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Abstract— This paper presents the experimental results and 

comparative analysis of Connected Number Speech Recognition 

(CNR) models trained using four feature combinations: Mel 

Frequency Cepstral Coefficient (MFCC), MFCC+Pitch, 

Perceptual Linear Prediction (PLP), and PLP+Pitch. The set of 

experiments is conducted for five Indian Native Languages- 

Bengali, Hindi, Tamil, Kannada, and Marathi. We have 

collected connected number speech datasets for all five 

languages and have trained speech recognition models. The 

Kaldi speech recognition toolkit was used to train acoustic 

model and the SRILM toolkit was used to build an N-gram 

language model to prepare a speech recognition system. The 

model performances were compared and analyzed using Word 

Error Rate (WER) and Sentence Error Rate (SER) as accuracy 

metrics. Although, above mentioned Indian languages are 

atonal in nature, our experiments show that adding pitch 

features along with MFCC features show overall improvements 

in WER and SER Values for connected number speech 

recognition. Moreover, all the speech recognition models are 

trained under identical conditions but show significantly 

different WER and SER for different languages.   

Keywords-MFCC; PLP; speech features; pitch; Indian Langauge. 

I.  INTRODUCTION 

Speech is a natural and effective way of communication 

between human beings, which can be used to communicate 

with machines since it can be captured by a microphone as a 

vibration signal with respect to time. This signal can be 

processed, and the speech content of the signal can be 

recognized and understood to perform further downstream 

tasks. Automatic Speech Recognition (ASR) system has two 

types of architectures broadly classified as (a) conventional 

acoustic model plus language model-based ASR and (b) End 

to End ASR. The conventional architecture makes use of 

statistical, neural network based, or hybrid (of both) models to 

develop ASR systems [1]. These models are typically trained 

on speech features extracted from speech data. Even though 

diverse types of representations are available in terms of 

extracted features, extensive robustness is still being 

investigated. In ASR systems, every speech feature vector 

extracted from the audio is classified as a particular phoneme 

(smallest unit of sound). This step is carried out by the 

acoustic model, which learns the characteristics of each 

phoneme using the speech features extracted from the audios 

in the training set. The acoustic model is often built using a 

hybrid method consisting of Hidden Markov Models (HMM), 

Gaussian Mixture Model (GMM), and Neural Networks. 

Several data augmentation techniques are employed at this 

stage to generate variations in the pronunciation of phonemes, 

such as speed perturbation, volume perturbation, frequency 

perturbations, etc. Phonemes, as recognized by the acoustic 

model are grouped together to form words, which are then 

grouped to form sentences. This is achieved by the language 

model, which can be a simple N-gram language model, or a 

Neural Network based language model, trained on some text 

corpus to learn the grammar. The acoustic model and the 

language model are used in combination to build a decoding 

graph which is used for model inference. The second 

architecture, End-to-End speech recognition [2] has gained 
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significant attention in recent years. The End-to-End neural 

networks are trained to learn directly from raw audio data, 

without the need for feature-engineering or complex modeling 

and show state of the art performance on a wide range of 

speech recognition tasks. However, End-to-End models have 

limited interpretability as they operate as black boxes. One of 

the objectives of the presented work is to gain comparative 

insights over multiple Indian language speech recognition 

models when trained under identical conditions. Therefore, 

we decided to experiment with the conventional architecture 

over End-to-End architecture. 

In this paper, we present our experiments on Connected 

Number Recognition (CNR) − a domain-specific task in ASR 

− we have primarily used Hitachi Dataset–I consisting of 

connected number samples from 1000 speakers for each of the 

five languages (Hindi, Bengali, Marathi, Tamil, Kannada), 

with speakers contributing approximately 56 connected 

number samples each. ASR models for CNR using different 

speech feature combinations, namely – MFCC, PLP, 

MFCC+Pitch, and PLP+Pitch, have been built and tested 

using the Kaldi Speech Recognition Toolkit. The business 

use-case and market significance of CNR are detailed in 

Section II. Data collection process for our work is included in 

Section III. The discussion on different speech features for 

ASR is elaborated in Section IV. Further experimental details 

are mentioned in Section IV. Experimental evaluation results 

for Connected Number recognition and following discussion 

are Section VI and VII respectively. Finally, we have 

concluded the best features for CNR, as well as future 

directions, in Section VIII. 

II. USE CASE 

Connected numbers are at the heart of financial 

transactions of every kind, be it withdrawing cash, 

transferring money, conducting offline transaction with 

merchants, etc. In a country like India with a large rural 

population with limited literacy, a large Section of the society 

is excluded from many financial services, creating an 

ecosystem where people often have to depend on others to 

access the respective services. In order to truly democratize 

financial services, there is an immense need of voice-aided 

financial applications either over smartphones or feature 

phones, ideally combined with multi-modal user interface 

(possible with smartphone) and available in a variety of 

Indian languages. To realize such systems, ASR capability 

for several Indian languages, particularly in this domain, 

needs to be built. Our experiments with connected number 

recognition on five Indian languages aims to identify the best 

type of speech feature to build such a system. This 

investigation will be useful for any use case surrounding 

connected number recognition, for instance, a voice-aided 

number based electronic device, use-cases involving vehicle 

numbers, ticket booking etc.   

III. DATA COLLECTION 

Since our objective is to build highly accurate speech 

recognition systems for various Indian vernacular languages 

in the finance domain, we collected data from various parts 

of the country following a systematic and planned approach. 

Most vernacular Indian languages can be considered 

resource-poor languages, which is why data collection is 

especially necessary for this project. 

Speech data was collected mainly in the form of 

connected numeral samples between zero to one million. Ten 

Indian languages were targeted and most major states in the 

country were covered along with seventy percent coverage 

being given to rural areas, i.e., the places where we believe 

our vernacular language speech recognition system will have 

the most amount of positive impact. Data from five out of 

these ten languages have been used for the presented work. 

The data collection was performed in natural setting hence 

contains native environmental noise and background sounds. 

Collection was done in a way that number of samples for 

connected numerals most likely to be used during financial 

transactions are maximized and have diverse representations 

in the dataset. Volunteers within the age group of eighteen to 

fifty willing to record audio samples were taken through a 

guided data collection process which resulted in 

approximately 56 samples per volunteer. Therefore, per 

language we have collected 56000 samples. The data was 

collected from thousand such volunteers for each of the ten 

languages. The volunteers’ data privacy and security 

measures were taken during this entire exercise. 

IV. SPEECH FEATURES 

 In ASR, every speech audio is processed to extract speech 

features, which are then used for training and testing purposes. 

The popular speech features are- Linear Prediction Cepstral 

Coefficients (LPCC), Mel-Frequency Cepstral Coefficients 

(MFCC), and Perceptual Linear Prediction (PLP).  

The human speech generation system can be broadly 

represented as shown in Figure 1. The vocal folds generate 

periodic excitation input which passes through vocal tracts 

that convert it into speech. The MFCC/PLP features aim to 

model the vocal tracts and pitch features aim to learn about the 

excitation signal. We aim to present a comparative study of 

the performance achieved by four speech feature 

combinations- MFCC, PLP, MFCC+Pitch and PLP+Pitch 

when tested on five different Indian vernacular languages- 

Hindi, Bengali, Marathi, Tamil, and Kannada. The 

performance of various speech features has been tested in past 

studies, for instance a study published in 2019 concluded the 

superior performance of MFCC compared to PLP in case of 

Spanish language [5]. However, a study specifically focused 

on Indian languages is yet to be seen. In 2014, a study on pitch 

features introduced Kaldi Pitch tracker, a modified version of 

a previously existing pitch extractor, and claimed an 

improvement for both tonal and atonal languages, the former 

showing a larger reduction in WER [6].  
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Figure. 1 Human Speech Generation System 

We hope to provide further insights on the performance of 

pitch features when combined with both MFCC and PLP 

features for a small vocabulary domain-specific ASR task for 

Indian languages. A short overview of some common speech 

features and the pitch features is included in this Section.  

A. Mel-frequency Cepstral Coefficients 

Calculating MFCC of short audio segments in frequency 

domain is one of the most popular methods of extracting 

speech features for speech processing. It utilizes the concept 

of Mel-scale, a non-linear frequency scale which is based on 

human auditory perception. Mel-filter bank maps the actual 

frequency, 𝑓 to Mel-scale frequency, 𝑓∗ , i.e., the perceived 

frequency [7] as in (1). Audio segments of 25 ms with an 

overlap of 10 ms are windowed (Hamming window of length 

N with coefficients 𝑊(𝑛), (2)) and represented in frequency 

domain using FFT, and subsequently the Mel-filter bank is 

applied to the log of the amplitude spectrum to represent the 

frequency measurements on the Mel-scale. 

                                   𝑓∗ = 2595 log (
1 + 𝑓

700
)                        (1) 

     𝑊(𝑛) = 0.54 − 0.46 cos (
2𝜋𝑛

𝑁 − 1
) , 0 ≤ 𝑛 ≤ 𝑁 − 1    (2) 

 

Discrete Cosine Transform (DCT) of the output from the 

previous step is calculated to obtain MFCC coefficients [8]. 

Typically, along with the first 12 coefficients and the energy 

of the segment, the first order derivatives and the second 

order derivatives of these 13 features are also included to 

form a 39-feaures MFCC feature vector of a short audio 

segment. The first 12 MFCC features are phonetically 

significant features which are critical for analysis of speech 

signal. 

B. Predictive Coding 

Linear Predictive Coding (LPC) is a method commonly 

used for estimating speech parameters such as spectra and 

pitch formants [9]. It is used to faithfully encode speech for 

low bit-rate transmission. It is based on the principal that the 

value of a sample �̃�(𝑛)  can be estimated by a linear 

combination of all 𝑝 previous samples as displayed in (3). 

The first method to calculate LPC coefficients is by 

minimizing the estimation error and solving a system of 

linear equations by autocorrelation method, covariance 

method, or lattice method. The LPC coefficients 𝛼𝑘  define 

the formants of the signal, i.e., the frequencies at which there 

is an occurrence of resonant peaks, same as the peaks in the 

spectrum of the linear prediction filter resulting from the 

transfer function (5) [7][8][10]. 

The coefficients are calculated over the entire speech 

signal by using sliding time window with overlap of 10 ms 

and multiplying the frame with the Hamming window. The 

set of LPC coefficients of each frame constitute the feature 

vector for the respective audio segment. 

�̃�(𝑛) = ∑ 𝑎𝑘𝑠(𝑛 − 𝑘)

𝑝

𝑘=1

                                (3) 

𝑒(𝑛) = 𝑠(𝑛) −  �̃�(𝑛)                                      (4) 

                          
𝑆(𝑧)

𝐸(𝑧)
=

1

1 − ∑ 𝛼𝑘𝑧−𝑘𝑝
𝑘=1

                               (5) 

  

C. Perceptual Linear Prediction 

PLP is similar to LPC, but it takes into account the human 

auditory perception. It uses critical bands, intensity-to-

loudness compression, and equal loudness pre-emphasis to 

remove irrelevant information and extract feature vectors. It 

utilizes the non-linear frequency scale called Bark scale to 

map frequency in Hertz, 𝑓, to frequency in Bark scale, 𝑓𝑏  (6).  

 

𝑓𝑏 = 7 log (
𝑓

650
+ √1 + (

𝑓

650
)

2
)   (6) 

 

The speech signal segment is windowed using the Hamming 

window and the power spectrum is calculated, post which the 

Bark filter bank is applied. The Bark filter bank incorporates 

the process of frequency warping to the Bark scale, smooths 

the spectrum using the simulated critical-band masking curve, 

and down-samples the smoothened spectrum to ~ 1 bark 

intervals. It essentially compresses the higher frequencies into 

a narrow band. The filter bank outputs are weighted using 

equal loudness pre-emphasis weights to reflect human 

sensitivity of hearing. Linear prediction is applied to this 

warped spectrum to obtain predictor coefficients. From these 

coefficients, the cepstral coefficients are calculated by 

performing an inverse Fourier transform over the log of linear 

prediction model spectrum [7][8][11]. 

D. Pitch Features 

MFCC+Pitch features and PLP+Pitch are combinations 

of the regular MFCC/PLP coefficients with pitch features. 

There are various pitch feature extraction methods such as 

Yin [12], Getf0 (get fundamental frequency) [13], SAcC [14], 
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Wu [15], SWIPE [16], and YAAPT [17] to extract pitch 

features from speech signal, however all of them process 

voiced and unvoiced audio frames separately [18]. All pitch 

trackers aim to get an estimate of the fundamental frequency 

(F0) of a signal, which is a property of all periodic signals 

and is a good indicator of perceived pitch. Estimating F0 

requires the classification frames as voiced or unvoiced. This 

estimation has 3 steps- pre-processing, generation of estimate 

candidates for the true period, and post-processing to select 

the best estimate [13].  

Pre-processing is carried out to perform high-pass and low-

pass filtering, and to remove the DC-offset, noise, vocal-tract 

filter influences, etc. Subsequently to generate period 

candidates, various methods such as auto-correlation, cross-

correlation, and cestrum can be used, although the best 

approach is using normalized cross-correlation function 

(NCCF). It overcomes the issues of the other methods but 

with the caveat of higher computational complexity.  

 

                              ∅𝑖,   𝑘 =
∑ 𝑠𝑗𝑠𝑗+𝑘

𝑚+𝑛−1
𝑗=𝑚

√𝑒𝑚𝑒𝑚+𝑘

                               (7) 

                                   𝑒𝑗 = ∑ 𝑠𝑙
2

𝑗+𝑛−1

𝑙=𝑗

                                           (8) 

NCCF (7) of voiced samples tend towards 1.0 (maxima) for 

lags corresponding to integer multiples of ‘true period’ 

whereas NCCF of unvoiced samples has maximum values at 

zero lag. In post-processing, dynamic programming is used 

for voicing decision and selection of the ‘true period’, 

consequently determining F0 [13]. 

The Kaldi pitch tracker used in our experiments is based 

on the Getf0 pitch extractor. While the original Getf0 makes 

hard decisions on whether a frame is voiced or unvoiced, the 

Kaldi pitch extractor treats all frames as voiced and uses 

Viterbi search to interpolate over unvoiced frames naturally. 

It is based on finding lag values that maximize the 

Normalized Cross Correlation Function (NCCF). Instead of 

just the local maxima, the search is conducted over a fine 

grid. A 'ballast' term is added to the NCCF formula such that 

it tends to zero for quieter regions of the signal. NCCF in 

combination with the raw pitch feature is used to compute the 

three default output features of the Kaldi pitch tracker, 

namely the Probability Of Voicing (POV) feature, mean-

subtracted-log-pitch, and delta-of-raw-pitch. 𝑐  being the 

NCCF of an audio frame, 𝑎 = 𝑎𝑏𝑠(𝑐) and 𝑙 = −5.2 +
5.4 exp(7.5(𝑎 − 1)) + 4.8𝑎 − 2 exp(−10𝑎) +

4.2 exp(20(𝑎 − 1)) . POV, 𝑝 , is given by (9). The POV 

feature,  𝑓 , is described by (10). 

 

                              𝑝 =
1

1 − exp(−𝑙)
                                        (9) 

                              𝑓 = 2((1.0001 − 𝑐)015 − 1)                  (10) 

It gives a gaussian distribution to the feature. For the mean-

subtracted-log-pitch, at time t, the average of pitch value over 

a window of width 151 frames, centered at t and weighted by 

POV, is subtracted from log pitch value to normalize it. The 

third default feature, delta-of-raw-pitch, is calculated from 

the unnormalized log pitch in the standard way using ±2 

frames of context [6]. The three extra pitch features are added 

to the standard MFCC/PLP coefficients, and the first and 

second derivatives are calculated for the MFCC/PLP 

coefficients plus the three additional features as per the 

standard procedure, to form the speech feature vector for 

MFCC+Pitch and PLP+Pitch. 

V. MODEL TRAINING 

All experiments on the comparison of speech features for 

spoken CNR were performed using the Kaldi Speech 

Recognition Toolkit. ASR model training for all five 

languages was performed using 80% connected number 

dataset and 20% general dataset. The connected number data 

collection was outsourced to an external party by Hitachi 

India Pvt. Ltd. and resulted in the Hitachi Dataset-I. The 

general data is obtained from various opensource datasets 

such as OpenSLR [19][20], CommonVoice, and Shrutilipi 

[21]. For a given language, all training conditions except 

speech feature type was ensured to be identical. We used a 

distribution of 70% train, 20% dev, and 10% eval for all 

model training and testing. Additionally, mutual exclusivity 

with regards to speakers was maintained for train, dev, and 

eval datasets to avoid bias towards any speaker. The details 

of model training are explained in following Subsections. 

A. Data Pre-processing 

To train the acoustic model, the initial pre-processing of 

audio training data included volume pre-normalization and 

volume perturbation. An ASR model should be robust against 

volume/amplitude variations of audio signals, thus requiring 

a dataset with a variety of amplitudes. The range of volume 

levels selected for our experiments was 0.125 to 1. 
Before the extraction of speech features, a dataset of 

speed-perturbed audios was created, such that the model 

could learn diverse representations of each phoneme. Speed 

perturbation simply involves resampling the signals to 

change the tempo and pitch. Typically, speed-perturbation-

based data augmentation improves the ASR performance 

[22]. We selected 0.9, 1, and 1.1 as the three speeds to create 

the speed-perturbed dataset, thus increasing the effective data 

size for feature extraction to three times its previous size. 
To prepare the language dictionary with phoneme 

representations, a transliteration tool based on ILSL 2.0 was 

used. Indian languages, in general, have one-to-one 

grapheme to phoneme mapping, unlike the English language. 

ILSL 2.0 consists of unified transliteration standards 

specifically designed for Indian languages, which define 

common phoneme representations for corresponding 

graphemes in respective Indian languages. This is not 

necessarily an IPA-like representation of phonemes but a way 
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to represent the most similar sounding phonemes in multiple 

Indian languages by a common representation. This step is 

critical to perform the comparison of ASR models in multiple 

languages. 

B. Speech Features Extraction 

For our experiments, we tested two primary speech 

features: MFCC and PLP. Furthermore, we combined both 

MFCC and PLP with pitch features to test for MFCC+Pitch 

and PLP+Pitch, respectively. The speech feature extraction 

scripts are a part of Kaldi. For CNR experiments, a 39-

dimensional feature vector was generated for each frame of 

audio, which had a duration of 25ms and was shifted by 

10ms. The first 13 dimensions of the feature vector consisted 

of 12 speech features along with the energy of the spectrum, 

while the remaining 26 dimensions were constituted by the 

first and second order derivatives of the same. This 

architecture was maintained for both MFCC and PLP feature 

vectors. 
Pitch feature extraction and combining them with MFCC 

and PLP features were done using the scripts for Kaldi pitch-

tracker, which is based on the concepts introduced in "A pitch 

extraction algorithm tuned for automatic speech recognition" 

[6]. However, to maintain the 39-dimensional structure of the 

feature vectors, we considered 11 speech features and the 

energy of the spectrum, along with their first and second 

order derivatives for the first 36 dimensions of the feature 

vector. The last 3 dimensions were dedicated to the three 

pitch features extracted using the Kaldi pitch tracker. After 

extracting the features, Cepstral Mean and Variance 

Normalization (CMVN) was applied to reduce differences in 

feature representation of different speakers and enhance the 

noise robustness of speech recognition [23]. 

C. Phoneme Alignment Training 

As a part of conventional speech recognition model 

training, the next step involved alignment of phonemes. We 

implemented Montreal Force Alignment (MFA) [24] for 

phoneme alignment. MFA trains HMM-GMM model in 

consecutive steps, i) Monophone training, ii) Triphone 

training (tri-1), iii) Triphone + LDA + MLLT training (tri-2), 

iv) Triphone + LDA + MLLT + SAT training (tri-3). The 

final alignments generated from tri-3 are passed to the 

TDNN-LSTM network to train the acoustic model. The 

hyperparameters tuned during the training process are listed 

Table 1. The ‘numleaves’ and ‘totgauss’ decide the number of 

triphones which can be modelled and their fine-grained 

nature. The hyper parameter values were obtained as per Kaldi 

community guidelines. Further, we performed Bayesian 

optimization to tune hyper parameters, but it showed 

insignificant improvements. We fixed identical values of 

these hyper parameters for all experiments to compare the 

model performances based on speech feature type and 

language. 

D. TDNN-LSTM Model training 

Once phoneme alignments are learnt, next step is to learn the 

temporal sequences of speech signals. Recurrent Neural 

Network (RNN) is a popular approach to learn sequential 

information; however, it suffers from the vanishing gradient 

problem. Hence, Long Short-Term Memory (LSTM) neural 

networks were invented. Furthermore, Time Delay Neural 

Networks (TDNN) can learn the localized temporal patterns 

better than traditional Deep Neural Networks (DNN). We 

integrated TDNN with LTSM, instead of integrating DNN, 

thus making it a TDNN-LSTM network. Moreover, our 

objective is to compare the speech recognition performance 

for multiple speech features over multiple languages. 

Therefore, we did not necessarily investigate the network 

with the best performance and the best tuning parameters. 

Rather, we opted for a standard network architecture and 

trained multiple models to derive comparative insights. The 

hyperparameters used in the training are listed in Table 1. 

These hyperparameters were set as per IIT Madras Speech 

Lab ASR Challenge demo Kaldi recipe [25] and further 

modified as per Kaldi community guidelines. Again, these 

hyperparameters were set to be identical for all the 

experiments to compare the model performances. 

E. Language Model training 

The connected number language models were built for all 

the languages separately using the SRILM toolkit. The 

corpus for training the language model consisted of the text 

representation of connected numbers from 1 to 100,000 in the 

respective language. 3-gram language models showed the 

best perplexity scores and were thus selected for decoding. 
The model inference of test data is achieved by combining 

the results of the acoustic model and the language model. 

VI. EXPERIMENTAL EVALUATION 

The investigation of speech features with and without 

pitch for five Indian language for CNR has been presented 

with the standard metrics, i.e., Word Error Rate (WER) and 

Sentence Error Rate (SER). The connected number samples 

in the eval set are used to display the results of our 

investigation with the mentioned metrics in Figure 2 and 

Figure 3. The training, dev, and eval set are identical for all 

experiments pertaining to a specific language. The eval set 

connected number audio samples have been collected in a 

natural environment, therefore contain various types of 

background noises native to the environment. 

On average, MFCC+Pitch yields the least WER and SER 

among all the speech features. Inclusion of pitch features with 

MFCC features reduces WER for all languages except 

Bengali, where it shows a slight increase by 0.58%. 

MFCC+Pitch shows 0.68% average reduction of WER and 

1.27% average reduction of SER when compared with 

MFCC. The highest improvement was observed in Hindi 

language in this case. However, adding pitch features with 

PLP shows a slight increase in WER (~0.8%) across three 

languages.  
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TABLE I.  RANGE OF HYPERPARAMETER AND TRAINING CONDITION USED 

AT DIFFERENT STAGES OF TRAINING 

Training Stage Hyperparameters Range 

Monophone iterations 40 

Triphone (tri-1) 

iterations 35 

numleaves 2750 

totgauss 50000 

Triphone + LDA + 
MLLT (tri-2) 

iterations 35 

numleaves 2750 

totgauss 50000 

Triphone + LDA + 

MLLT + SAT (tri-3) 

iterations 35 

numleaves 2750 

totgauss 50000 

TDNN-LSTM 

Epochs 6 

Hidden layers 13 

Dimension of layers 1024 

Non- linearity ReLU 

Initial learning rate 0.0001 

Final learning rate 0.00001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The PLP and PLP+Pitch based models show comparable 

results overall. MFCC features with and without pitch show 

better performance than PLP features with and without pitch 

features. 

 

VII. DISCUSSION 

India is a diverse country with multiple languages spoken 

in different regions.  The presented experimental work helps 

in building a single acoustic model for multiple languages. 

The aim is to gather insights regarding the tuning of a 

multilingual ASR model to meet different recognition criteria 

depending on the part of the country where the model is to be 

deployed. Therefore, the model should ultimately show 

higher accuracy for the region-specific language, while also 

supporting multiple other languages. 
For example, if the model needs to be deployed in the 

West Bengal region, it should meet the high accuracy criteria 

for Bengali and Hindi languages and also support other 

languages like Marathi or Kannada. The experimental results 

show that for same amounts of training and testing data, and 

identical training conditions, the Hindi model shows better 

performance as compared to the Bengali model. Therefore, 

while training the multilingual ASR model, one can think of 

including more data for Bengali than for Hindi to get decent 

performance over both languages. Also, using MFCC 

features can be helpful since it shows the best performance in 

Bengali. The presented work provides such heuristics for 

multilingual ASR developments, without which we lose out 

on language-specific nuances of training conditions. This 

leads to higher resource requirements in terms of data, 

infrastructure, and time to get the desired performance. 
This study also provides language-specific learnings. The 

five Indian languages in this experimentation are broadly 

classified into two language families; The Indo-Aryan 

language family to which Hindi, Bengali, and Marathi 

belong, and the Dravidian language family to which Tamil 

and Kannada belong. Amongst these languages, Marathi and 

Hindi are phonetically similar, moreover, they use the same 

‘Devanagari’ script. As mentioned in Section V.A., we use 

an ILSL 2.0 transliteration tool for grapheme-to-phoneme 

representation. For both Hindi and Marathi, the grapheme-to-

phoneme map is one-to-one, hence both languages show 

similar and relatively better performance as per Figure 2 and 

Figure 3.  On the other hand, Bengali language has some 

elements in the grapheme-to-phoneme map which exhibit 

many-to-one mapping, leading to relatively poorer 

recognition performance. Tamil and Kannada languages 

belong to the same language family, and show similar and 

relatively poorer performance. Therefore, one needs to tune 

their training conditions differently to get better performance 

from the models. 

VIII. CONCLUSION 

In this paper, we have presented the experimental results 

for building Connected Number Speech Recognition (CNR) 

models in multiple Indian languages. The experiments were 

conducted for five Indian languages Bengali, Hindi, Tamil, 

Kannada, and Marathi. Different speech recognition models 

were trained for four feature combinations: MFCC, 

MFCC+Pitch, PLP, and PLP+Pitch features. The 

 
 

 

 

 

 

 

 

 

 

 
 

Figure. 2    Comparison of % WER for CNR models built for 5     

Indian languages with 4 feature combinations 

Figure. 3    Comparison of % SER for CNR models built for 5 Indian 

languages with 4 feature combinations. 
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MFCC+Pitch features offers the best result on average; 

however, results may vary from one language to another. 

Such comparative analysis can help select the best feature 

combination for any given training conditions and dataset. 

The presented work provides language specific insights and 

heuristics for building multilingual ASR models. 

In future, we hope to build a single speech recognition 

model for multiple languages for Connected Number 

recognition (CNR), which can be more adaptive for language 

switching and have a smaller memory footprint. 
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