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Abstract—This paper proposes a motion biomarker for alcohol 

detection using a deep learning approach that processes 

inertial signals recorded with a smartphone. The deep learning 

architecture is composed of a Convolutional Neural Network, 

including three convolutional layers for learning features from 

the inertial signal spectrum, and several fully connected layers 

to perform classification and regression tasks. The motion 

biomarker is computed in two steps. Firstly, the inertial signals 

are segmented in short sub-windows (3-6 seconds) and the 

system generates a score for each sub-window. Secondly, the 

scores in consecutive sub-windows are combined to provide a 

motion biomarker over in longer periods of time (30 seconds). 

This paper compares the proposed approach to previous works 

using the same experimental dataset and setup: Bar Crawl 

Detecting Heavy Drinking Data Set, K-fold cross-validation 

methodology and two tasks (classification and regression). The 

proposed deep learning approach overperformed previous 

reported results: the accuracy increased 4 % (absolute) when 

classifying between intoxicated and sober participants and the 

Mean Squared Error relatively decreased 9 % when estimating 

the Transdermal Alcohol Content of the participants by 

averaging the scores from consecutive sub-windows. 

Keywords-Alcohol Detection; Motion Wearable Sensors; 

Convolutional Neural Networks; Sub-windows Combination. 

I.  INTRODUCTION 

High-frequency alcohol consumption could become a 
serious threat for people’s health. In fact, physicians and 
social workers are interested in reducing the alcohol 
consumption in young adults. For example, measuring the 
Transdermal Alcohol Content (TAC) is useful to recommend 
the person to stop drinking in real time. In addition, wearable 
technology could be used for developing an alcohol 
detection system based on inertial signals from 
accelerometers included in smartphones. 

This paper evaluates a strategy to combine sub-windows 
information for an alcohol detection system based on 
wearable technology and deep learning, obtaining important 
improvements for long windows (over 10 seconds). This 
study was performed over the public dataset Bar Crawl: 
Detecting Heavy Drinking Data Set. It contains acceleration 
recordings from 13 subjects during a university event and 
measurements from a TAC sensor. The results significantly 
outperform the performance reported in previous works over 
the same dataset. 

This paper is organized as follows. Section 2 reviews the 
related work. Section 3 describes the material and methods, 

including the dataset, the signal processing and deep learning 
modules. Section 4 details the evaluation metrics and the 
experiments performed in this work. Finally, Section 5 
summarizes the main conclusions of this work. 

II. RELATED WORK 

Alcohol detection through mobile sensing has gained 
popularity in the last years. Researchers have combined 
different sources of information from smartphones and 
wearable devices, such as acceleration signals, location, 
keystroke speed, or sent/received calls to predict intoxication 
levels of alcohol consumers. Moreover, inertial signals from 
wearables and smart devices have been used for motion 
modelling in other areas, like activity classification [1][2] or 
biometrics [3]. This section describes several previous works 
on alcohol detection based on mobile sensing. 

Kao et al. [4] developed controlled laboratory 
experiments to classify alcohol intoxication through 
smartphone accelerometer signals. Arnold et al. [5] 
compared several machine learning algorithms (Naïve 
Bayes, Decision Tree, Support Vector Machines and 
Random Forest) using acceleration data from the smartphone 
to classify alcohol intoxication levels through the number of 
drinks consumed by a user. They proved that Random Forest 
was the most accurate classifier, reaching 56% and 70% 
accuracy on the training and validation sets, respectively, 
classifying the number of drinks into ranges of 0-2 drinks 
(sober), 3-6 drinks (tipsy) or >6 drinks (drunk). This work 
reached encouraging results, but they used potentially biased 
self-reports to measure ground-truth intoxication levels, 
which could limit the reliability of the results. 

Santani et al. [6] characterized youth drinking behavior 
using smartphones involving 241 participants during a 
weekend night using a Random Forest classification 
algorithm to infer whether an individual consumed alcohol 
(over a threshold). This work also used self-reports on 
individual alcoholic drinks consumed on Friday and 
Saturday nights over a three-month period. They concluded 
that accelerometer data was the most informative single 
signal, reaching an accuracy of 75.8%.  

McAfee et al. [7] used drunk busters goggles to distort 
vision and simulate the effects of alcohol consumption on the 
body and rate at four BAC levels [0.00-0.08), [0.08-0.15), 
[0.15-0.25), [0.25+). They used accelerometer and gyroscope 
features from smartphone, height, weight, and gender 
reached to classify 33 subjects into these BAC levels. This 
previous work used 5-second segments and reached 89.45% 
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of accuracy when detecting the BAC level using a decision 
tree classifier when using 99% as training data and 1% as 
testing data and 73.74% using a Random Forest algorithm 
when using a 10-fold cross-validation setup. 

Killian et al. [8] measured accelerometer signals with a 
smartphone and TAC data during a drinking event in a non-
intrusively way. This work used 10-second windows of 
acceleration recordings and the authors randomized the data 
using 75% for training and 25% for testing. They compared 
machine and deep learning algorithms, concluding that 
Random Forest approach outperformed the classification 
between sober (TAC < 0.08) and intoxicated (TAC >= 0.08) 
participants and with a 77.48% of accuracy. Another 
previous work [9] used the same dataset and performed both 
classification and regression task using a K-fold cross-
validation strategy. They used a Convolutional Neural 
Network (CNN) architecture and obtained an accuracy of 
80.43 ± 0.21 % using 2-second windows for the 
classification task and a MSE of alcohol content estimation 
of 0.001559 ± 0.000011 g/dl for the regression task. 

In addition, a previous work [10] analyzed the effect 
performance saturation in activity recognition when 
increasing the analysis window size. They proposed several 
strategies to combine the information from consecutive sub-
windows, obtaining significant improvements compared to 
directly using long windows. This paper combines several 
sub-windows at the end of a CNN architecture, obtaining 
significant improvements compared to previous works using 
the same dataset. 

III. MATERIAL AND METHODS 

This section describes the dataset used for the 
experiments, the signal processing, the CNN, and the post-
processing module for combining the scores from sub-
windows. 

A. Dataset 

We used the Bar Crawl: Detecting Heavy Drinking Data 
Set” [8]. It includes recordings from 13 undergraduate 
students in a drinking event. The dataset includes 
acceleration signals from a sensor embedded in smartphones 
sampled at 40 Hz and TAC measurements collected with an 
ankle bracelet. A TAC=0.08 g/dl was used as the level to 
discriminate between intoxicated participants (TAC >= 0.08) 
and sober participants (TAC < 0.08). Participants joined in 
drinking activities without any instruction. For the 
classification task, we considered two classes: intoxicated 
and sober participants. For the regression task, our target was 
to estimate the TAC. The total duration of the dataset is 77 
hours approximately. The acceleration values mostly vary 
between -4 and 4g, and Table 1 summarizes the acceleration 
and TAC signals statistics. 

B. Signal Processing 

We divided the accelerometer signals into non-
overlapped consecutive sub-windows using a Hanning 
function (other functions were evaluated like Hamming or 
Blackman without significant differences). In this paper, the  

TABLE I.  ACCELERATION AND TAC SIGNALS STATISTICS 

Signal Units Min Mean Max 

X g -43.335 -0.009 39.23 

Y g -33.475 0.001 27.311 

Z g -49.023 0.056 42.313 

TAC g/dl 0 0.065 0.443 

 
system provided a consumption score per sub-window, and 
we integrated consecutive scores to evaluate longer periods. 

For each sub-window, we computed the Fast Fourier 
Transform (FFT). For example, in case of using 3-second 
sub-windows, we used 60 bins in the frequency domain per 
example as inputs to the CNN corresponding to the FFT 
magnitude from 0 to 20 Hz. As in previous works using this 
dataset, we only considered temporal windows whose 
estimated energy was higher than zero at 2 Hz (average 
human walking activity frequency). We used GNU Octave 
for the signal processing step (windowing and computing the 
FFT). 

C. Deep Learning Architecture 

We used a deep learning approach composed of a feature 
learning subnet and a classification subnet. Figure 1 
represents the architecture that models and classifies 
participants between intoxicated (TAC >= 0.08) and sober 
(TAC < 0.08) using 3-second sub-windows. The first part of 
the structure learns features from the spectra using three 
convolutional layers and one intermediate max-pooling 
layer. The second part of architecture contains fully 
connected layers that classify the sub-windows as intoxicated 
or sober subjects. The last layer has one neuron and uses the 
sigmoid activation function, and the binary cross-entropy 
loss metric for classification problem. In case of regression 
problem, this last layer has a linear activation function and 
uses the mean squared error loss metric. In intermediate 
layers, ReLU is used as activation function to reduce the 
impact of gradient vanishing effect. Both tasks used the root-
mean-square propagation optimizer [11], with learning rates 
of 0.001 and 0.00005 for classification and regression tasks, 
respectively. It was discovered that to achieve better results 
on the regression task, a lower learning rate was required. 
Before reporting testing results, the validation subset (10 % 
of training subset) was used to tune the number of epochs 
(10) and the batch size (200) of the architecture. Each This 
architecture, which uses 3-second sub-windows, has 137,665 
parameters. We used Python distribution with Tensorflow 
and Keras libraries to create the deep neural network 
architecture. 

D. Post-processing Decision Module 

Combining the information along several consecutive 
sub-windows allows increasing the decision robustness, by  
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Figure 1.  Deep learning architecture including convolutional and fully 

connected layers for classification. This is the deep learning module which 

obtains a score sub-window by sub-window. 

evaluating long periods of time that keep a uniform behavior. 
The mean filtering approach used in this work consisted of 
running a non-overlapped filter through a specific signal and 
computing the mean of N sub-windows. In this sense, this 
mean filtering was used as a post-processing technique that 
allowed the integration of information from consecutive 
windows using the final scores of the CNN output. After 
computing the mean score of N consecutive windows, we 
obtained a single value which integrates the information 
along these windows. When the prediction is completely 
filtered, the final number of examples would be divided by 
N. We used N=1, 2, 4, 5, 6, 8, 10, 12, and 14, being N=1 the 
lack of filtering. Figure 2 shows an example of mean 
filtering of final prediction using N=4 with 3-second sub-
windows, where the prediction (between 0 and 1) is modified 
after applying the filtering technique and integrating more 
time (12 s) and some isolated errors are corrected through 
this integration of temporal information. 

IV. EXPERIMENTS AND DISCUSSION 

This section defines the evaluation metrics used in this 
work and shows the results in the experiments. 

A. Evaluation Metrics and Validation 

This paper performs two tasks: TAC classification and 
regression. For the classification task, we used accuracy: the 
ratio between the number of correctly classified examples 
and the number of total examples. In our case, every analysis 
window is considered as an example. This metric is 
presented with confidence intervals of 95%, obtained with 
(1), given M examples (windows) and a specific value of 
accuracy. Two results are considered significantly different 
when there is no overlap in these confidence intervals. We 
also used the Area Under the Curve (AUC) to evaluate this 
binary classification problem. 

acc (95%) = acc ± 1.96*√((acc(100-acc))/M)        () 

Regarding regression task, Mean Square Error (MSE) 
was considered as the average squared difference between 
the estimated values and the actual values. This error is 
presented with confidence intervals of 95%, obtained with 
(2), given M examples (windows) and an error standard 
deviation s. We also used the Pearson correlation coefficient 
between the estimated and the actual TAC measurements to 
evaluate the regression problem. 

 

Figure 2.  Mean filtering of predictions using N=4 and 3-second sub-

windows. 

MSE (95%) = MSE ± 1.96*s/√M                      () 

In this work, we used K-fold cross-validation for 
comparison to previous works: data is divided into K folds 
(13 in this work) to divide data in training, validation, and 
testing subsets. A different fold is used for testing in each 
iteration, with the remaining folds used for training (10 % of 
training subset was used for validation). This methodology 
allows to evaluate the system over all available data using 
different data distributions. The reported results are the 
average along all iterations. For example, in case of using 3-
second sub-windows, a total of 92,000 examples 
approximately are considered. For each fold, 7,000 examples 
for testing and 85,000 examples for training (8,500 for 
validation) approximately. Training the model with a 90% of 
data, guarantees a well-trained model: reducing this amount 
could have a negative impact over the performance. We 
observed these classification and regression tasks are high-
user dependent, so a leave-one-out approach is considered as 
future work.  

B. Experiments 

We analyzed the influence of the window size and the 
combining information technique averaging the predictions 
from sub-windows after the deep learning architecture over 
the classification and regression tasks. As baseline system 
[9], we performed lack of combination experiments using 
long windows directly to observe the performance saturation 
when increasing the analysis window length. After that, we 
compared these results to our approach: averaging the scores 
from sub-windows after the CNN. 

Related work section mentioned previous works [8] [9] 
that obtained 77.48 % and 80.43 ± 0.21 %  of accuracy for 
the classification task and a MSE of alcohol content 
estimation of 0.001559 ± 0.000011 g/dl for the regression 
task. 

Figure 3 and Figure 4 show the test accuracy and AUC, 
respectively, using the baseline approach (lack of 
combination), 3-second sub-windows, and 6-second sub-
windows combination for the alcohol classification task. 
Figure 5 and Figure 6 show the test MSE and correlation,  
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Figure 3.  Accuracy evolution including the baseline results and the 
performance results obtained when integrating 3-second and 6-second sub-

windows for the alcohol classification task. 

 

Figure 4.  AUC evolution including the baseline results and the 

performance results obtained when integrating 3-second and 6-second sub-

windows for the alcohol classification task. 

 

Figure 5.  MSE evolution including the baseline results and the 

performance results obtained when integrating 1-second and 2-second sub-

windows for the alcohol estimation task. 

 

Figure 6.  Correlation evolution including the baseline results and the 

performance results obtained when integrating 1-second and 2-second sub-

windows for the alcohol estimation task. 

respectively, using the baseline approach (lack of 
combination), 1-second sub-windows, and 2-second sub-
windows combination for the alcohol estimation task. These 
figures show that the baseline approach achieves a 
performance saturation when increasing the analysis window 
length because we raise the number of parameters to be 
trained in the CNN and the spectral resolution, that increases 
the overfitting risk. However, integrating the scores after the 
CNN allows to boost the classification and regression 
performances, reaching a maximum in accuracy (84.47 ± 
0.74 %) and AUC (91.82 %) evaluation metrics for 30 s 
evaluation using 3-second sub-windows. In the case of 
alcohol content estimation, the best result was an MSE of 
0.00142 ± 0.00002 and a correlation of 0.7, obtained when 
combining four 1-second sub-windows. 

V. CONCLUSION AND FUTURE WORK 

Detecting alcohol consumption through wearable 
technology and deep learning is very interesting to avoid 
health risks in the future. This paper contributes to the 
supervision of alcohol consumption from acceleration 
signals by proposing a method to evaluate long periods of 
time. The system leverages that alcohol content is quite 
stable in time to integrate information from short sub-
windows and boost the classification and regression 
performances. Using these short sub-windows, it is possible 
to decrease the number of parameters to be trained in the 
CNN and reduce the overfitting risk that occurs when 
increasing the spectral resolution. This work used the Bar 
Crawl: Detecting Heavy Drinking Data Set, obtaining better 
performance than previous works that used the same dataset. 

As future work, it would be interesting to leverage the 
sequential information from sub-windows using Long Short-
Term Memory (LSTM) layers to analyze the evolution of the 
alcohol content. In addition, we observed that the current 
approach has the limitation of generalizing to unseen 
subjects, so it would be useful to apply adaptation techniques 
and focus on specific characteristics of subjects in a Leave-
One-Subject-Out CV scenario. 
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