
Compression via Partial Pseudo-Randomization of
Convolutional Neural Networks Under High

Memory Constraints
Florent Crozet

STMicroelectronics
Grenoble, France

email: florent.crozet@st.com

Stéphane Mancini
Univ. Grenoble Alpes, CNRS, Grenoble INP, TIMA

Grenoble, France
email: stephane.mancini@univ-grenoble-alpes.fr

Marina Nicolas
STMicroelectronics
Grenoble, France

email: marina.nicolas@st.com

Abstract—With the proliferation of convolutional neural net-
work (CNN)-based computer vision solutions, computing infer-
ence on smart sensors has become a challenge. The inference
of CNN is difficult to embed in such tiny devices due to the
constraints on memory. To address this challenge, we propose
a compression method able to reduce the number of weights
to store in a structured way, so that the gain in the number
of weights comes with a gain in the number of computations
at inference. Our solution is based on the replacement of the
convolutional filters by a linear combination of some stored
filters and a set of seeds corresponding to pseudo-random
generated filters. During the inference, pseudo-random number
generators are used to compute the non-stored filters, thanks to
the associated seeds. On the other side, the linear combination
allows mutualizing partly the cost of convolutions. We show that
further exchanging memory for a small logic cost to generate
the pseudo random filters allows to decrease the number of
weights significantly, on several state-of-the-art networks without
sacrificing the accuracy. For example, applying this method to
CNNs like ResNet50 leads to a compression factor of 2.5 for less
than 5% accuracy drop. Furthermore, our method is compatible
with compression methods targeting the precision of the weights
to store, namely quantization. This gives room to further increase
compression gain on specific implementation platforms.

Keywords—Convolutional Neural Network compression, pseudo-
random number generators

I. INTRODUCTION

Computer vision applications widely use convolutional neu-
ral networks to achieve several vision tasks. The accuracy of
Convolutional Neural Network (CNN) drives the development
of these applications, but the memory usage is rarely taken
into account leading to a difficult deployment on embedded
devices.

To improve their performance, CNNs keep increasing the
number of weights they use. With ResNet50 [1] and its 25M
weights or ConvNeXt-XL [2] and its 350M weights, the goal
is to get the best accuracy, but without taking into account
any other constraint, such as memory usage. For an embedded
device, the memory and the computational resources are the
key factors impeding the deployment of state-of-the-art CNNs
in IoT devices.

As well as occupying a significant part of circuit die surface,
the memory also has a high energy consumption due to the

memory accesses. The high number of weights to store to
achieve a CNN inference leads to use a device with high mem-
ory capabilities. But smart sensors used for computer vision
applications are rather tiny, with limited memory capability
and power consumption.

To address the problem, different compression algorithms
have been proposed. Most methods either reduce the memory
requirement by reducing the precision of the weights [3] or
by reducing the number of weights [4]. Several methods just
compute what is possible to do and the accuracy loss, but
do not speak about memory, like unstructured pruning where
the goal is just to get a sparse CNN. Sparse neural network
compression has the drawback that the decompression of the
CNN produces a tensor requiring several operations with many
zeros processing convolutions.

In this article, we propose a new compression method for
CNNs where some weights are stored in the memory, while
the others are generated from stored seeds in a pseudo-random
process during the inference. Replacing memory access by
on-the-fly generation with pseudo-random generators actu-
ally leads to a lower consumption. The identification of the
weights to store and the weights to regenerate relies on a
dimensionality reduction method, the Principal Component
Analysis (PCA). The PCA allows the decomposition of each
convolutional tensor in the CNN in a linear combination, with
an ordering of vector importance. Most significant vectors
are stored while the least significant are pseudo-randomly
generated. This compression method comes not only with a
memory gain, but also with a gain in hardware logic as the
original convolution can be replaced by a double convolution
solution.

The article starts with a brief overview of convolutional
neural network compression methods and the usage of random
weights in neural networks. Then, our compression method
with the randomization is described in Section 3. The impact
on inference is described in Section 4. The Section 5 discusses
the performance obtained when our method is applied to
several convolutional neural networks. Finally, the article ends
with some perspectives to capitalize further on this new
compression method for CNNs.

24Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

II. RELATED WORK

Our work is at the intersection of the following two topics:
the compression of CNN and the use of random weights in
neural networks. CNN compression directly serves our goal as
it reduces the memory use. On the second topic, most works
focus on evaluating the impact of introducing random weights
in CNN with no compression goal.

A. CNN compression

CNN compression techniques are widely studied through
two main approaches: the reduction of the precision of the
weights, thanks to quantization, or the reduction of the number
of the weights, thanks to pruning or dimensionality reduction.
Both approaches aim at reducing the memory usage of CNN,
and they can be combined to further increase the compression
gain.

a) Quantization: This approach focuses on reducing the
precision of the weights. As deep learning frameworks work
with Floating point on 32 or even 64 bits, this precision of
the weights can be reduced to be used on embedded devices.
Quantization is a relatively mature topic in CNN compression,
whether it is INT quantization [5] or Binary quantization [6].
Our work firstly focuses on reducing the number of parameters
before considering quantization.

b) Pruning: This approach reduces the number of
weights to store by removing less significant weights. The
goal is to get a high sparsity percentage in the set of weights.
Pruning techniques can be separated into two types: the
unstructured pruning [7], that sets weights to zero, and the
structured pruning [8], that sets filters to zero. The sparse
matrices of weights are then stored, with efficient encoding
techniques like Huffman coding [9], and decompressed on
the embedded devices to do the inference. Despite high
compression results, the pruning remains difficult to embed on
tiny devices as the decompression stage requires high specific
computational capability. So the memory gain does not come
with a logic gain.

c) Dimensionality reduction: By finding a new repre-
sentation of the weights in a lower dimensional space, this
approach reduces the number of weights to store. This can
be a linear decomposition, such as PCA [10], separable filters
[11] or sparse decomposition [12]. Our approach will use the
PCA as a part of the compression pipeline.

B. Neural networks with random weights

The use of random number in convolutional neural networks
is reported in two main topics: Extreme Learning Machine
(ELM) [13] and random neural networks.

ELM algorithm proposes a learning method where the first
layers of neural networks are randomly initialized and fixed,
and the last layer is learned with a pseudo-inverse method.
The algorithm is applied to neural networks [14] and CNNs
[15] [16]. In CNNs, the random weights are introduced in
the convolutional layers only. These layers representing the
major proportion of the weights, so saving from memory
will bring tinier memory. However, as mentioned in [17],

the accuracy of the models are significantly degraded when
the computer vision task becomes more complex. The use of
random weights, for the ELM, is therefore restricted to simple
vision tasks. In our application we cannot make assumption
about the task complexity.

The neural networks with random weights present better
results than ELM on similar tasks. The method differs in
the training part, for example in [18] the neural networks is
partially trained, after a random initialization of the weights,
only some of them are trained. The challenge is to evaluate
the proportion of the weights that need to be trained. Another
approach described in [19] relies on searching a subnetwork
inside an initially over-parameterized and randomly initialized
CNN. Most other works focus on Neural Architecture Search
(NAS), with the idea of finding the weights that must be
trained.

However, these approaches are different from ours as we
do not start with a from-scratch CNN. Our method capitalizes
on the information present in the trained CNN. Despite this,
the use of random weights for compression purpose becomes
an interesting option as such pseudo-random weights can be
generated from the seeds.

III. RANDOMIZATION METHOD

To compress CNNs, our method replaces the filters’ tensor
of each convolutional layer with a set of principal filters, a set
of coefficients and a set of seeds. This process allows saving
memory as the seeds are used to generate pseudo-random
filters at the inference. To compute these elements, the filters’
tensor is processed in three steps. The first step decomposes
the tensor in a linear combination made of the principal basis
and a set of coordinates in this basis with a PCA and an energy
threshold processes. Secondly, the pseudo-randomization step
replaces a part of the vectors of the principal basis by pseudo-
random vectors and their associated seeds. The pseudo-random
vectors are chosen, so they do not degrade the accuracy of the
CNN significantly. Lastly, the set of coordinates is retrained
in order to recover accuracy.

A. General Notations

Starting from a learned CNN, each convolutional layer can
be described with the following notations:

• T: The tensor of the convolutional layer of dimensions
(kernelh, kernelw, cin, cout).

• W: The matrix of the convolutional weights, where
each column represents a flattened filter of dimensions
(kernelh ∗ kernelw ∗ cin). The matrix is composed of
cout columns.

The method introduces the filter decomposition in several
vector subspaces. In order to reduce the number of notations,
each vector subspace is associated to its basis. To differentiate
each basis, we use the following notations:

• BPCA: The basis produced by the PCA step. BPCA =
{b1, ..., bcout}, such that rank(BPCA) = cout. The bi,
with i ∈ {1, ..., cout}, corresponds to the eigenvectors
arranged in decreasing order of importance.

25Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

• BT : The basis produced after the energy thresholding
step. BT = {b1, ..., bt}, such that rank(BT) = t with
t ≤ cout.

• BE : The basis of the e first eigenvectors of BT that will
be stored. So BE = {b1, ..., be} with e ≤ t.

• BR: The basis of the pseudo-random vectors {r1, ..., rg}.
Each ri is generated from the seed si, such that Seeds =
{s1, ..., sg}.

• BS :The basis composed of BE and BR corresponding to
an approximation of the vector subspace BT .

To represent the weights in the different bases defined
previously, we use the following notations:

• CPCA: The coordinates of the weights W in BPCA.
• CT : The coordinates of the weights W in BT .
• CS : The coordinates of the weights W in BS .
• CSL: The new representation of the weights W in BS

once the retraining step is done.
The following methods will be used for the pseudocode of

the algorithm:
• ToMatrix(T): Method to transform the tensor T in the

matrix W.
• ZeroCenter(W): Method for zero-centering the matrix W.
• PCA(M, Ethreshold): Method to compute the PCA of the

matrix W followed by pruning the eigenvector below the
energy threshold Ethreshold.

• RandOrtho(): Method to iteratively build the random
basis BR.

B. Method overview

Figure 1. Compression method flow, the CNN passes through the three
steps: PCA, pseudo-randomization of weights and partial retraining to be
compressed.

The method, described in Figure 1, compresses each con-
volutional layer of a CNNs one after the other. The goal
of the compression algorithm described in Algorithm 1 is to
approximate the vector subspace BT by finding another vector
subspace, BS , defined by the concatenation of filters from BE

and pseudo-random filters from BR. By replacing eigenvectors

for ConvLayer in Model do
T ← GetWeights(ConvLayer)
W ← ToMatrix(T)
Wc ← ZeroCenter(W)
BT , CT ← PCA(Wc, EThreshold)
BE ← KeepFirstEigenvectors(BT)
BR, Seeds← RandOrtho()
Model← SetNewWeights(BE , BR, CS)

end for
BE , BR, CSL ← ReTrainCoef(BE , BR, CS)
for ConvLayer in Model do

Save(BS , Seeds, CSL)
end for

Figure 2. Algorithm for the replacement of eigenvectors by random filters.

of BT by pseudo-random vectors, we want to get a maximum
overlap, such that:

BR = argmaxBT ∩BS (1)

Starting from a trained CNN, a principal component analysis
and an energy threshold are done in step 1⃝ to get an efficient
representation of the weights, with the basis BT . Then step 2⃝
replaces some filters in BT by pseudo-random filters in BR

to further reduce the weights to store. The retraining step 3⃝
corrects the coordinates CS to reduce the error. Finally, three
elements are stored:

• A subset of PCA basis: BS

• The Seeds to generate the pseudo-random filters
• The new representation of the weights in BS : CSL

C. PCA and energy threshold

The first step performs the PCA linear decomposition and
energy thresholding of W to get a lower dimensionality
representation of the weights. As in [10], the idea is to store
the PCA linear decomposition of the weight matrix W to save
memory.

The linear decomposition is obtained by the principal com-
ponent analysis:

W = CPCAB
T
PCA + µ (2)

With CPCA being the coordinates of the weights W in the
basis BPCA and µ the means of W .

Once the eigenvectors are computed, we can lighten the
linear combination by performing an energy thresholding
step with a threshold Ethreshold. Only the eigenvectors of
energy below the threshold Ethreshold are kept, the others
are pruned. The threshold is chosen according to the defined
accuracy/performance trade-off. As the goal is to embed state-
of-the-art CNNs, we will not keep a high energy threshold
value, such as 99%, but use a lower one, such as 70%, to get
a more aggressive memory reduction while preserving a good

26Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

accuracy. BT is built with the kept eigenvectors, and we define
an approximation of W , W̃ , such that:

W̃ = CT .B
T
T + µ (3)

where BT a subset of the eigenvectors of W and CT the
coordinates of W in BT .

Memory is saved since the size of CT and BT are lower
than the size of W .

D. Pseudo-randomization of the basis BT

The purpose of the second step is to replace some filters
of BT with pseudo-random filters in order to further alleviate
the storage of the CNN weights, as a part of the filters will
be replaced by their corresponding seeds. To address this,
pseudo-random filters are chosen in order to build a vector
subspace close to the original one, as described in the next
paragraphs. The approximated vector subspace W̃ is built by
concatenating the selected pseudo-random vectors and BE .
The set of pseudo-random filters BR will be generated at each
inference from the stored seeds.

As the CNN performance will depend on the number of
randomized basis filters, there is a trade-off between the
number of filters from BT and pseudo-random generated ones.
An arbitrary number e of BT filters are kept to build BE .
Additional to these filters, g filters are randomly generated to
build BR. In order to ensure the generated filters span BT , to
preserve dimensionality and remove redundancy, the basis BS

must verify the following rules:

BT ∩BS ̸= {0} (4)

and
rank(BS) = e+ g (5)

e and g are set according to the wanted trade-off. In section
5, several values are tested to show the impact of these
parameters on the accuracy of the CNN and the compression
gain. We detail two ways of building BR in the following
paragraphs.

1) Basis-wise construction: We want to minimize the dis-
tance between the vector subspaces BT and BS . To do so,
the adopted strategy consists of selecting the ri, based on the
Grassmann distance [20]:

min
BR

GrassmannDistance(BT , {BE , BR}) (6)

By evaluating the distance between the two equidimensional
vector subspaces BT and BS , the set BR that lowers the
distance will be chosen, and the seeds that generate the
corresponding set of filters will be saved. The method gives
us control only on the entire set BR and not on each filter.

2) Filter-wise construction: To improve the selection filter
by filter, an iterative method is proposed. The idea is to find a
random filter approximation for each eigenvector we want to
replace. The selection is achieved through the criterion:

min
rk

GrassmannDistance({BE , bi}, {BE , rk}) (7)

with k ∈ {1, ..., g}, and for i ∈ {e + 1, ..., p} eigenvectors
replaced.

The selected pseudo-random filter rk is added in the basis
BR and the associated seed is saved in Seeds. Iteratively, we
construct BR and Seeds in order to control each filter we add.
The results presented in the Section 5 are based on the second
approach.

Once the basis BS containing BE and BR is built, the new
approximation of the weights W̃ in the vector subspace BS is
computed:

W̃ = CS .B
T
S + µ (8)

The pseudo-randomization alleviates the needed storage for
each convolutional layer as it replaces memory by on-the-fly
generation at the inference.

E. Retraining and storage

The final step deals with the retraining. The purpose of this
step is to correct the new representation of the weights in
the vector subspace BS . Once the retraining is done, each
convolutional layer has a compressed version that is stored.

As BE and BR computed during the previous steps define
the directions of the vector subspace BS , they stay fixed. We
will only train the coefficients CS to correct the error of the
representation and recover from the accuracy drop of the CNN.
The retraining process returns CSL which are the coefficients
corresponding to the learned representation.

Once the retraining has ended, for each convolutional layer,
we store the following elements:

• the set of principal filters: BE , representing a subset of
the eigenvectors of W .

• The coefficients: CSL representing the new coordinates
of the weights W in the vector subspace BS .

• The seeds: Seeds, used to generate the pseudo-random
filters of BR at inference time.

IV. INFERENCE

The linear combination provided by the method also reduces
the inference computational cost. The computation of each
convolutional layer can be performed without recomputing
W̃ . In order to save computational cost, we use a two-stage
convolution solution.

Indeed, the computation cost of W is heavy and can be
avoided. The convolution can be performed as followed:

fout = (CSL ∗BS) ∗ fin = CSL ∗ (BS ∗ fin) (9)

The input features maps fin will be computed with the
principal filters and the generated pseudo-random filters in
the first convolution to get intermediate features maps. And
then, the second step will do a 1x1 convolution between the
intermediate features maps and the coefficients to get the
output features maps fout.

By modifying slightly the architecture of the CNN as shown
in Figure 3, the gain in memory comes with a computational
saving.

27Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

Figure 3. Architectural modification for the inference, the convolution operation is replaced by a two-convolutions solution to avoid computing the approximation
of the weights.

V. RESULTS

We experiment of Cifar10 dataset with three state-of-the-
art CNNs: VGG16, ResNet50 and MobileNetV2. We start the
section defining the figures of merit and the parameters used to
make the comparison between our method, one unstructured
pruning method and a PCA compression. The results are
presented in Figure 3 for the compression gain and in Figure
4 for the computational cost.

A. Figures of merit

1) Compression gain: To represent the memory gain of our
method, we compute the ratio between the number of weights
in the baseline CNN (#W) and the number of weights in the
compressed version. We define the following figure of merit:

GCompression =
#W

#F +#S +#C +#O
(10)

Where #F is the number of weights in the principal filters,
#S is the number of seeds, #C is the number of coefficients
and #O the number of the weights in fully-connected layers
of the CNN.

2) Computational cost: To represent the computational
cost, we compute the number of Multiply And Accumulate
(MAC) operations. The number of MAC per convolution layer
can be computed as followed:

k2size.cin.hout.wout.cout (11)

where ksize is the size of the convolutional kernel, cin the
number of input channels, hout and wout the dimension of the
output features maps and cout the number of output channels.
For our method, the number of MAC per convolution can be
computed as followed:

k2size.cin.hout.wout.t+ 12.t.hout.wout.cout (12)

with t the number of filters in BS .
3) Number of principal filters kept e: To introduce pseudo-

random filters in the CNN, we firstly define BE . This basis
contains the e kept eigenvectors. In order to define the param-
eter e for each convolutional layer, we use the parameter p:
the percentage of principal vectors.

e = ⌊t.p⌋ (13)

The number of pseudo-random filters g can also be defined
with e:

g = t− e (14)

We experiment with three different values of p: 0.75, 0.50 and
0.25.

B. Compression methods used in the benchmark

As our method is focusing on the reduction of the number
of weights in the CNN, we compare it to other compression
methods.

The first one is an unstructured pruning approach based on
the magnitude of the weights described in [21]. The pruning
method uses the sparsity metric to measure the proportion
of zero weights. In our experiments, the sparsity is set to
80% meaning that only 20% of the weights are non-zero
values. We cannot express the compression gain from the
sparsity metric as the sparse matrices have to be stored with
an encoding technique. In our benchmark, compressed sparse
column algorithm is used to allow counting the number of
stored weights and compare pruning with our method.

The second approach is a dimensionality reduction based on
PCA [10]. As our method is based also on this dimensionality
reduction technique, the comparison is more straight forward.
In the PCA approaches, two matrices are stored per layer, and
the number of weights is easily countable. The comparison is
done using the same energy threshold: 70%, so we directly
compute the gain of replacing some basis filters by random
ones.

C. Neural networks experiments

1) VGG16: We start evaluating the performance of our
method on VGG16. We use a modified version of TensorFlow
VGG16, where we reduce the fully-connected layers and the
last three convolutional layers to alleviate the training and
keep only 7.7 millions weights in our test version. The neural
network achieves 82.08% accuracy on Cifar10.

As shown on Figure 4, our method allows us to divide
by 11 the number of stored weights to perform an inference
with less than 7% error. It also allows tuning the compromise
between loss and memory gain, depending on the hardware
constraints. We get a low accuracy degradation with p=75%
and p=50% where the error is below 5%. The proposed
trade-offs drastically decrease the number of stored weights

28Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

1 3 5 7 9 11
74

76

78

80

82

84

Compression gain

A
cc

ur
ac

y
%

VGG16

1 1.5 2 2.5 3 3.5 4
75

80

85

90

95

Compression gain

ResNet50

1 1.5 2 2.5 3 3.5 4
80

85

90

95

Compression gain

MobileNetV2

BASELINE PCA PRUNING p = 0.75 p = 0.50 p = 0.25

Figure 4. Compression gain/accuracy for VGG16, ResNet50 and MobileNetV2. We test our method with three different values for p: 0.75, 0.5 and 0.25. We
compare the results to PCA compression and unstructured pruning with 80% sparsity.

1 2 3 4 5 6 7
0

1

2

3

4
·107

Conv layer

M
A

C
s

VGG16

1 2 3 4 5 6 7
0

1

2

·108

Conv layer

ResNet50

1 2 3 4 5 6 7
0

1

2

·107

Conv layer

MobileNetV2

BASELINE DOUBLE-CONVOLUTION SOLUTION

Figure 5. Computational cost for VGG16, ResNet50 and MobileNetV2. The computational cost is the same for each value of p as the number of filters t
remains constant.

compared to original PCA and pruning with an acceptable
accuracy loss. For each convolutional layer, the use of the
double-convolution solution also reduces the computational
cost to the same extent. For VGG16, the number of MAC is
divided by 4. So, compared to the pruning method where the
computational cost is similar to the baseline, without including
the decompression cost, our method brings another advantage
to the memory saving.

2) ResNet50: We then examine the performance of our
compression algorithm on ResNet50. We use the TensorFlow
ResNet50 version with two fully-connected layers. It contains
25M parameters and achieves 94.60% accuracy on Cifar10.

The use of our method allows us to divide by more than 3
the number of stored weights to perform an inference with
15% error. The accuracy loss is higher when p decreases,
but the compression gain is increased compared to PCA or
Pruning. For p=75%, the loss degradation remains inferior to
5% with an improvement for the compression gain compared
to PCA. For inference, the computational cost is divided by

more than 3 with the double-convolution solution, as shown
in Figure 5.

3) MobileNetV2: We finally examine the performance of
our method on MobileNetV2. We use the TensorFlow Mo-
bileNetV2 version where we modify the output layer to get
10 neurons. It represents 2.2M weights and achieves 91.8%
accuracy on Cifar10.

MobileNetV2 is already optimized for achieving embedded
computer vision tasks with a particular architecture. We ap-
ply our method on the convolutional layers, except on the
separable depthwise convolutions. With our method, we can
still reduce the number of stored weights by more than 2
without degrading the accuracy. The retraining step becomes
an important part of the method for this network, our method
controls the learning rate to ensure the convergence of the
retraining. Our method provides a powerful tool for the com-
pression gain but also for the computational saving, the use
of the double-convolution solution reduces the computational
cost, by a factor of 1.5.

29Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

4) Accuracy consideration: On some cases, mainly for
p=25%, the accuracy degradation is higher than 5%. For
classification purpose this accuracy loss may be difficult to
overpass, however, on other tasks it could still be acceptable.
For example, in detection tasks where we would target a low
number of false negative rather than high accuracy level.

VI. CONCLUSION AND FUTURE WORK

We have introduced a new compression method that reduces
the number of weights to store, and with a slight CNN archi-
tecture modification, it also reduces the computational cost at
inference. Our method introduces pseudo-random weights in
CNN and generates them when an inference is performed.
Through the experiments, the method has been validated
successfully on several CNN architectures, always improving
the compression gain. We can exchange memory cost for less
expensive pseudo-random numbers generator logic on low cost
integrated circuits, allowing the embedding of convolutional
neural networks in constrained cases.

With our method, we address only one topic in the CNN
compression: reducing the number of weights to store. Our
next research will focus on improving our solution by reducing
the precision of the stored weights, to further reduce memory
use. Our method can be combined with integer quantization,
both to further reduce the memory needed to achieve an
embedded inference and to reduce the cost of the pseudo-
random generation part.

REFERENCES

[1] R. Wightman, H. Touvron, and H. Jégou, “ResNet strikes back: An
improved training procedure in timm”, NeurIPS 2021 Workshop on
ImageNet: Past, Present, and Future, 2021.

[2] Z. Liu et al., “A ConvNet for the 2020s”, 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), New Orleans, LA,
USA, 2022, pp. 11966-11976, doi: 10.1109/CVPR52688.2022.01167.

[3] B. Jacob, “Quantization and Training of Neural Networks for Efficient
Integer-Arithmetic-Only Inference”, 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
2018, pp. 2704-2713, doi: 10.1109/CVPR.2018.00286.

[4] I. Garg, P. Panda, and K. Roy, “A Low Effort Approach to Structured
CNN Design Using PCA”, in IEEE Access, vol. 8, pp. 1347-1360, 2020,
doi: 10.1109/ACCESS.2019.2961960.

[5] Y. Yao, B. Dong, Y. Li, W. Yang, and H. Zhu, ”Efficient Implementa-
tion of Convolutional Neural Networks with End to End Integer-Only
Dataflow,” 2019 IEEE International Conference on Multimedia and Expo
(ICME), 2019, pp. 1780-1785, doi: 10.1109/ICME.2019.00306.

[6] W. Zhao, T. Ma, X. Gong, B. Zhang, and D. Doermann, ”A Review of
Recent Advances of Binary Neural Networks for Edge Computing,” in
IEEE Journal on Miniaturization for Air and Space Systems, vol. 2, no.
1, pp. 25-35, March 2021, doi: 10.1109/JMASS.2020.3034205.

[7] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both Weights and
Connections for Efficient Neural Networks”,In Proceedings of the 28th
International Conference on Neural Information Processing Systems -
Volume 1 (NIPS’15). MIT Press, Cambridge, MA, USA, 1135–1143.

[8] S. Srinivas, and R. Venkatesh Babu, “Data-free parameter pruning for
Deep Neural Networks”, oRR abs/1507.06149 (2015): .

[9] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding”, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, 2-4 May 2016.

[10] L. F. Brillet, S. Mancini, S. Cleyet-Merle and M. Nicolas, ”Tunable
CNN Compression Through Dimensionality Reduction,” 2019 IEEE
International Conference on Image Processing (ICIP), 2019, pp. 3851-
3855, doi: 10.1109/ICIP.2019.8803585.

[11] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, ”Learning Separable
Filters,” 2013 IEEE Conference on Computer Vision and Pattern Recog-
nition, 2013, pp. 2754-2761, doi: 10.1109/CVPR.2013.355.

[12] X. Yu, T. Liu, X. Wang and D. Tao, ”On Compressing Deep Models
by Low Rank and Sparse Decomposition,” 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 67-76, doi:
10.1109/CVPR.2017.15.

[13] Guang-Bin Huang, Qin-Yu Zhu and Chee-Kheong Siew, ”Extreme
learning machine: a new learning scheme of feedforward neural net-
works,” 2004 IEEE International Joint Conference on Neural Net-
works (IEEE Cat. No.04CH37541), 2004, pp. 985-990 vol.2, doi:
10.1109/IJCNN.2004.1380068.

[14] L. Kasun, H. Zhou, G. -B. Huang, and C. Vong, (2013). ”Representa-
tional Learning with ELMs for Big Data”, IEEE Intelligent Systems.
28, pp 31-34.

[15] G. -B. Huang, Z. Bai, L. L. C. Kasun and C. M. Vong, ”Local Receptive
Fields Based Extreme Learning Machine,” in IEEE Computational
Intelligence Magazine, vol. 10, no. 2, pp. 18-29, May 2015, doi:
10.1109/MCI.2015.2405316.

[16] S. Pang and X. Yang, (2016). Deep Convolutional Extreme Learn-
ing Machine and Its Application in Handwritten Digit Classifi-
cation. Computational Intelligence and Neuroscience. 2016. 1-10.
10.1155/2016/3049632.

[17] C. Gallicchio and S. Scardapane, “Deep Randomized Neural Networks”,
in Recent Trends in Learning From Data. Studies in Computational
Intelligence, vol 896. Springer, Cham. doi: 10.1007/978-3-030-43883-
8 3.

[18] A. Rosenfeld and J. K. Tsotsos, “Intriguing Properties of Randomly
Weighted Networks: Generalizing While Learning Next to Nothing”,
arXiv e-prints, 2018.

[19] V. Ramanujan et al., “What’s Hidden in a Randomly Weighted Neural
Network?”, 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), Seattle, WA, USA, 2020, pp. 11890-11899,
doi: 10.1109/CVPR42600.2020.01191.

[20] K. Ye and L.-H. Lim, “Schubert varieties and distances between sub-
spaces of different dimensions”, SIAM Journal on Matrix Analysis and
Applications. 37, pp 1176-1197, 2014, 10.1137/15M1054201.

[21] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression”, CoRR abs/1710.01878 (2017): .

30Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

