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Abstract—The event time-series can accurately describe the
behavior of many dynamic systems. The challenge is that the
events are categorical variables, so they cannot be analyzed by
the existing statistical methods developed for numerical time-
series. In order to infer the causally related events, in this paper,
it is proposed to assume the empirical conditional probabilities of
nearly certain and nearly uncertain events. Moreover, since the
event ordering is usually locally irrelevant, the event sequences
can be transformed into the event sets or multi-sets with ap-
propriately defined distance metrics. The event sequences having
a zero distance can be then assumed to be causally equivalent.
The distance metrics are also used in matrix profile analysis of
event time-series. Numerical examples are studied for chemical
reaction events generated in stochastic simulations of biochemical
molecular systems. Even though the proposed framework for
discovering the causally related event sequences can be readily
fully automated, they still need to be properly interpreted in the
context of relevant domain knowledge.

Keywords—causal; dynamic system; event; matrix profile; state-
space; time-series

I. INTRODUCTION

Traditional signal processing and machine learning mainly

exploit statistical associations within data. However, it is

well known that a strong association is neither necessary nor

sufficient for causality, for example, due to confounding. At

the same time, a weak association cannot rule out the causality.

Recently, there has been a great interest in developing data

models and processing methods, which are interpretable [1].

The cause and effect are central to scientific hypotheses

testing, experiment design, and to generate the prescriptive

analytics of engineering systems. It is possible to only consider

whether the cause-effect exists without determining its direc-

tion or strength. The causal relationships can be represented as

Structural Causal Models (SCM) [2]. The SCM can be created

from a prior knowledge, or inferred by performing statistical

independence tests on the data. An important question is

whether the SCM can be determined from the observed data,

and whether such a SCM is unique. The SCM can be converted

into a Bayesian network using do-calculus [2].

Different approaches were adopted in the literature to obtain

causal models of time-series data [3]–[11]. Granger causality

decides whether the past values of a time-series can improve

the prediction of future values of another time-series. However,

this type of causality cannot be used for time-series with

instantaneous effects, or when sub-sampling of time-series

may mask the causal relationships. The intervention causality

enforces a change in the time-series value at a particular time

instant, and then the change can be evaluated as an Average

Causal Effect (ACE). In supervised and semi-supervised ma-

chine learning, the labels of data can be assumed to be a cause

of data features (i.e., the effects). It enables to automatically

label data as well as to repair incorrect labels. However, all

these methods normally assume numerical data.

In [12], the causality is induced by changes in the interaction

covariances. The methods for evaluating causal intervention of

non-randomized, small-size treatments are surveyed in [13].

A state-space SCM for causal inference in time-series data

was studied in [14]. A causal graph discovery over multiple

related datasets was proposed in [15]. The limitations of

convergent cross-mapping in performing the causal inference

were investigated in [16]. The temporal trends in data need

to be identified before performing the causal inference as

shown in [17]. The causal analysis of small sample sizes was

performed in [18] by studying state-space attractors of non-

linear dynamical systems. However, none of these works seem

to have considered the causal inference for categorical data.

In this paper, our goal is to discover causal relationships

within categorical time-series. Such series may represent the

events occurring in control and monitoring of dynamic sys-

tems. The events cannot be often directly detected, but must be

indirectly inferred except in computer simulations of dynamic

systems. The events usually incur changes in the system

internal states. It is extremely useful to understand what caused

these changes, and to make more robust predictions about

the anticipated future changes (effects). Moreover, the event

time-series can be partitioned into shorter sequences. The task

is then to determine the causality between the pairs of the

event sequences. In addition, since the event ordering is locally

irrelevant, it is proposed to transform the event sequences into

the event sets or multi-sets.

More importantly, the cause-effect relationship is newly de-

fined here assuming the conditional probability of nearly cer-

tain and nearly uncertain events. This probability is estimated

empirically as a relative frequency of occurrence of particular

event sequences. Even though such a notion of causality is

incomplete, as many event sequences are conditionally neither

certain nor uncertain, this approach has the advantage of

its implementation simplicity, and it can be fully automated.

Moreover, various distance measures [19]–[22] can be used

to define equivalences among the event sequences, which can

increase the number of these sequences classified as being

causally related by our definition of causality. The distance

metrics also enable the matrix profile analysis, a versatile

framework used for the pattern discovery in time-series data.
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Numerical examples are obtained for a biochemical reaction

network, where the events represent chemical reactions. The

history of chemical reactions are recorded by modifying the

downloaded open-source simulation. The event time-series

processing and visualization pipeline is implemented using a

C++ code and the custom scripts in Python and Bash.

The rest of this paper is organized as follows. Section II

describes a common model of dynamic systems with event-

driven changes of observations and internal states. The pro-

posed causal framework for analyzing the event time-series

is introduced in Section III. Numerical examples are briefly

presented in Section IV. The limitations of our work are

discussed and the paper is concluded in Section V.

II. SYSTEM MODEL

Consider a dynamic system described by transitions be-

tween the consecutive stationary states zzzt−1 ∈ Z and zzzt ∈ Z

due to periodically occurring events et ∈ E , i.e.,

zzzt = et(zzzt−1,zzzt−2, . . .)

where t denotes a discrete time index. The system observations

are defined by a generally non-linear function,

yyyt = O(zzzt ,zzzt−1, . . .)

of the current and the previous system states including any

intrinsic and extrinsic noises (the latter not shown explicitly).

The values yyyt may not be available for all indexes t due to

practical measurement constraints; this corresponds to uniform

or non-uniform sub-sampling of the observations yyyt .

In this paper, it is assumed that, (1) the system model is

memoryless, i.e., zzzt+1 = et(zzzt), and, yyyt = O(zzzt), and, (2) the

observations are perfect, i.e., yyyt = zzzt , and available for all

t. Such Markovian and noise-free observation assumptions

greatly simplify our reasoning, and they are satisfied for

the system studied in Section IV. Furthermore, the events

et are represented as categorical variables, such that, et ∈
{0,1,2, . . .}. Under these assumptions, the transitions between

the observations yyyt and the events eeet are depicted in Figure 1.

In particular, Figure 1 indicates that different events affect

different components in the observed vector, yyyt . However, the

practical constraints on the observations yyyt , for example, to

ensure that, yyyt ≥ 0 for ∀t, may enforce a dependency (i.e., a

memory) among the successive events et . Note also that both

the events and the observations are normally dependent on a

number of other parameters, which is not explicitly considered

in our model description.

The memoryless assumption implies the following property

of the event-based modeling of dynamic systems.

Theorem 1: Given the observation yyyt at time t, the ordering

of (m+1)> 0 events in the sequence, (et ,et+1, . . . ,et+m), does

not affect the observation yyyt+m at time (t + m).

Theorem 1 asserts that the same observation yyyt+m is produced

for any arbitrary ordering of a particular sequence of events.

However, this does not guarantee that all the event orderings

satisfy all the observation constraints; for instance, the natural

t t + 1
t

yt,1

yt,2

yt,i

yt,1

yt,2

yt,i

et

etet

yt,1

yt,i
i

0

0

ii

0

Figure 1. The changes in different components of observations yyyt affected
by different events et ∈ E .

eeet 7→ ssst

eeet+2 7→ ssst+2

et+2et+1et

eeet+1 7→ ssst+1

et+m+1 et+m+2

Figure 2. The sequences eeet of (m + 1) events mapped to (multi-) sets ssst .

constraints that the observations are always non-negative, or

do not exceed a certain value, may be temporarily violated.

Consequently, the sequences of events, eeet =
(et ,et+1, . . . ,et+m), can be assumed to be multi-sets (i.e., the

same events can appear multiple times, but their ordering

is irrelevant), or ordinary sets (the repeated elements are

removed). The corresponding (multi-) sets are denoted as, ssst ,

and they can be created by sliding-window partitioning of the

original event time-series as shown in Figure 2.

III. ANALYSIS OF EVENT TIME-SERIES

Recall that the events et are categorical variables, which can

be mapped to non-negative integers E . Since such a mapping

is rather arbitrary, and assumed purely for a representation

convenience, it cannot be used for evaluating statistical prop-

erties of the time-series, {et}t . Assuming instead the sequence

of (multi-) sets, ssst ∈ S , where S ⊆E ×·· ·×E = Em+1, we can

examine the probability mass function as well as define various

distance measures involving ssst . The former approach will be

used to identify the causal relationships between pairs of event

sequences. The latter approach enables a flexible matrix profile

analysis of the event time-series.

A. Causality Between Event Sequences

Our objective is to determine a possible causal relationship

between pairs of consecutive but non-overlapping event se-

quences. Thus, given eeei and eee j, j = i+m +1, i.e., eeei ∩ eee j = /0

(empty set), decide, whether the event sequence eeei causes

the event sequence eee j (causal learning), or whether the event

sequence eee j is an effect of the event sequence eeei (anti-causal

learning). One plausible and commonly used strategy is to

construct a SCM, and fit it to the data (the event sequences).
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The SCM analysis can be combined with interventions and

do-calculus to find the causes and effects of specific event

sequences. In this paper, we instead propose the following

strategy to identify some, but not all pairs of causally related

event sequences.

Definition 1: The event sequences eeei and eee j, j > i, have

a cause-effect relationship, provided that their conditional

probability,

Pr(eee j|eeei) → 1. (1)

In such a case, the event sequence eeei is said to be a cause of

eee j. Equivalently, the event sequence eee j is an effect of eeei.

The conditional probability (1) represents the likelihood of

the event sequence eeei, given the event sequence eee j. Thus, the

prior distribution of eeei is ignored in Definition 1, and so is

the joint distribution Pr(eeei,eee j). This can be justified by noting

that a cause-effect relationship is generally asymmetric. Even

though there are also cases where eeei causes eee j, and at the same

time, eee j causes eeei, in general, Pr(eee j|eeei) 6= Pr(eeei|eee j).

The reason for assuming the conditional probability in

Definition 1 to be nearly but not exactly equal to 1 is that

the equality is too restrictive and almost never achievable in

practice. Moreover, the conditional probability Pr(eee j|eeei) close

to 1 indicates that, given eeei, there are only a few possible event

sequences eee j following eeei (i.e., the number of such sequences

eee j is significantly smaller than the number of all possible event

sequences observed).

More importantly, the size of the event space, E , expressed

as the cardinality, |E |(m+1), is often much smaller than the

volume of the corresponding observations yyy in a (m + 1)-

dimensional Euclidean or some other space. This is the key

reason for analyzing the sequences of events for inferring

the causality rather than directly processing the sequences of

observations. Although in most practical scenarios, it is the

observations that are available, whereas the internal events can

only be inferred from these observations, which is prone to

decision errors. However, computer simulations are a notable

exception, and they will be utilized in Section IV.

The conditional probability of the event sequences in Defi-

nition 1 close to 1 is only one significant case, which can be

readily causally interpreted. The other such significant case

is represented by the conditional probability being close to 0.

This leads to the following definition of causality between two

event sequences.

Definition 2: The event sequences eeei and eee j, j > i, have

no cause-effect relationship, provided that their conditional

probability,

Pr(eee j|eeei) → 0 and Pr(eeei|eee j) → 0. (2)

The sequences eeei and eee j are then said to be causally unrelated.

Assuming both conditional probabilities in Definition 2 is

necessary in order to ensure that neither eeei nor eee j can be a

cause of the other. Moreover, unlike Definition 1, it is much

more likely to find the pairs of event sequences having very

small or even exactly zero conditional probabilities.

The conditional probabilities of event sequences may some-

times be available from the analysis of a Bayesian model

derived from the SCM. However, in many practical scenarios,

these probabilities must be empirically estimated from the

event time-series data. In such a case, the event sequences

eeet of N = (m+1) events are first created by a sliding-window

partitioning of the original event time-series. In order to enable

Definitions 1 and 2 of causality, the sequences eeet are further

subdivided into two disjoint sub-sequences (omitting the time

index for brevity), eeei and eee j of N1 and N2 events, respectively,

so that,

eeet = eeei ∪ eee j, eeei ∩ eee j = /0

and N = N1 + N2, N1 = |eeei|, N2 = |eee j|, and importantly, all

the events in eeei precede the events in eee j. The corresponding

(multi-) sets are denoted as sssi and sss j, and they are referred to

as the left and the right event (multi-) sets, respectively.

Define a 2D counter (matrix), Ci, j, of the number of the

unique left and right sub-sequences, eeei and eee j, composing the

event sequences, eeet . The conditional probabilities (1) and (2)

can be then estimated as,

Pr(eee j|eeei) ≈Ci, j/Ki (3)

where Ki denotes the number of times a specific event sub-

sequence eeei was observed, i.e., Ki = ∑ j Ci, j.

There are, however, two issues with the causality in Defi-

nitions 1 and 2. The first problem is that the number of sub-

sequences eeei and eee j satisfying (2) and especially (1) can be

rather small in comparison to the total number of all observed

event sub-sequences. This leaves out most other pairs of event

sub-sequences eeei and eee j, for which their causal relationship

cannot be determined using Definitions 1 and 2, since their

conditional probability, 0< Pr(eee j|eeei)< 1. The second problem

is that identifying the rarely occurring, causally related sub-

sequences using the estimator (3) becomes less accurate,

unless sufficiently long event time-series are available.

In order to overcome these issues, we can exploit the

mapping of event sequences to event (multi-) sets, as discussed

in Section II. It allows us to define various notions of distances

between the event sequences eeei and eee j as follows. Let d0 be

the Hamming distance between eeei and eee j. Then, any of the

following expressions can be assumed as a distance metric

between the event sequences eeei and eee j.

d(eeei,eee j) = d0 −|sssi ∪ sss j| (4a)

d(eeei,eee j) = d0 −|sssi ∩ sss j| (4b)

d(eeei,eee j) = d0 − (|sssi|+ |sss j|) (4c)

d(eeei,eee j) = d0 −max(|sssi|, |sss j|) (4d)

d(eeei,eee j) = max(|sssi|, |sss j|)−min(|sssi|, |sss j|) (4e)

d(eeei,eee j) = min(|sssi \ sss j|, |sss j \ sssi|). (4f)

Thus, always, d(eeei,eee j)≥ 0, d(eeei,eee j) = d(eee j,eeei), and |sssi| ≤ |eeei|.
Furthermore, in order to increase the number of occurrences

of event sequences which are either causally related by Defi-

nition 1, or causally unrelated by Definition 2, we can assume
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any of the distance metrics (4a)-(4f) to introduce the following

notion of equivalent event sequences.

Definition 3: The event (sub-) sequences eeei and eee j are said

to be equivalent, provided that their distance, d(eeei,eee j) = 0.

It is clear that by discarding the event ordering and keeping

only the unique events in event sets as assumed in the

distance metrics (4a)-(4f), the number of equivalent event sub-

sequences can grow substantially, and so does the number

of event sub-sequence pairs satisfying either Definition 1 or

Definition 2.

The effect of assuming the equivalent event sub-sequence is

illustrated in Figure 3. In the first step, the unique event sub-

sequence pairs eeei and eee j are identified, and their multiplicities,

Ci, j, are counted. Using Definition 3, the equivalent event

sub-sequences can be identified among the right or the left

sub-sequences representing either the potential event causes,

potential event effects, or both. The equivalent event sub-

sequences are then merged (blue boxes in Figure 3), and the

counters Ci, j used in (3) are updated accordingly.

More specifically, let Iu, u = 1,2, . . ., be the sets of indices of

the equivalent left event sub-sequences eeei representing possible

causes, and Jv, v = 1,2, . . ., are similar such index sets for the

right event sub-sequences eee j, representing the possible effects.

The event sub-sequence counters in (3) are updated due to the

left and the right merges as,

C′
i, j = ∑

i∈Iu

Ci, j, C′
i, j = ∑

j∈Jv

Ci, j.

Consequently, it then becomes much more likely that some

pairs of the equivalent event sub-sequences have their con-

ditional probability close to 1 (as estimated by their relative

occurrences), so they can be assumed to be causally related by

Definition 1. On the other hand, merging the equivalent event

sub-sequences and aggregating the counters make it somewhat

less likely that the condition of non-causal relationship in

Definition 2 would be satisfied. These causal decisions are also

greatly affected by a specific choice of the distance metric.

B. Matrix Profile Analysis of Event Time-Series

The canonical matrix profile effectively shows the minimum

distances between constant length sequences, which are cre-

ated by a sliding-window partitioning of the original time-

series data. The distance calculations in the matrix profile are

greatly optimized to allow processing of very long sequences

of data. These calculations can be readily parallelized, for

example, using a MapReduce algorithm. The matrix profile

is mainly used to identify common patterns (motifs) as well

as rare patterns (discords), and also to identify time instances

when the distance-based sequence statistics have changed.

Even though the events are represented as categorical rather

than numerical variables, the distance metrics (4a)-(4f) can

be directly used in calculating the matrix profile of the event

time-series. The choice of the actual distance metric strongly

affects the resulting matrix profile, although less than one

might expect. However, it is still useful to compare the matrix

profiles for different values of the sequence lengths.
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Figure 3. A: Original pairs of the unique event sub-sequences. B: Left-mergers
of event sub-sequences as potential causes. C: Right-mergers of event sub-
sequences as potential effects.

More importantly, the original matrix profile only displays

the minimum distance values for each sliding-window sub-

sequence. However, other statistics may also be useful. For

example, the distribution of sub-sequence mutual distances

provides a more global view, whereas the multiplicity of the

smallest distances for each sub-sequence may be as informa-

tive in some applications as the actual smallest distance values.

IV. CASE STUDY: BIOCHEMICAL REACTION NETWORKS

Biochemical reaction networks represent dynamic systems

that undergo changes in copy counts (or, equivalently, concen-

trations) of chemical species due to chemical reaction events

[23]. The number of chemical reactions is often much larger

than the number of chemical species. The corresponding chem-

ical kinetics can be stochastically described using a Chemical

Master Equation (CME) [24]. The CME is usually solved by a

Monte Carlo simulation [25], which tracks the time-evolution

of the chemical species counts. More importantly, we assume

a so-called well-stirred system, i.e., the spatial distribution and

the diffusion of chemical molecules are ignored.

The models of chemical reaction systems may involve

chemical species containing multiple binding sites [26]. Enu-

merating all chemical reactions for every binding site is

impractical due to the combinatorial complexity of the result-

ing chemical reaction network. The network-free algorithms

exploit the reaction (meta-) rules to effectively describe the

groups of reactions without a need to enumerate all the

reactions explicitly [27].

A. Numerical Experiments

Numerical experiments were obtained for an antigen re-

ceptor signaling regulating the activity and fate of the B-

cells [28]. The corresponding model (referred to as BCR

model) consists of 32 molecule types, 158 reaction rules,

and 129 model parameters. The extracted full model contains

1,124 chemical species and 24,390 chemical reactions. The

model was simulated in BioNetGen software [29], [30].
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Figure 4. The estimated conditional probabilities Pj,i of N = (1 + 2) event
sub-sequences. Black: Pj,i < 0.1, Red: Pj,i < 0.9, Blue: Pj,i ≥ 0.9.

BioNetGen is an open source software offering its own model

description language to specify chemical reaction systems.

The model description file is processed by a Perl script in

order to generate the more complete system model given in

System Biology Markup Language (SBML). The SBML file

is then simulated in NFSim [31]; an open source software

written in C++ [32]. We have modified NFSim to enable

recording of the history of all reaction events in the course

of the simulations. The trajectories of chemical species counts

were simply discarded. The generated event time-series were

processed, and visualized by the custom-made scripts written

in Python. The overall process of performing the simulations,

processing the event time-series, and generating the plots was

fully automated mainly using the Bash scripts.

Simulating the BCR model over 100 simulation seconds

resulted in 3,634,390 reaction events involving 35 reaction

types. The reaction events can be naturally divided into 100

blocks over one second intervals. The sliding-window event

sub-sequences were then formed and processed. The distinct

frequencies of occurrence of the event N-tuples were observed,

and they allow their clustering into multiple distinct classes.

Due to space limitations, only the following three plots are

shown. Figure 4 visualizes the estimated reverse conditional

probabilities, Pr(eeei|eee j) for the first five blocks (i.e., for the

events eeei occurring before eee j), assuming |eee j| = 2 and |eeei| = 1,

i.e., N = 3. The reactions in each column in Figure 4 have

the same ordering to indicate that some event patterns can

be considered causal (according to our Definitions 1 and 2) in

some blocks, but not in other blocks. Furthermore, in Figure 4,

the right event sub-sequences were combined assuming the

sub-sequence equivalences with the distance metric (4a). The

line coloring is described in the caption of Figure 4.

Figure 5. A canonical matrix profile assuming the minimum distances (4a),
for sub-sequences of 4, 10 and 20 reaction events.

Figure 6. The matrix profile of the maximum distances (4f) (top-row) and
their multiplicity (bottom-row) for sub-sequences of 4, 10 and 20 events.

Figure 5 depicts a canonical matrix profile assuming sub-

sequences of 4, 10 and 20 events. The profile was calculated

using the Python module stumpy [33]. It can be seen that the

profile becomes more dense, and its mean moves away from

zero with the increasing sub-sequence length. Finally, Figure 6

shows the matrix profile assuming the maximum (instead of

minimum) values of the distance metric (4f) between any pair

of sub-sequences of 4, 10 and 20 events, respectively (top-

row), and the multiplicity of these maximum distance values

(bottom-row). This illustrates how the choice of the distance

metric greatly affects the shape of the matrix profile.
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V. DISCUSSION AND CONCLUSION

The sliding-window event sequences were split into the

left and the right event sub-sequences. The causality has

been defined here as the pairs of nearly certain or nearly

uncertain event sequences. The level of certainty can be eval-

uated empirically by measuring the corresponding conditional

probabilities. Since ordering of events is locally irrelevant, it is

useful to transform the event sub-sequences into event (multi-)

sets, for which various distance metrics can be defined.

The distance metrics can be utilized to obtain the ma-

trix profiles of event time-series. Our numerical experiments

demonstrate that matrix profile is a rather general and flexible

framework for analyzing numerical as well as categorical time-

series, and conveniently visualizing their statistics.

Even though this paper focuses on analyzing the short

sequences of consecutive events, the events neither have to

be consecutive, nor short. However, assuming non-consecutive

events make the pattern space to be combinatorially much

larger, and the longer the event sequences, the less likely it is to

identify those that can be considered to be statistically certain

or uncertain. The causality analysis may also involve both

the events and the observations. This can lead to explainable

Monte Carlo simulations, provided that causally related (or un-

related) sub-sequences are identified and properly interpreted

in a given domain [34], which can be challenging.

The simulation software adopted and the programming

scripts produced to analyze state-space models of biochem-

ical reaction networks allow fully automated processing of

the recorded event time-series. It allows generating a large

number of diverse plots for different models across different

numerical experiments, although automated interpretation of

the identified causal events may again be rather challenging.
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