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Abstract—Recently, Brain–Computer Interfaces for healthy
subjects have attracted considerable attention. Steady–State Vi-
sual Evoked Potential (SSVEP) has garnered particular attention
because it can be used by anyone without training. However,
SSVEP is mainly used for head measurements and is unsuitable
for daily measurements. We attempted to measure SSVEP via the
application of electrodes around the ears. The highest average
macro F–value was 45.33±16.84 %, and the highest average
Information Transfer Rate (ITR) was 13.86±13.21 bits/min with
the L2+R2 method. A comparison between electrodes 1–3 and
the head showed no significant difference, except in the occipital
area, and the combination of right and left electrodes around the
ear produced the same accuracy as that of the head.

Keywords—Steady–State Visual Evoked Potential (SSVEP);
Canonical Correlation Analysis (CCA); ear EEG.

I. INTRODUCTION

Recently, several efforts have been made to apply brain in-
formation to engineering. One example of such an application
is the Brain–Computer Interface (BCI), which is being actively
pursued, particularly in the medical and welfare fields. This is
because BCI can operate machines using only brain informa-
tion without the use of limbs and can be used to replace some
body functions. However, because devices for measuring brain
information are now commercially available at a relatively low
cost, research on BCI using healthy subjects has also attracted
attention. Many studies using brain information from healthy
subjects have reported using ElectroEncephaloGraphy (EEG),
among other methods to collect brain information.

Steady–State Visual Evoked Potential (SSVEP) is a type of
EEG that has attracted considerable attention for its applica-
tions. The frequency range of the SSVEP is wide, ranging from
1 to 100 Hz [1]. In 2006, a previous study [2] using Canonical
Correlation Analysis (CCA) to discriminate SSVEP detected
a higher discrimination accuracy than that obtained using the
conventional Fourier transform. This indicates that the analysis
of SSVEP is more accurate than the conventional Fourier

transform and that CCA is a useful method for analyzing
SSVEP.

One factor that has drawn attention in CCA is that it
does not require prior preparation, in contrast to analysis
methods using machine learning and other methods. In 2015,
Nakanishi et al. [3] reported the results of a comparison of
various analysis methods based on CCA. In 2021, Li et al.
[4] reported in a review article that there is a wide range of
analysis methods based on CCA and that CCA is superior as
a discrimination method for BCI using SSVEP.

Other EEGs used for BCI, such as the P300, generally
require prior training on the task and data collection for
machine learning. However, SSVEP does not require subject
training because it is an exogenous visual–evoked potential.
Therefore, SSVEP can exploit the previously mentioned ben-
efits of requiring no prior preparation. In addition, compared
to other EEG methods, SSVEP is easy to detect even when
the measurement time is short, and has a high Signal–to–Noise
ratio (S/N), rendering stable measurements relatively easy. In
2009, Parini et al. [5] reported that the Information Transfer
Rate (ITR), a BCI evaluation index, is excellent. Furthermore,
in 2017, Botani et al. [6] proposed an algorithm for a menu
selection interface with SSVEP using six different visual
stimuli, with an average correct response rate of 83.3 % and
an average ITR of 30.5 bits/min. In 2018, a robot control
method based on SSVEP, which can operate in virtual reality
space, was proposed by Stawicki et al. [7], with an average
correct response rate of 98.91 % and an average ITR of 32.00
bits/min.

As described above, BCIs using SSVEP have been actively
studied in various settings. However, most current reports are
based on head measurements using the international 10–20
method. Thus, electrodes must be applied to the scalp to
measure SSVEP when using these systems. In 2017, Wang
et al. [8] attempted to measure SSVEP in hairless areas such
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as the neck and behind the ears, and recently, ear EEG,
wherein electrodes are applied around the ears, has been
gaining popularity as a method for measuring SSVEP outside
the head.

In 2011, Looney et al. [9] proposed a method to measure
EEG signals from inside the ear, and in 2013, Kidmose et al.
[10] developed an earpiece–type EEG measurement device.
The signal measured inside the ear is also being investigated
to determine whether it is similar to an EEG signal. In 2016,
Zibrandsen et al. [11] used in–ear and on–head EEG to classify
sleep stages and reported 90.9 % accuracy in discriminating
between awake and REM sleep states.

However, the amplitude values of measurements inside and
around the ears are lower than those of head measurements,
and it is difficult to significantly improve the accuracy [12].
Here, we attempted to create a new signal by applying
electrodes to both ears and performing additive averaging of
EEG between the two ears. We expected the accuracy to
improve as a results of using this new additive averaging
method. In addition, we investigated the optimal location for
detecting SSVEP from electrodes affixed around the ears when
visual flashing stimuli are provided. The performance of the
BCI was examined by comparing the monopolar induction
electroencephalograms applied around the ears and the elec-
troencephalograms based on the additive averaging of the
electrodes around both ears.

The remainder of this paper is organized as follows. Section
2 describes the methods including experimental design and
EEG data recording. Section 3 describes the EEG data analysis
and evaluation methods. Section 4 presents the analytical
results obtained in this study. Based on the results, a discussion
of the binaural additive electrode method is presented in
Section 5. Finally, the conclusions are presented in Section
6 .

II. METHODS

A. Experimental Design

The subjects remained in a resting, sitting position. A
display (27 in.) was placed 50 cm ahead of the subject for
stimulus presentation. Stimuli were presented within 19.3° of
the visual field.

For the SSVEP elicitation task, a black–and–white square
(17 cm) was presented as a visual flashing stimulus on a
display in front of the subject (Figure 1). Four types of flashing
stimuli were selected in the low-frequency band [13] at 5,
7, 9, and 11 Hz, where high–amplitude values were easily
recorded in the SSVEP. The stimuli were presented in the
order described for 12 s with a 60 s rest between each stimulus
(Figure 2). The subjects were instructed not to blink except
for a minimum amount of blinking during the blinking stimuli,
and to rest their eyes sufficiently during the rest period. This
task was performed in one session, followed by two sessions
of SSVEP–evoked tasks.

Figure 1. Image stimulation in SSVEP-induced experiment.

Figure 2. Experimental protocol.

B. Data recording

BIO–NVX 52 (East Medic, Japan) was used to record the
biometric data with a temporal resolution of 2000 Hz. A
bandpass filter (0.50–70 Hz) was applied to eliminate noise.
The electrode positions were Oz, O1, and O2 based on the
extended 10–20 method [14]. The ground electrode was AFz
and the reference electrode was the average value of both
earlobes (A1 and A2). For the measurement around both ears,
electrodes were affixed at eight locations around each ear, with
the reference electrode for the electrode around the right ear
being the right earlobe (A2) and that for the electrode around
the left ear being the left earlobe (A1) (Figure 3(c, d)).

Figure 3. Electrode position.
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The subjects were 14 healthy males and females (10 males,
4 females, Mean±SD: 21.93±0.83 years) enrolled in universi-
ties and graduate schools. Subjects with visual acuity problems
were corrected to achieve normal vision. The subjects were
given a thorough explanation of the experiment and their
consent to participate was obtained. The experiment was
conducted after obtaining approval (H31-9) from the Ethics
Committee of Toyama Prefectural University.

III. DATA ANALYSIS

A. Pre–processing

In this experiment, each stimulus was measured for 12 s.
Time–series data for 10 s were obtained by excluding data
immediately after starting the stimulus presentation and data
for 1.0 s before ending the stimulus presentation. The 10 s data
were divided into ten segments with a time window of 1.0 s to
avoid overlap of the data used. A bandpass filter of 4–35 Hz
was applied. When performing additive averaging between left
and right electrodes, the difference in amplitude between the
electrodes may significantly affect the discrimination accuracy
of one of the two electrodes. Therefore, we employed a robust
z-score after applying the bandpass filter. The position of the
electrodes to be averaged was between the electrodes with the
same number of binaural peripheral electrodes, as shown in
Figure 3.

B. Analysis, discrimination method, and performance evalua-
tion

The waveforms used in CCA were sine and cosine waves of
the same length as the time window length, which were used
for comparison. The sine and cosine waves started at 5, 7, 9,
and 11 Hz, similar to visual stimuli. Those with frequencies
that were two or three times higher than the harmonics were
also used for discrimination. According to Bedard et al. [15],
EEG also elicits harmonics that are multiples of the frequency
of the visual–evoked stimulus. Therefore, using CCA without
considering harmonics in the SSVEP analysis may result in
them being classified as other frequencies [2]. Therefore, we
classified the doubled and tripled frequencies as the same
frequency as those provided as visual stimuli.

The Canonical Correlation Coefficient (CCC) calculated by
CCA was used to discriminate the EEG signals by creating
a 4×4– dimensional mixing matrix at 5, 7, 9, and 11 Hz.
For discrimination, CCC was calculated from the frequencies
of the four stimuli per data–set, and the highest CCC was
predicted as the given stimulus. The discrimination index using
this mixed matrix was evaluated by calculating the macro
F–value, which is the average of the F–values of each of the
four stimuli.

ITR was proposed by Wolpaw et al. [16], where N is the
number of discriminations, P is the percentage of correct
responses, and t is the time required per trial (min).

The calculated CCCs, macro F-value, and ITR were com-
pared between the left and right additive electrodes and the
left and right unipolar electrodes by performing a Friedman
test using the Bonferroni method in the EZR software [17].
The significance level for this study was set at p = 0.05.

Figure 4. Canonical Correlation Coefficient of each position (Mean±SD).
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Figure 5. Macro F–value of each position (Mean±SD).

IV. RESULTS

A. Canonical correlation coefficient

The mean value of CCC was the highest at L2+R2,
0.37±0.06 (Mean±SD). Comparisons were made between the
left, right, and added electrodes. Significant differences were
found for electrodes 1, 2, and 3 as well as between the
electrodes (Figure 4).

B. Macro F–value and ITR

Figure 5 shows the macro F–value results. The highest mean
value was obtained for the L2+R2 electrodes (45.33±16.84
%). Comparisons were made between the left, right, and

Figure 6. ITR of each position (Mean±SD).

added electrodes. Significant differences were found between
electrodes 3, 5, 6, and 8 as well as between electrodes.

The highest mean ITR value was observed for L2+R2, at
13.86±13.21 bits/min. Comparisons were made using elec-
trodes of the same number on the left, right, right, and left
sides. The results showed a significant difference between the
two electrodes at the 2– and 3–number electrodes (Figure 6).

V. DISCUSSION

In a previous study, Sun et al. [18] attached electrodes to
the mirror legs of glasses and acquired data from the upper
part of each ear. Data from the left and right ears were treated
as separate signals with unipolar induction and were classified
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Figure 7. Macro F–value and ITR of change time window. (Mean).

using CCA. Thus, one stimulus of four different frequencies
was presented on the screen, which was similar to the present
study in terms of the presentation of visual stimuli. The results
of the experiment by Sun et al. [18] showed that the estimated
correct response rate for the gazing stimulus was 32.75 %
when a simple CCA without prior learning was applied using
a window length of 1.0 s. However, the estimated correct
response rate increased to 43.75 % when the method was
pre–trained with the participants’ data. The estimated correct
response rate based on binaural additive averaging in this study
was 45.33 %, which is equivalent to that of the pretraining
method proposed by Sun et al. [18]

Conventional CCA does not require prior learning, which is
an advantage; however, Time–’Weighting Canonical Correla-
tion Analysis (TWCCA) with prior learning reported by Sun
et al. [18] boasts an accuracy equivalent to that of the present
study, although it is a monopole induction. Therefore, further
improvements in the accuracy of binaural additive averaging
data can be a chieved by employing methods such as TWCCA
and msetCCA [21], which perform prior learning.

We performed binaural additive averaging using only elec-
trodes attached to the corresponding positions on the left and
right sides of each ear. However, it has been reported that the
accuracy of stimulus estimation also improves when multiple
electrodes are used for binaural additive averaging using only
electrodes in one ear [22]. From the above, we believe that
by selecting areas with high CCCs and exhaustively applying

various additive averaging methods in both ears, rather than
between the corresponding positions on the left and right,
electrode combinations that still improve the accuracy can
be determined. In this study, the highest CCC was R3 for
the right periapical electrode only, whereas L2+R2 was the
highest when additive averaging was applied to both periapical
electrodes. In ITR, R3 was the highest at 8.25±10.45 bits/min
for the right periapical electrode alone, and L2+R2 was the
highest at 13.86±13.22 bits/min when the bilateral periapical
electrodes were added and averaged.

The results of the analysis with different time–window
lengths showed that the F–value increased with the window
length (Figure 7). In the occipital lobe area (Oz, O1, O2), a
prominent peak was observed at a window length of 1 s in
ITR. However, in the case of binaural additive averaging, ITR
was not larger at a window length of 1 s.

In this experiment, only one type of flashing stimulus was
presented, and there was a discrepancy with the actual use of
the BCI. Therefore, in the future, we would like to measure
and analyze SSVEP when two or more different flashing
stimuli are simultaneously presented. In particular, the SSVEP
component can change depending on the visual attention. By
including the covert SSVEP [23], which does not involve eye
movement, we can expect to detect visual attention in the
ear’s vicinity of the ear, which is impossible with eye–tracking
devices. In such research, it is also imprtant to attach the elec-
trodes easily. In the future, we will develop an earpiece–type
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sensor device to measure the electroencephalograms around
the ear.

In this study, we included subjects who were younger in age.
Previous studies have reported [24] an increase or decrease in
accuracy with age, and the age range considered in this study
was the one reported to exhibit high accuracy. In the future,
it will be necessary to investigate whether the same level of
accuracy can be achieved in older subjects by using periapical
electrodes.

In addition, as mentioned above, when the number of sub-
jects is increased, the accuracy converges in case the subjects
are of the same age; therefore, the electrode addition method
and the position of the attachment may be briefly discussed.
However, the accuracy of SSVEP has been observed to change
with age. Moreover, the change in accuracy when subjects
are randomly selected is uncertain. Therefore, dividing the
subjects into groups based on factors that affect accuracy, such
as age, may aid in improving the accuracy of SSVEP around
the ear.

VI. CONCLUSION

Although BCIs have been extensively studied in healthy
subjects, it is difficult to apply electrodes to the head of a
single person. In this study, eight electrodes were applied
around each ear and the potential activity induced by SSVEP
was discriminated using CCA. To improve the accuracy,
new waveforms were derived by adding and averaging the
time–series data between the electrodes attached to the target
sites in both ears and were compared with the single electrode
results for the periapical electrodes.

The L2+R2 electrode exhibited the highest mean CCC of
0.37±0.06, with Macro F–value of 45.33±16.84 % and ITR of
13.86±13.21 bits/min. The CCC at L2+R2 was significantly
higher than that at L2 and R2 monopoles. The CCC at other
sites was also significantly higher for the additive electrodes
than for the monopoles. In addition, when comparing the
head and additive electrodes around the ears, there was no
significant difference in the macro F–value for electrodes 1–3,
and no significant difference in the ITR was observed only for
Oz and L4+R4. In the future, we will examine the detailed
electrode placement, time window length, and algorithms to
improve the accuracy of measurements around the ear.
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