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Abstract—The goal of this paper is to refine the solution of the
Error Reduction Ratio (ERR)-based method for nonlinear system
identification in the context of epilepsy. Based on a predefined
dictionary, the ERR-based method is composed of two main steps:
(i) identifying the most relevant candidates that are required
to fit the signal at hand, and (ii) estimating their respective
weights in a least squares sense. However, the used candidate
selection criterion, which is based on a fixed threshold, often
leads to an overestimation of the number of retained candidates.
This consequently affects the quality of the system identification.
This point is of particular interest in epilepsy especially for the
identification of brain networks involved in the seizure onset. To
deal with this issue, a refined ERR-based solution is proposed
in this paper. It relies on the assumption that a few number of
the retained candidates using the ERR-based method are really
the most significant ones. This leads to consider a sparse repre-
sentation of the associated estimated coefficient vector. The well-
known Proximal Alternating Linearized Minimization (PALM)
is used in this paper to solve the proposed optimization problem.
To guarantee good estimation results, the used regularization
parameter is, at each iteration, optimally computed using the
discrepancy principle. Results on simulated and real iEEG data
confirm the efficacy of the proposed method.

Keywords—Error Reduction Ratio; Orthogonal Least Squares;
proximal optimization; epilepsy; effective connectivity

I. INTRODUCTION

Epilepsy is a group of neurological disorders that cause
temporary dysfunctions of the brain electrical activity. It is
characterized by repetitive seizures - called ictal periods -
whose frequency and duration may vary. Epileptic seizures
are induced by abnormal excessive or synchronous neuronal
activity in certain regions of the brain, known as epilepto-
genic [1]. Around 30% of epileptic patients are drug-resistant,
for whom alternative therapies, such as surgery or neural
stimulation, must be considered. Satisfactory outcomes of
these therapies require beforehand a reliable identification
of the epileptic network underlying the initiation and/or the
propagation of the epileptic seizures. Identifying the epileptic
network involves not only its nodes (brain regions) but also
the direction of the information flow among them leading
to the concept of brain effective connectivity [2]. Intracere-
bral electroencephalographic (iEEG) recording is a commonly
used invasive technique to record brain electrical activity [3],
[4]. Albeit invasive, it provides recordings with relatively
high Signal-to-Noise Ratio (SNR) and free from the volume
conduction effect. Neural activities are generally the result
of nonlinear processes, and hence interactions between brain

regions can be qualified as nonlinear. Consequently, analyzing
interactions among brain regions in a linear way is sub-
optimal. The Error Reduction Ratio (ERR)-based method
[5]–[9] has already shown promising results in identifying
nonlinear systems and inferring effective connectivity between
brain regions. It is a dictionary based approach comprising two
main steps: (i) identifying from a predefined dictionary the
most relevant candidates that are required to fit the signal at
hand; this is performed through an orthogonal least squares
(OLS) scheme combined with a threshold-based candidate
selection criterion [5] [6], and (ii) estimating their respective
weights (model coefficients) in a least squares sense. Despite
its efficiency, the ERR-based method suffers from the presence
of spurious terms whose number is subject to the predefined
threshold. This often leads to low system identification quality
and consequently induces errors in the inference of effective
connectivity. To cope with this limitation, a refined ERR-based
method, denoted by rERR, is proposed in this paper. The
solution relies on the assumption that, among those retained
dictionary candidates using the original ERR-based method, a
few number is really contributing to the signal at hand. These
few but relevant candidates are found by simply prompting a
sparse representation on the retained dictionary. To this end,
the Proximal Alternating Linearized Minimization (PALM)
[10] method is used. Besides, an optimal computation of the
regularization parameter is also performed at each iteration of
the proposed iterative approach leading to a more reliable iden-
tification quality. The behavior of the proposed rERR-based
approach is compared to the original ERR-based one using
both simulated signals and real epileptic iEEG recordings. In
this contribution, Section II is devoted to the methodology
before presenting the dataset in Section III. Results are given
in Section IV where the rERR-based approach is compared
to the original one. Some concluding remarks are given in
Section V.

II. METHODOLOGY

Assume that a set {ym}m∈1,··· ,M of M epileptic iEEG
signals are recorded over a T period of time. The m-th iEEG
signal ym denotes the neural activity of the m-th brain region.
As brain is a complex network of distributed interconnected
regions, epileptic seizures can be initiated and propagated
due to a specific brain epileptic network whose nodes are
the involved brain regions and edges reflecting how these

67Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing



brain regions interact. Thus, the activity of the m-th brain
region, ym, is linked to the ones of other brain regions.
More precisely, assume that ym can be decomposed as a
linear combination of a set of Nm time series, denoted by
ỹ
(m)
i , 1 ≤ i ≤ Nm. Assume also that each of these time series

is a linear and/or nonlinear combination of a subset of delayed
versions of the acquired iEEG signals {yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

where the indices of these time series and their related time
lags are defined in the sets Ω(m)

i and Φ
(m)
i , respectively. Then,

we write:

ym =

Nm∑
i=1

α
(m)
i ỹ

(m)
i +wm

ym =

Nm∑
i=1

α
(m)
i f

(m)
i ({yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

) +wm(1)

where f
(m)
i is the i-th unknown linear or nonlinear function,

α
(m)
i is the i-th decomposition coefficient and wm is the

model residual related to ym. Understanding linear/nonlinear
interactions among brain regions can be summed up to (i) the
identification of the set of signals {yτk

k }∀k∈Ω
(m)
i ,∀τk∈Φ

(m)
i

, (ii)

the estimation of the Nm functions f
(m)
i and (iii) the iden-

tification of the coefficients vector αm = [α
(m)
1 , · · · , α(m)

Nm
]T

associated to ym. A compact representation of the aforemen-
tioned decomposition problem is expressed as follows:

ym = Dmαm +wm, ∀m ∈ {1, · · · ,M}
= DΠΠ−1θm +wm

(2)

where Dm = DΠ is a matrix collecting the M times series
constituting the signal ym. These times series stand for the
most relevant candidates that can be selected from a predefined
dictionary D ∈ RT×N using a selection matrix Π, N being
the total number of candidates. This predefined dictionary
encodes all possible time series candidates (comprising pos-
sible linear and/or nonlinear functions) and θm ∈ R

N is a
coefficient vector. The matrix Π is binary with exactly one
entry of 1 in each row and each column. More particularly, as
initially suggested in [6], the most relevant candidates required
to fit properly the signal ym, up to an ERR criterion [6], are
found using an OLS scheme combined with a threshold-based
candidate selection criterion [5] [6]. To this end, the matrix
D is decomposed as D = UW where U ∈ R

T×N and
W ∈ R

N×N are orthogonal and upper triangular matrices,
respectively. For the sake of readability, the subscript m will
be dropped from now on keeping in mind that the m-th,
m ∈ {1, · · · ,M}, signal ym is being processed. This leads to
rewrite equation (2) as follows:

y = Dθ = Uθ̃ =

N∑
n=1

θ̃nun (3)

where θ̃ = Wθ, un is the n-th column of U and θ̃n
stands for the n-th component of the coefficients vector θ̃.
Then, decomposing y requires the identification of a subset
Γ = {ukℓ

}kℓ∈{1··· ,N},ℓ∈{1,··· ,Nm} of the most Nm relevant

column vectors of U contributing to y together with their cor-
responding coefficients θ̃ℓ, 1 ≤ ℓ ≤ Nm. The elements of Γ are
found successively according to their contribution (from the
highest to the lowest) to y [5]–[9]. To this end, for the sake of
convenience, let us define D−(0) = D as the initial dictionary
matrix that is used to estimate the first relevant vector, uk1

, in
Γ. Then, the matrix D−(ki−1) ∈ RT×N−ki+1 is a reduced dic-
tionary matrix to be used to estimate uki

, ki > 1. The matrix
D−(ki−1) is obtained by excluding one column vector from
D−(ki−2). The excluded column vector in D−(ki−2) stands
for the most relevant candidate model defining the vector
uki−1. To find this most relevant column vector in D−(ki−1),
a grid search over the columns of D−(ki−1) is applied. More
precisely, let Ũki = [u1

ki
, · · · ,uN−ki+1

ki
] ∈ R

T×N−ki+1 be
defined as

Ũki = D−(ki−1) −HkiŨki−1 (4)

where Ũki−1 = uki−11
T
N−ki+1 and H ∈ RN−ki+1×N−ki+1

is a diagonal matrix that can be obtained by solving the
following optimization problem:

H∗
ki

= argmin
Hki

||D−(ki−1) − Ũki−1Hki ||2F s.t.Hki, i,j
∀i̸=j

= 0

(5)
where Hki,i,j is the (i, j)-th entry of Hki

and 1N is a N -
dimensional column vector of ones. Once the vector uki

is
estimated, the vector θ̃ki is computed also in a least squares
sense:

θ̃
∗
ki

= argmin
˜θki

||y − Ũki θ̃ki ||22 (6)

Then, the (N −ki+1)-dimensional ERR vector, denoted here
by e, is defined by:

eki
= ΛΨθ̃

⊙2

ki
(7)

where Λ is a diagonal matrix whose main diagonal is the
vector [||u1

ki
||22, · · · , ||u1

N−ki+1||22], Ψ = 1
||y||22

IN−ki+1, ⊙
stands for the Hadamard product (element-wise matrix prod-
uct, θ̃

⊙2

ki
= θ̃ ⊙ θ̃ and IK is a (K × K) identity matrix.

Note that the ℓ-th component, eℓ, 1 ≤ ℓ ≤ N − ki + 1, of
the vector eki quantifies the contribution strength of the ℓ-th
candidate model, d

−(ki−1)
ℓ ∈ R

T , in the current dictionary
D−(ki−1). Once the N − ki + 1 ERR values are computed,
the index of the highest ERR value, e

(ki)
max, in the vector

eki
refers to the position of the most relevant candidate in

D−(ki−1). The above mentioned steps are repeated until Nm

candidate models are selected and for which the inequality
1−

∑Nm

i=1 e
(i)
max < ϵ, where ϵ is a predefined threshold chosen

heuristically, becomes true. Let us now define D1 ∈ RT×Nm

as the dictionary collecting the Nm retained column vectors of
the initial dictionary D ∈ RT×N . Then, in order to avoid some
spurious retained models in D1 that could be raised due to the
choice of the threshold ϵ, we propose to refine the obtained
dictionary D1. To this end, we assume that, among all retained
models, few of them are relevant to reconstruct the signal y.
This formally leads to consider a sparse representation of the
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coefficient vector, θ. Then, the refined representation of y can
be obtained by solving the following optimization problem:

θ∗ = argmin
θ

λ

2
||y − x||22 + ||z||1 s.t. x = D1θ and z = θ

(8)
where λ is a regularization parameter and ||.||1 is the L1-norm.
Such optimization problem can be solved using the PALM
method [10]. The choice of the PALM method is justified by
its good convergence properties [11]. PALM minimizes the
augmented Lagrangian function associated to (8) given by:

L(x, z,θ,v, g,λ) =
λ

2
||y − x||22 + ||z||1 +

ρ1
2
||θ − z||22

+vT(θ − z) +
ρ2
2
||D1θ − x||22 + gT(D1θ − x)

(9)

where x and z are auxiliary variables, v and g stand for the
Lagrange multipliers and ρ1, ρ2 ∈ R

∗
+. The update rules of

variables θ and x are computed by looking for the stationary
points of L in these two variables. This leads to :

θ =(ρ1IN + ρ2D1
TD1)

−1(v + ρ1z +D1
T(ρ2x− g))(10)

x =
λy + g+ ρ2D1θ

λ+ ρ2
(11)

As far as the Lagrangian multipliers v and g are concerned,
they are updated through a gradient-ascent scheme as follows:

∆v = ρ1(θ − z), ∆g= ρ2(D1θ − x) (12)

where ∆v = vi+1 − vi and ∆g= gi+1 − gi (i represents the
iteration index). Besides, the update rule of the dual variable
z is performed by:

z = proxϕ,λcz

(
z − 1

cz
∇zL(x, z,θ,v, g, λ)

)
(13)

where ∇zL(x, z,θ,v, g, λ) =
∂L(x,z,θ,v,g,λ)

∂z = (−v −
ρ1(θ − z)), cz ∈ R is the step-size, proxϕ,λcz is a proximal
operator dealing with the non-smooth function (here ϕ = ∥.∥1)
and initially proposed in [12] and λcz denotes the shrink-
ing threshold. Besides, as the proximal operator defined in
equation (13) relies mainly on a gradient-descent scheme, the
gradient learning step is a crucial parameter to be accounted
for. According to [10], a wise choice of such parameter is
cz > Lz(z) where Lz is the Lipschitz modulus verifying
[10]:

||∇zL(x, zi−1,θ,v, g, λ)−∇zL(x, zi,θ,v, g, λ)||2 ≤
Lz ||zi−1 − zi||2 (14)

where zi is the estimate of the vector z at the i-th iteration.
By substituting the expression of ∇zL(x, zi−1,θ,v, g, λ) in
the above inequality, we get Lz ≥ ρ1. This condition leads to
define a lower bound on the value of the gradient learning step
cz . More precisely, as suggested in [10], a good behavior of
the PALM algorithm is guaranteed when the gradient learning
step verifies cz = γzLz with γz > 1. Thus, a lower bound
on the gradient learning step is obtained by combining the
obtained condition on the Lipschitz modulus with the given

expression on cz . This leads to cz ≥ γzρ1. In the current
study the equal part of the latter inequality is considered and
then the parameter γz is tuned, while fixing the parameter ρ1
to one, in such a way good estimation results are obtained.
As far as the regularization parameter λ is concerned, it
is optimally computed, at each iteration, by means of the
discrepancy principle. In fact, the latter principle states that the
regularization parameter is laying in the set {x : ||x− y||22 ≤
c} where c ∈ R is a coefficient related to the noise variance
[13] and can be obtained through the equivalent degree of
freedom method [14] [15]. Then, by considering the equality
part of the latter condition together with equation (11), the
update rule of λ can be written as follows:

λ =
||ρ2(y −D1θ)− g||2√

c
− ρ2 (15)

At each iteration, equations (10), (11), (12), (13) and (15)
are called alternatively where each variable is updated by
fixing the other ones to their last estimate. The optimization
process stops either when the relative estimation error on the
parameter θ exhibits a value that is smaller than (or equal to)
a predefined threshold determined empirically, or when the
maximum number of iterations is reached.

III. DATASET

The evaluation of the proposed approach is performed on
both simulated and real iEEG signals.

A. Simulated iEEG signals

A 3-channel nonlinear model generating iEEG-like signals
[16] is considered and defined hereafter:

y1(k) = 3.4y1(k − 1)(1− y21(k − 1))e−y2
1(k−1) + w1(k)

y2(k) = 3.4y2(k−1)(1−y22(k−1))e−y2
2(k−1)−0.5y21(k−1)

+ 0.25
√
2y2(k − 1)− 0.5y3(k − 3) + w2(k)

y3(k) = 3.4y3(k−1)(1−y23(k−1))e−y2
3(k−1)−0.5y21(k−2)

− 0.5y2(k − 2)− 0.25
√
2y3(k − 2) + w3(k) (16)

where wm ∼ N (0, 1), 1 ≤ m ≤ 3. The interest in such model
is that it covers a variety of non-linearity types which is, to a
large extent, in accordance with the nonlinear characteristic of
the interactions between brain regions. In this study, the initial
dictionary, denoted by D, is defined as the collection of sixty
candidates defined as follows:

• {f (m)
i (yτm

m )}1≤i≤3
1≤m≤3

,∀τm ∈ {1, 2, 3} is the set of their

related time lags with f
(m)
i (yτm

m ) = (yτm
m )⊙i.

• {f (m)
i (e−y

τm
m )}1≤i≤3

1≤m≤3

,∀τm ∈ {1, 2, 3}.

• {f (m)
i1

(y1
m)}i1∈{1,3}

1≤m≤3

× {f (m)
2 (e−y

1
m)}1≤i2≤3

1≤m≤3

.

where a time period of four seconds of iEEG signals sampled
at 256 Hz (i.e., 1024 time samples) is simulated.
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B. Real iEEG signals

Real iEEG signals were recorded in Rennes Hospital
Epilepsy Unit in one female patient aged 35. In this patient
who suffered from temporal lobe epilepsy, twelve intracere-
bral electrodes (10-15 contacts) were implanted in the left
temporal, insular, inferior frontal and inferior parietal regions.
From these recordings, a 64s-epoch, sampled at 256 Hz, was
considered. Based on the clinician’s expertise and according
to preliminary clinical and electrophysiological examinations,
we only kept the most interesting bipolar channels leading
to a set of 12 channels. The objective is to classify these
channels into three groups. The ‘Onset’ group (O) is a group
where rapid discharges were observed by the clinician and
therefore considered as the main regions responsible for the
initiation of the seizure. The ‘Propagation Sink’ group (PS)
consists of channels that are majorly triggered by the Onset
group, and considered as less involved in the triggering of the
seizure. Finally, the ‘Propagation Internal’ group (PI ) consists
of regions that can be triggered by other regions in the O
group. Besides, this PI group can be slightly involved in
the seizure setting up through delayed electrical discharges
with lower intensity compared to the ones of the O group.
Consequently, this PI group refers to less epileptogenic brain
regions, and therefore considered as the one linking the most
epileptogenic zones to those who are the less epileptogenic.
According to the neuroscience expert, the most interesting
time period to be considered corresponds to the onset of the
ictal phase, i.e., between the 18th and 22th seconds in the
recording.

IV. RESULTS

A. Simulated model

To assess the performance of the proposed approach on
the estimation of the coefficients associated to the retained
candidates, a mean squared error (MSE) criterion averaged
over K = 1000 Monte-Carlo (MC) trials was computed for
each simulated signal. The MSE related to the m-th channel
is given by:

MSE(m) =
1

K

K∑
k=1

||y(m) − ŷ
(m)
k ||22 (17)

∀m ∈ {1, · · · ,M} where ŷ
(m)
k is the estimate of y(m) at the

k-th trial. Obtained MSE results for both the original ERR-
based method and the proposed rERR-based one are given in
Table I. A higher performance of the proposed rERR-based
method over the ERR-based one can be clearly noticed from
this table.

More precisely, we can state from Table I that the proposed
rERR-based solution provides around 18%, 11% and 40%
improvement in the nonlinear identification quality of the
simulated iEEG-like signals, y1, y2 and y3 (16), respectively.
Furthermore, the improvement in the obtained MSE standard

TABLE I
MSE±STD COMPUTED OVER K = 1000 MC TRIALS. CASE OF

SIMULATED IEEG-LIKE SIGNALS.

ERR-based method rERR-based method
y1 3.39± 0.22 2.84 ±0.18
y2 6.51± 0.72 5.81 ±0.37
y3 11.50± 2.34 7.70 ±0.54

deviation shows that the proposed rERR-based approach pro-
vides statistically more consistent system identification results.
This fact is also confirmed through Figure 1 where a clear gap
in the estimation quality between the two considered methods
is to be stated in favor of the proposed rERR-based solution.

Fig. 1. MSE box-plots for the three simulated signals described in (16).

B. Real iEEG signals

In this study, each real iEEG signal, ym, 1 ≤ m ≤ M
(where M = 12) is assigned to either the O, PI or PS group
using a defined threshold ϕth:

ϕth =
1

4M

M∑
m=1

|ϕm| (18)

where ϕm is defined as follows:

ϕm =
ODm − IDm

ODm + IDm
(19)

with ODm and IDm stand respectively for the outward and
the inward degrees of the m-th signal (node) in the estimated
brain network. More precisely, let Θ = [θ1, · · · ,θM ] ∈
R

M×M be the adjacency matrix associated to the directed
graph associated to the estimated brain network. Then, we
have [17]:

ODm =

M∑
i=1

Θm,i , IDm =

M∑
i=1

Θi,m (20)

where Θm,i denotes the (m, i)-th entry of Θ. It is noteworthy
that the adjacency matrix associated to a directed graph is
a square asymmetric matrix (i.e., Θi,j ̸= Θj,i). Thus, the
classification rule for a given signal ym is defined by:

ym ∈

 O, if ϕ≥ϕth

PI , if − ϕth ≤ ϕm ≤ ϕth

PS , if ϕm ≤ −ϕth

(21)
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Table II shows the expert’s classification of the 12 iEEG
channels. In addition, obtained classification results using both
the original ERR-based method and the proposed rERR-based
one are reported in Table III and Table IV respectively. Note
that the two considered methods were tested on the seizure
collected from the epileptic patient on the [18s; 22s] time
interval.

TABLE II
EXPERT’S CLASSIFICATION OF THE IEEG CHANNELS.

Expert Classification Expert Classification
Bp1-Bp2 O Cp4-Cp5 PI

Cp1-Cp2 O Ap6-Ap7 PI

Ap2-Ap3 O Bp6-Bp7 PI

Pp1-Pp2 O Fp1-Fp2 PS

Pp4-Pp5 O Dp1-Dp2 PS

Pp8-Pp9 O Tp1-Tp2 PS

TABLE III
CLASSIFICATION OF REAL EPILEPTIC IEEG SIGNALS USING THE

ORIGINAL ERR-BASED METHOD.

ERR-based method Classification ERR-based method Classification
Bp1-Bp2 PS Cp4-Cp5 PS

Cp1-Cp2 PI Ap6-Ap7 O
Ap2-Ap3 O Bp6-Bp7 O
Pp1-Pp2 PI Fp1-Fp2 PS

Pp4-Pp5 O Dp1-Dp2 PS

Pp8-Pp9 PI Tp1-Tp2 PS

TABLE IV
CLASSIFICATION OF REAL EPILEPTIC IEEG SIGNALS USING THE

RERR-BASED METHOD.

rERR-based method Classification rERR-based method Classification
Bp1-Bp2 PS Cp4-Cp5 PS

Cp1-Cp2 O Ap6-Ap7 O
Ap2-Ap3 O Bp6-Bp7 O
Pp1-Pp2 O Fp1-Fp2 PS

Pp4-Pp5 O Dp1-Dp2 PS

Pp8-Pp9 PS Tp1-Tp2 PS

From Tables III and IV, we observe that both methods were
able to correctly classify Ap2-Ap3 and Pp4-Pp5 in the O
group. Besides, ERR and rERR were able to group properly all
the PS channels. Moreover, according to the expert, Pp8−Pp9
showed a delayed discharge, which can explain that it was
classified in the PI / PS groups using both algorithms. As
for Ap6-Ap7, it showed a rapid discharge at the onset of
the seizure, which may explain its classification by the two
algorithms. Now, the proposed rERR-based method outper-
forms the original one in the classification of Cp1-Cp2 and
Pp1-Pp2 channels, in accordance with the expert’s opinion.
To conclude, following the expert’s classification, the rERR-
based approach appears attractive and more reliable in the
identification of brain regions involved in the seizure onset,
which is a crucial point from a therapeutic point of view.

V. CONCLUSION

In this paper, a refined ERR-based solution for nonlinear
system identification problem was proposed with application

to epilepsy. More precisely, the proposed solution handles
the issue of the overestimation of the number of candi-
dates required to decompose the signal at hand, which is
a commonly encountered issue in the original ERR-based
approach. The proposed solution relies on the assumption of
a sparse representation of the model coefficient vector that
the ERR-based approach provides. The defined optimization
problem was solved in the proximal optimization framework
using the well-known PALM algorithm combined with an
optimal computation of the regularization parameter at each
iteration. Numerical experiments on simulated iEEG-like and
real epileptic iEEG signals showed clearly a higher system
identification quality of the proposed approach compared to
the original ERR-based one.
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