
On Machine Integers and Arithmetic

Pavel Loskot

ZJU-UIUC Institute

Haining, China

e-mail: pavelloskot@intl.zju.edu.cn

Abstract—All signal and data processing is performed on
computing machines. However, the computing efficiency requires
that numbers are represented in a finite memory space. It is
claimed that all such numbers can be considered to be integers,
and that decimal point has purely syntactical meaning to align
numbers in arithmetic operations. This subtle, but fundamental
observation seems to have been ignored so far. As an introductory
exploration of integer arithmetic, this paper introduces a dual
modulo operator to select digits in string representations of
machine numbers. Moreover, it is proposed that natural integers
offset by a real-valued constant satisfy Peano axioms. The Fermat
last theorem is then considered as an example of Diophantine
equation. It is shown how it can be modified to allow the solutions
to exist. A Fermat metric is newly introduced to define distances
between integers to allow their partitioning into subsets. These
results point at the importance of investigating integer arithmetic,
integer algebra, and integer analysis in designing and modeling
computing systems.

Keywords—dual modulo arithmetic; Fermat last theorem; Fer-
mat metric; natural numbers.

I. INTRODUCTION

Numbers are abstract mathematical objects that can also

carry semantic meaning of quantity. The former leads to rich

axiomatic algebraic systems, and the latter enables performing

arithmetic operations in computing problems. Since computing

machines have limited resources, and must execute numerical

algorithms in a time and memory efficient manner, they have

to represent numbers as constant size objects. This limits the

largest and the smallest number values as well as precision,

which can be considered. Therefore, any algorithm described

or implemented in a programming language can only compute

numbers from a finite set, N = {N1 < N2 < .. .}, such that,

∀i : −∞ < inf(N) ≤ Ni ≤ sup(N) < ∞. (1)

Thus, two machine numbers, Ni, and, N j, can be compared,

i.e., ordered, and the difference, mini6= j |Ni −N j| = ε0, repre-

sents the precision. The set, N , is necessarily computable [1].

Most machine number systems use floating point and fixed

point number representations. These representations including

basic arithmetic operations are precisely defined by the IEEE

754 standard [2]. They enable efficient utilization of hardware

and software resources to achieve the time and space efficiency

in implementing computing algorithms. Some languages (e.g.,

Python) support infinite-precision integer arithmetic, or per-

form computations at the user-defined precision (e.g., Mathe-

matica). The GNU library [3] is a popular and efficient imple-

mentation in C programming language of the multi-precision

arithmetic for integer and floating-point numbers; this library

is also used in several commercial software products (e.g.,

Mathematica and Maple). The smallest and the largest integers

and single and double precision floating point numbers are

defined in Matlab toolbox, Elementary Matrices, and in the C

standard libraries, limits.h and float.h.

The algorithms described in various programming languages

represent numbers as strings of digits in a given basis. In

particular, the number, N ∈ N , in basis, B, is represented as,

N =
imax

∑
i=imin

Di ×Bi

↔ DimaxDimax−1 · · ·D1D0 ...D−1 · · ·Dimin

(2)

where the digits, Di ∈ {0,1, . . . ,9,A,B,C, . . .B− 1}, and the

orders, imin ≤ 0 ≤ imax. It is customary to place decimal point

between the digits D0 and D−1, which divides the digits into

the integral and the fractional part, respectively. More impor-

tantly, the decimal point allows aligning digits of numbers

when performing arithmetic operations and comparisons.

The most common bases are decimal (B = 10), hexadecimal

(B = 16), and binary (B = 2). However, internally, the numbers

are stored much more efficiently in a byte-size basis, i.e.,

B = 28×#bytes−1, with one bit reserved for the sign. The total

number of bytes used for each number is usually fixed for

different number classes (types) such as short and long inte-

gers, and single and double precision floating point numbers.

The conversions between the string notation and the internal

representation are performed automatically by compilers.

The textbook [2] provides a comprehensive overview of

the number systems used on computers. The computability

of functions of natural numbers is established in [4]. The mis-

match between exact mathematical description and practical

implementation of algorithms with approximate number rep-

resentations has been studied in [5] including the methods how

to mitigate such a discrepancy. The construction of large-scale

real numbers, which are suitable for software implementations

is considered in [6]. Binary approximations of real-numbers

are investigated in [7]. Other representations of real numbers

such as binary expansion, Dedekind cut and Cauchy sequence

are compared in [1]. The p-adic number systems allow defin-

ing real-numbers as an arithmetic of rational numbers [8].

Logical statements involving comparisons of real-numbers are

evaluated in satisfiability modulo theories [9]. The article [10]

conclusively argues that a finite precision is usually sufficient

in practical engineering applications. Many number-theoretic

theorems and conjectures can be found in [11].

63Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

In this paper, it is argued that the number systems commonly

used on computers can be assumed to be integer-valued,

which also includes single and double precision floating point

numbers and the corresponding arithmetic operations. Con-

sequently, computing machines are inherently governed by

integer algebras and arithmetic. The paper contributions are

formulated as four claims and one proposition. In particular,

in Section II, dual modulo operator is introduced to select

digits in string representations of numbers. It can be exploited

to define equivalences between numbers in integer arithmetic.

In addition, it is proposed that natural numbers can be offset

by a real-valued constant, and still be considered as being

integers. In Section III, several modifications of Fermat last

theorem (FLT) are devised to allow the solutions to exist. A

Fermat metric is newly defined, which is then used to compute

distances between natural numbers, and to divide the numbers

into subsets. The paper is concluded in Section IV.

II. MACHINE INTEGERS AND ARITHMETIC

Constraining machine computations to numbers, N , has

several fundamental consequences. First, the results of arith-

metic operations can overflow the limits, inf(N), or, sup(N).

Second, the results of arithmetic operations can underflow the

precision, ε0, so the results may have to be truncated, rounded,

or otherwise approximated. Third, the decimal point to align

numbers can be arbitrarily placed in-between any digits as

long as the placement is consistent in the number system and

arithmetic used. This is formalized as the following claim.

Claim 1. The machine numbers allocated a predefined mem-

ory space are integers, N , isomorphic to a finite set of finite

integers, Z = {. . . ,−1,0,+1, . . .}.

The important consequence is that (without a formal proof)

any machine arithmetic is isomorphic to integer arithmetic.

However, implementing such integer arithmetic at large scale

and precision to be efficient and also error-free is non-trivial.

The memory allocated by compilers of programming lan-

guages allows adding only a finite number of digits before and

after a decimal point. If the numbers are padded by zero-digits

from both ends, all numbers are represented by strings of the

same length, and the decimal point becomes a hypothetical

construct. The non-zero digits at the right end of the number

string represent the precision (resolution), whereas the first

non-zero digits from the left represent the scale.

The algorithms usually contain many logical statements

(predicates). These statements involve comparisons of numer-

ical values. The two integers are said to be exactly equal,

provided that all digits in their string representations are the

same. The exact comparison can be rather restrictive in some

applications, where the differences in scale and precision

could be or must be tolerated. Specifically, if the differences

are tolerated in precision (the right-end sub-strings), it is

equivalent to comparing quantized numbers. If the differences

are tolerated at scale (the left-end sub-strings), it is equivalent

to comparing periodically repeated values.

Mathematically, removing the right-end or the left-end sub-

strings from the string representations of numbers can be

expressed by a canonical modulo operator. In particular, for

any integer a, and any positive integer b, let, (a mod b) =
(|a| mod b) ∈ {0,1, . . . ,b−1}, to be a reminder after the inte-

ger division of a by b. Note that this can be readily extended to

real numbers as, 0 ≤ (a mod b) = (|a| mod b) < b, assuming a

real division of, a ∈ R , by integer, b. Then, the numbers, a1,

and, a2, are said to be equivalent in a sense of congruence,

provided that, a1 ≡ a2 (modb). Both equality (indicated by

symbol, =) and equivalence (indicated by symbol, ≡) satisfy

axiomatic properties of reflexivity, symmetry, and transitivity,

and the equality implies equivalence.

If the machine numbers, Ni = ∑
L−1
i=0 DiB

i, are represented by

strings of L digits in some basis B, then the first L1 digits and

the last L2 digits, (L1 +L2) < L, can be zeroed by applying a

dual modulo operator introduced next.

Definition 1. The dual modulo operator has two parameters,

m1, and, m2, and it is defined as the difference,

Ni Mod(m1,m2) = (Ni mod m1)− (Ni mod m2)

= 0 · · ·0
︸ ︷︷ ︸

L1

DL−L1−1 · · ·DL2+1DL2
0 · · ·0
︸ ︷︷ ︸

L2

. (3)

where m1 = BL−L1 , and m2 = BL2 .

Modular arithmetic with dual modulo operator has similar

properties as the arithmetic involving canonical modulo oper-

ator. In particular, given integers a, b, m1, and m2, then,

a Mod(0,m2) = a− (a mod m2)

a Mod(m1,1) = a mod m1

a Mod(m1,m1) = 0.

(4)

Furthermore, it is straightforward to prove that,

a + b ≡ a Mod(m1,m2) + b Mod(m1,m2) (Mod(m1,m2))

a−b ≡ a Mod(m1,m2)−b Mod(m1,m2) (Mod(m1,m2))

a ·b ≡ a Mod(m1,m2) ·b Mod(m1,m2) (Mod(m1,m2)).
(5)

However, in general, for integer division with a reminder,

a/b 6≡ a Mod(m1,m2)/b Mod(m1,m2) (Mod(m1,m2)). (6)

The Chinese reminder theorem [11] can be restated for dual

modulo operator as follows. If m11 and m12 are co-prime, and,

Ni ≡ a1 (Mod(m11,m2))

Ni ≡ a2 (Mod(m12,m2))
(7)

for some integers, Ni, and, m2, then there is a unique integer,

a, such that,

Ni ≡ a (Mod(m11m12,m2)). (8)

The proof is based on the property that, if Ni ≡ a (mod m1),

then also, Ni ≡ a (Mod(m1,m2)).

Furthermore, it is useful to consider how the machine

integers used in algorithms are approximations of infinite

precision real-numbers obtained from mathematical analysis.

64Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

The dual modulo operator defined in (3) produces a finite-

size integer, x Mod(m1,m2), from a real number, x ∈ R .

This introduces a periodicity due to truncation from the left

(specified by the parameter, m1), and the quantization due to

truncation from the right (specified by the parameter, m2).

It is also useful to define countably infinite integer sets,

Ñx = {x,x + 1,x + 2, . . .} (9)

parameterized by finite constants, x ∈ R , so that, Ñ0, is

the set of natural numbers. Such integer sets can provide

exact solutions to some integer (Diophantine) problems, which

otherwise do not have any solution. More importantly, for all

finite x, the integers, Ñx, satisfy Peano axioms [11].

III. CASE STUDY: FLT PROBLEMS

The FLT states that there are no positive integers a, b, c,

and n > 2, such that, an +bn = cn. This has been first verified

numerically until the proof was obtained only recently [11].

Note also that, |an +bn −cn| ≤ 1, has a trivial solution, a = 1,

and, b = c, for ∀n > 1. The Fermat Number Transform (FNT)

resembles Discrete Fourier Transform, however, the former

assumes the sums modulo a prime [12].

More importantly, the original formulation of FLT can be

modified to allow the solutions to exist.

Claim 2. For every n, there exist infinitely many natural

integers a, b, c, m1 and m2 satisfying the congruence,

an + bn ≡ cn (Mod(m1,m2)). (10)

For example, assuming the first 100 natural numbers as

strings of l = 9 digits in the number basis, B = 8, and, B = 10,

the total number of solutions, nl, and, nr, respectively, of (10)

for the first l1 digits and the last l2 = l − l1 digits is given

in Table I. It can be observed that, always, nl > nr, since the

number strings often contain zeros at the left to make up the

given width, l.

TABLE I. The number of solutions of (10)

B = 8 B = 10
n = 3 n = 4 n = 3 n = 4

(l1, l2) (3,6) (4,5) (3,6) (4,5) (3,6) (4,5) (3,6) (4,5)
nl 69627 22278 5505 2318 1284 44532 10666 3622

nr 212 644 730 2076 198 207 230 596

Claim 3. For any integer, n ≥ 1, the equation,

an + bn = cn (11)

has infinitely many solutions among the integers, ∪xÑx, for

specific real-values (from some set), x > 0.

Proof. Let c = y ∈ R , a = y− d1, and, b = y− d2, where d1

and d2 are arbitrarily chosen positive natural integers. Then,

for any n, the polynomial (11) has at least one real-valued

solution, y>max(d1,d2). Let d0 = ⌊y⌋ (floor function), so that

x = (y−d0) < 1. This defines the positive integers, c = d0 +x,

a = d0 −d1 + x, and b = d0 −d2 + x, from the set, Ñx.

Proposition 1. For any natural integer, n, there exists an

integer, m ≥ n, such that the expression,

m

∑
i=1

an
i = bn (12)

is satisfied for a set of natural integers, {a1,a2, . . . ,am}∪{b}.

The proof of Proposition 1 appears to be rather non-trivial,

except when n = 1 and n = 2 (Pythagorean theorem). However,

it is easy to find examples satisfying the expression (12), e.g.,

32 + 42 = 52 (m = n = 2)

33 + 43 + 53 = 63 (m = n = 3)

24 + 24 + 34 + 44 + 44 = 54 (m = n + 1 = 5)

195 + 435 + 465 + 475 + 675 = 725 (m = n = 5).

(13)

In general, the sequence, an + bn, obtained by enumerating

all natural integers, a, and, b, becomes rapidly very sparse

as the exponent, n, is increased. Given n, it is easy to show

that the best approximation of (an + bn) by cn is obtained

when, c = ⌊(an + bn)1/n⌉ (rounding function). This motivates

the following Fermat metric.

Definition 2. The Fermat metric for positive numbers, a, and,

b, is computed as,

Fn(a,b) = an + bn −⌊(an + bn)1/n⌉n (14)

where n = 2,3, . . . is a natural number, and always, F1(a,b) =
0. The Fermat distance between the numbers, a, and, b, is the

absolute value of the Fermat metric, i.e.,

Dn(a,b) = |Fn(a,b)| . (15)

The distribution of Fermat metric values by enumerating

all pairs of natural integers up to 105 are shown in Figure 1

for n = 2 and n = 3, respectively. It can be observed that the

Fermat metric values are spread much more evenly when n =
2, and the distributions are asymmetric about 0.

-1000 -500 0 500 1000

0

5
10

5

(A)

-1000 -500 0 500 1000

0

5
10

5

(B)

Figure 1. The counts of Fermat metric values for all pairs of natural integers
up to 105, for the exponents n = 2 (A), and n = 3 (B).

65Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

The Fermat distance can be used to cluster natural numbers

into subsets. Figure 2 shows the dendrogram assuming the

distance, F2(a,b). The corresponding assignment of the first

50 natural numbers into four subsets based on the distances,

F2, F3, F4, and F5 are shown in Figure 3.

 4 21 11 17 1 14 22 2 15 18 3 5 7 6 9 20 8 12 24 13 10 19 16 23 25

10

20

30

40

50

60

70

Figure 2. The dendrogram of natural numbers constructed assuming the
Fermat distance, F2(a,b), defined in (15).

0 10 20 30 40 50

n=2

n=3

n=4

n=5

Clust. 1 Clust. 2 Clust. 3 Clust. 4

Figure 3. The first 50 natural numbers partitioned into four clusters (subsets)
using the Fermat distances, Fn(a,b), for n = 2,3,4, and 5.

IV. DISCUSSION AND CONCLUSION

This paper investigated modular arithmetic and introduced

dual modulo operator under the premise that all machine num-

bers can be assumed to be integers, when they are pre-allocated

a fixed space in a computer memory. This is the case with

fixed point as well as floating point number representations.

The meaning of a decimal point is mainly syntactical to allow

aligning the operands in arithmetic operations. This leads to

another fundamental claim.

Claim 4. Any computing algorithm utilizing finite number

representations can be represented by a system of Diophantine

equations.

Hence, there is a large gap between mathematical descrip-

tion based on real analysis, and the actual implementation of

corresponding algorithms on computers [5].

Improving accuracy of machine numbers by p-adic rep-

resentations [8] and by Diophantine approximations [13] is

impractical, since the underlying arithmetic operations require

more time and more memory. More efficient multi-precision

arithmetic is available as a C-library [3]. In many practical

applications, finite accuracy is often sufficient [10]. On the

other hand, the full accuracy is required in cryptography [14].

The FLT can be modified to allow the solutions to exist. The

key ideas introduced in this paper are to define equivalences

between numbers assuming only a subset of digits in their

number string representations, and to consider sets of natural

numbers offset by real-valued constants. In addition, the

Fermat metric can be used to define distances between natural

and other numbers.

Future work can define and prove further properties of ma-

chine numbers and arithmetic, which are explicitly considered

to be integers. This can lead to more efficient design of integer-

based models and architectures for large-scale computing ma-

chines, and improved approximations of real-valued systems.

ACKNOWLEDGMENT

This work was funded by a research grant from Zhejiang

University.

REFERENCES

[1] X. Zheng and R. Rettinger, “Weak computability and representation of
reals,” Mathematical Logic Quarterly, vol. 50, no. 4–5, pp. 431–442,
Sep. 2004.

[2] R. T. Kneusel, Numbers and Computers, 2nd ed. Springer International
Publishing, Cham, Switzerland, 2017.

[3] T. Granlund, “The GNU multiple precision arithmetic library, GNU MP
6.2.1,” https://gmplib.org, Jan. 2020, accessed: 2023-01-30.

[4] M. Wrocłlawski, “Representations of natural numbers and computability
of various functions,” in Conference on Computability in Europe, 2019,
pp. 298–309.

[5] R. Krebbers and B. Spitters, “Type classes for efficient exact real
arithmetic in Coq,” Logical Methods in Computer Science, vol. 9, no.
1:01, pp. 1–27, Feb. 2013.

[6] R. O’Connor, “A monadic, functional implementation of real numbers,”
Mathematical Structures in Computer Science, vol. 17, no. 1, pp. 129–
159, 2007.

[7] J. van der Hoeven, “Computations with effective real numbers,” Theo-

retical Computer Science, vol. 351, pp. 52–60, 2006.
[8] F. Q. Gouvêa, p-adic Numbers: An Introduction, 3rd ed. Springer,

Cham, Switzerland, 2020.
[9] G. Kremer, F. Corzilius, and E. Ábrahám, “A generalised branch-and-

bound approach and its application in SAT modulo nonlinear integer
arithmetic,” in Computer Algebra in Scientific Computing, vol. 9890,
2016, pp. 315–335.

[10] NASA/JPL Edu, “How many decimals of Pi do we
really need?” https://www.jpl.nasa.gov/edu/news/2016/3/16/
how-many-decimals-of-pi-do-we-really-need, Oct. 2022, accesssed:
2023-01-30.

[11] T. Gowers, J. Barrow-Green, and I. Leader, The Princeton Companion

to Mathematics. Princeton University Press, Princeton, NJ, USA, 2008.
[12] M. Křiı́žek, , F. Luca, and L. Somer, 17 Lectures on Fermat Numbers:

From Number Theory to Geometry. Springer New York, USA, 2001,
ch. Fermat Number Transform and Other Applications, pp. 165–186.

[13] B. Church, “Diophantine approximation and transcendence theory,” Apr.
2019, lecture Notes.

[14] J. Hoffstein, J. Pipher, and J. H. Silverman, An Introduction to Mathe-

matical Cryptography, 2nd ed. Springer, New York, NY, USA, 2014.

66Copyright (c) IARIA, 2023. ISBN: 978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing

