2D convolutional stem, including various
bottleneck residual blocks such as Res2Net [4], Res2NeXt [3],
standard ResNet [1], Improved ResNet [9] and ResTCN [10],
[15].

This paper is organized as follows: In Section II, the base-
line architectures are described. The structure of the proposed
Residual-based CNN TDNN RCT-Net and different frame-
level architectures are described in Section III. Section IV
introduces the experimental setup including dataset, training
the speaker embedding extractors, and evaluation protocol.
Results and analysis are presented in Section V. In Section VI
we discuss the potential justification for our best combination
of two strong structures of TDNN and residual blocks. Finally,
Section VII summarizes the findings.

II. BASELINE SYSTEM ARCHITECTURES

Two types of TDNN-based speaker embedding models are
considered as reliable baselines to evaluate the performance
of our suggested architecture: ECAPA-TDNN and ECAPA
CNN-TDNN, which both currently provide state-of-the-art on
speaker verification tasks.

The ECAPA-TDNN [5] model, which is based on the
x-vector architecture [11], attempts to obtain exceptionally
accurate x-vectors by introducing a number of enhancements
to provide more robust speaker embeddings. First, channel-
and context-dependent statistics pooling layer is used to ag-
gregate all frame-level features to generate a fixed dimensional
vector. Second, in order to add global context information to
the locally operating convolutional blocks, the 1-dimensional
Squeeze-Excitation (SE) block [17] is used and integrated with
Res2Block [4], which has the advantage of multi-scale feature
processing through group convolutions in hierarchical residual
connections, and reduces the number of network parameters.

Finally, the output features of all the SE-Res2Block for each
frame are concatenated by multi-layer feature aggregation
technique.

Inspired by 2D-CNNs, Thienpondt et al. [6] introduced
a 2D convolutional stem in ECAPA-TDNN to transfer the
advantages of ResNet architecture to the proposed hybrid
CNN-TDNN network. Using ResNet in top layers allows the
network to initially construct local, frequency-invariant fea-
tures and then 1D convolutions are applied to incorporate the
frequency position information of the features. The flattened
output feature map subsequently is used to feed the ECAPA-
TDNN network.

III. PROPOSED RCT-NET ARCHITECTURE

The neural network is used by the current speaker verifica-
tion methods to derive speaker representations. The effective x-
vector architecture [11] uses TDNN to project variable-length
utterances into fixed-length speaker characterization embed-
dings by applying statistics pooling. On the task of speaker
verification, we aim to obtain an extremely accurate version
of x-vector topology and try to enhance the performance of
the original TDNN-based architectures [12].

We investigate different deep residual unit variations, and
we are particularly interested in whether the TDNN and the
basic residual building blocks simplicity can be successfully
combined with the advantages of standard residual-based
architectures [1] [9] [10] [14], and how the performance of
the resulting architectures compares to the more sophisticated
multi-scale residual blocks [3] [4]. In this regard, our method
integrates, extends, and generalizes the architecture of ASV we
previously described [13]. The proposed architecture, as shown
in Figure 1, follows an established multi-scale and frequency
positional encoding structure, ECAPA CNN-TDNN. In this
study, we propose enhancements to the frame-level feature
extractor.

A. Standard Residual Blocks

We shortly go over the key concepts underlying residual-
based architectures like ResNet and Res-TCN [10] [15]. Res-
Net employs injected residual connections between processing
streams to allow spatial-temporal interaction between them.
Res-TCN redesigned the original TCN [14] by factoring out
the deeper layers into additive residual terms that yielded both
an interpretable hidden representation and model parameters.
In contrast to the original ResNet, the basic residual unit of
Res-TCN and improved ResNet [9] does not use ReLUs to
support the element-wise additions

⊕
(see Figure 2(a-c)) and

can therefore offer representations that are more interpretable.
Additionally, such units create a direct path that enables
the gradients and the signal to be transmitted directly in a
backward pass through the entire network to any unit.

B. Multi-Scale Residual Blocks

Multi-scale feature representation has been integrated from
the beginning into the CNN architectural design with a stack
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Fig. 2. The structures of bottleneck residual blocks in different architectures. Standard residual blocks in (a) ResNet [1], (b) Improved ResNet [9], and (c)
Res-TCN [15]. Multi-scale residual blocks in (d) Res2Net [4] and (e) ResNeXt. [3]

of convolutional layers that automatically learn coarse-to-fine
features [16]. The bottleneck module and shortcut connections
to residual networks are effective at reducing the number of
parameters and successfully addressing the gradient disappear-
ance in deep CNN designs.

ResNeXt-50 [3] enhanced the bottleneck module by adding
cardinal dimension and replacing conventional convolution
with group convolution to perform more sophisticated trans-
formations. Gao et al. [4] substituted the 3×3 convolution with
a series of 3 × 3 convolution with smaller filter groups that
are coupled hierarchically in order to incorporate the multi-
scale capability of the feature representation into the module.
This might be considered a network inside of a network.
As a result, the range of receptive fields for each network
layer is increased by the Res2NeXt, which also represents
multi-scale features at a finer level. Res2NeXt-50 improved
ResNeXt-50 by enabling multi-scale feature representation at
both the global and local levels by integrating hierarchical
multi-scale feature representation into the bottleneck module.
SE-Res2NeXt-50 [4] integrated the SE block [17] to provide
a channel-wise dynamic calibration of feature responses and
provide enhanced feature representation capabilities.

Res2NeXt substitutes a set of 3 × 3 filters with smaller
groups of filters, while connecting different filter groups in a
hierarchical residual-like way, cf. Figure 2. 3× 3 convolution
is followed by the input being split into s feature map subsets,
indicated by the symbol Xi, where i ∈ {1, 2, ..., s}. Each
feature subset Xi differs from the input feature map only in
that it has 1/s fewer channels but the same spatial extent. With
the exception of X1, which is forwarded directly to the output,
each Xi has a matching 3× 3 convolution, indicated by Ki(·).
The output Ki−1(·) from the earlier 3× 3 convolution is then
fed into Ki(·) together with the feature subset Xi. The output
of the module is produced by concatenating the outputs of all
groups and forwarding them to a 1× 1 convolution. Thus, Yi

can be:

Yi =


Xi i=1
Ki(Xi) i=2
Ki(Xi + Yi−1) 2 < i ≤ s

IV. EXPERIMENTAL SETUP

We evaluate the performance of the proposed architecture
on the ECAPA embedding on the development part of the
VoxCeleb2 dataset with 5994 speakers as training data. Vox-
Celeb1 test set is taken into consideration as a validation set for
hyperparameter optimization. As follow the baselines [5] [6],
all models are trained using a standard Adam optimizer with
cyclical learning rates ranging between 1e-8 and 1e-3. Using
AAM-softmax with a margin of 0.2 and softmax prescaling
of 30 for 4 cycles, all systems are trained.

A. Dataset

We use the development part of the VoxCeleb 2 [18] as our
training set. This dataset contains over 1 million utterances
for 5,994 speakers extracted from YouTube. The MUSAN
[19] and RIR [20] datasets are used to generate extra samples
for online data augmentation. VoxCeleb1 [21] has three types
of evaluation trials, which are VoxCeleb1-O, VoxCeleb1-E
and VoxCeleb1-H. For fairness of comparisons, we keep
consistent with the ECAPA-TDNN and ECAPA CNN-TDNN
experiments and choose VoxCeleb1-O as the validation set,
this dataset contains 4,708 utterances from 40 speakers.

B. System Description

Both ECAPA-TDNN [5] and ECAPA CNN-TDNN [6] are
used as baseline systems in this study. We can describe the
proposed systems and the two baselines as follows:

• ECAPA-TDNN (Re-implemented): It follows the stan-
dard ECAPA-TDNN model from [5]. In the convolutional
frame layers, there are 1024 channels, and the number of
Res2Blocks is 3.
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TABLE I
EER PERFORMANCE OF THE ECAPA-TDNN (ET) AND ECAPA CNN-TDNN (ECT) BASELINE MODELS AND PROPOSED ARCHITECTURES ON
VOXCELEB1 TEST SET. PARAMETER s DEPICTS THE VALUE OF SCALE, g IS THE VALUE OF CARDINALITY, AND c IS THE NUMBER OF FILTERS.

Architecture Residual Units Setting No. Params(Million) EER(%) PRI-ET(%) PRI-ECT(%)

ECAPA TDNN [5](Re-implemented) Res2Net 8s×1024c 14.73 1.03
ECAPA CNN-TDNN [6](Re-implemented) ResNet 128c 27.54 0.97

Res2Net 4s×1024c 15.43 1.12 -8.7 -15.5
6s×1024c 14.96 1.07 -3.9 -10.3

Res2NeXt 4s×4g × 1024c 14.17 1.02 +0.97 -5.2
Extended ECAPA-TDNN 6s×8g × 1008c 14.06 0.94 +8.7 +3.1

8s×8g × 1024c 13.87 1.03 0 -6.2
ResNeXt 4g×1024c 16.00 1.12 -8.7 -15.5

6g×1026c 15.23 1.13 -9.7 -16.5
8g×1024c 14.87 1.29 -25.2 -32.99

Improved ResNet 128c 27.54 0.98 +4.9 -1.03
Res-TCN 128c 27.26 0.95 +7.8 +2.06
Res2Net 4s×128c 27.03 0.98 +4.9 -1.03

6s×128c 27.01 0.91 +11.7 +6.2
RCT-Net 8s×128c 27.01 0.94 +8.7 +3.1

Res2NeXt 4s×4g × 128c 26.99 0.97 +5.8 0
6s×8g × 144c 27.01 0.90 +12.6 +7.2
8s×8g × 128c 26.98 0.88 +14.6 +9.3

ResNeXt 4g×128c 27.12 1.11 -7.8 -14.4
6g×132c 27.48 0.97 +5.8 0
8g×128c 27.05 0.98 +4.9 -1.03

• ECAPA CNN-TDNN (Re-implemented): As proposed
in [6] four layers of CNN are employed as a front-
end for ECAPA-TDNN. Different from [6], we do not
increase the intermediate channel dimension and depth
in ECAPA-TDNN module, but the standard version with
3 SE-Res2Blocks and 1024 channels. This is for fair
comparisons with ECAPA-TDNN and the proposed RCT-
Net.

• RCT-Net: The standard ECAPA-TDNN with different
residual blocks as a front-end.

C. Training the speaker embedding extractors

The input features are 80-dimensional Mel-Frequency Cep-
stral Coefficients (MFCCs) extracted from a window length of
25 ms with a frame shift of 10 ms. Cepstral mean subtraction
is used to normalize the two second random cropping of the
MFCCs feature vectors. It is well known that data augmen-
tation has great benefits for neural networks. So, we use the
MUSAN (babble, music, noise, TV noise) corpora and the
RIR corpora (reverb) for online data augmentation to generate
five extra samples for each utterance. We apply SpecAugment
[22] as the last step of augmentation, this algorithm randomly
masks dimension of 10 and 8 in the temporal and frequency
dimensions, respectively.

TABLE II
DIFFERENT SETTINGS OF scale AND cardinality DIMENSIONS ON

MULTI-SCALE RESIDUAL BLOCKS

Residual Units Setting 1 Setting 2 Setting 3

Res2Net 4s 6s 8s
ResNeXt 4g 6g 8g
Res2NeXt 4s×4g 6s×8g 8s×8g

V. RESULTS

A performance overview of the baseline systems described
in Section II and our proposed architectures are summarized
in Table I. We extend the baseline speaker embedding models
by incorporating the proposed 1D and 2D convolutional stems
with various bottleneck residual blocks. We then evaluate the
Percent Relative Improvements (PRI) of the proposed models
with the ECPA-TDNN and ECAPA CNN-TDNN baselines.

Results show that in general almost all RCT-based combi-
nations (10 out of 11 combinations, i.e., around 91% of all
combinations) lead to an improvement over standard ECAPA-
TDNN. The results also demonstrate that all proposed models
with potential to perform better than their corresponding
baselines have fewer parameters. In the following, we analyze
the performance in more detail wrt. to system combination
constituents.

A. Variations in CNN stems representation

Further analyzing the results, we assume a competitive
threshold of EER=1, i.e., a high-performance system threshold
where the amount of falsely rejected and falsely accepted
speakers in an ASV system would be equally high, namely 1%.
Accordingly, as shown in Table I, while 87.5% of any ECAPA-
TDNN extension included in the experiments are above the
threshold of 1%, 91% of RCT-Net proposed models are below
it. We could therefore assume that overall the 2D convolu-
tional stems are more optimally suited for the representation
of speaker embeddings for ASV systems, compared to 1D
representations.

B. Dimension variations

Findings of prior benchmark experiments [4] imply that
scale is an effective dimension to enhance model performance.
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Moreover, scaling up is more efficient than other dimensions.
In general, this finding can be confirmed, as for most system
configurations s=4 results in inferior performance, compared
to higher values. However, rising the scale from 6 to 8 does
not always lead to gain. On this level, the overall performance
also depends on the remaining parameters c and g.

C. Multi-scale residual blocks

In terms of EER, the best model using Res2NeXt−8s ×
8g × 128c surpasses both ECAPA-TDNN and ECAPA CNN-
TDNN baselines by 14.6% and 8.7%, respectively. Remark-
ably, Res2NeXt−6s × 8g × 1008c even outperforms the
baseline, ResNet-128c, with only 51% of the number of
parameters in the model (see Table I). As shown in Figure 3,
for 1D representations the introduction of multi-scale blocks
in ResNeXt alone does not lead to any improvement. However,
when combining the advantages of it into the Res2NeXt
model, the performance significantly improves, i.e., by 8.7% -
a performance value even outperforming the ECAPA CNN-
TDNN baseline operating on a 2D representation in the
stem. For the RCT-Net based models, the introduction of
multi-scale blocks clearly improves the overall performance,
with only the exception of ResNeXt model with too small
scale settings discussed above. All models show significant
improvement, best of which improves performance by 14.6%
using a Res2NeXt block. Eventually, we can hypothesize that
the multi-scale feature setup greatly benefits from the 2D
convolution processing in the entrance of the stem.

VI. DISCUSSIONS

Based on our results, we can conclude that integrating 2D
Res2NeXt with TDNN is the best combination of two strong
structures of TDNN and residual blocks. As a result, in our
experiments representing features at multiple scales and con-
structing hierarchical residual-like connections within a single
residual block in dimensions of both scale and cardinality is
more performant than without or standalone dimensions of
either scale or cardinality. A possible explanation could be the
difference in the approach to obtaining multi-scale features in
different residual-based architectures. Res2Net, for example,
splits the original input into multiple groups according to
the channels. The output of one group is fed into the next
group, and so on, and all segments are concatenated as the
final result. On the other side, Res2NeXt, repeats a building
block that aggregates a set of transformations with the same
topology and expands the range of receptive fields for each
network layer, and depicts multi-scale features at a finer level.
Accordingly, by integrating hierarchical multi-scale feature
representation within the bottleneck module, the multi-scale
feature representation is improved at both the global and
local levels. Finally, in our experiment, the joint benefits of
a parallel stacking layer of ResNeXt rather than sequential
layers of standard ResNet architectures, multi-scaling features
in Res2Net, and expanding the range of receptive fields show
the potential to extract more invariant feature representations
in a joint Res2NeXt architecture.

Fig. 3. Impact of various scale and cardinality dimensions with different
settings as indicated in Table II. (a) ECAPA-TDNN based experiments, (b)
ECAPA CNN-TDNN based experiments.

VII. CONCLUSION

In this study, we adapt the frame-level layer architecture that
integrates multiple ideas motivated by the convolutional block
and multi-scale architectures. In our experiments, we evaluate
the performance of integrating different residual blocks into
TDNN-based structures. The best model using Res2NeXt im-
proves current state-of-the-art by 14.6% relative on VoxCeleb1
test set.

These promising findings motivate us to investigate hybrid
architectures in more detail and propose structures to reduce
computational complexity in our upcoming studies. We will
continue to evaluate the performance of various residual unit
types as we integrate them with the 2D ECAPA-TDNN repre-
sentation and explore several directions of multimodal fusion
approaches. We will also provide speech-level interpretation
of the proposed TDNN-based architectures for understanding
our models. This includes visualizing the acoustic concepts the
model has learned and comparing how they are represented
in the model layers using [23] [24], etc, and generalizing
our findings with more data utilizing additional datasets and
evaluation metrics such as Minimum Value of Detection Cost
Function (MinDCF).
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