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Abstract—Nowadays, position recording personal tracking de-
vices are ubiquitous and used by both athletes and outdoor
enthusiasts to track and analyse their activities. These devices rely
on Global Navigation Satellite Systems to obtain the position in
real time. Although the nominal precisions of the different GNSS
are high enough for analysis, there are several environmental
factors that affect the precision of such devices. Most of the
commercial services providing analysis of outdoor activities use
techniques to “clean” the user-uploaded data (tracklogs). Most
of these techniques require and exploit the huge amount of data
that they collect and analyse, but the resulting logs still manifest
outliers and recording errors. In this paper, we present a deep
learning based technique to identify part of tracklogs that might
be influenced by recording errors, in such a way that can be
corrected using standard techniques. Our approach does not
require geographical or crowdsourced data, and can be also used
on low powered devices.

Index Terms—Data Cleaning, GPS Traces, Trajectory repair-
ing, recurrent neural networks

I. INTRODUCTION

Location tracking devices based on Global Navigation Satel-
lite Systems (GNSS) are widely used by outdoor enthusiasts
and athletes to track their activities for both analysis and social
sharing purposes. Although the precision of GNSS-based
geolocation is within a few metres under optimal conditions,
there are several environmental and receiver-related factors
that may introduce substantial errors [1].

Most commercial providers of services related to the anal-
ysis and sharing of outdoor activities employ techniques to
correct imprecisions in the data provided by users (e.g. [2]).
However, the results are not always satisfactory, even by
exploiting the large amount of data collected by the big players
in the field (see, e.g., Figure 1).

In our work, we focus on two types of error that are often
present in recorded activity logs, which are demonstrated in
Figure 1. Those are the errors that can be easily identified
by users and appear in most outdoor activity recordings. Both
these segments are extracted from the web interface of one of
the biggest commercial service provider, after any correction
that might have been applied to the raw data. The first segment
shows a pause that has not been detected by the recording
device (some devices feature pause detection algorithms, but
often they do not provide a reliable outcome), while the second
shows that some recorded points do not reflect the actual
position of the receiver. Note that the nature of the two types
of errors are different, since the behaviour of the first case

is due to the intrinsic imprecision of the position pinpointing
while the second is mostly due to environmental conditions,
as rock formations. It might be argued that part of the tracking
of the first case is due to inevitable small movements of the
receiver; however, even in this case, it would be desirable to
remove these segments from the recording.

(a) (b)

Fig. 1. Examples of recording errors

In our research, we explore the use of Deep Learning [3]
(DL) techniques to improve the quality of recorded activities
without resorting to big data techniques (e.g., heat maps) or
background knowledge (e.g., network of roads and paths). The
reason is twofold, from one side we would like to be able to
apply our technique at the level of edge computing also on low
powered devices; on the other hand, there are several outdoor
activities that are not constrained by the network of paths or
roads (e.g., ski touring or kayaking). We are also interested
to develop techniques not relying on the behaviour of specific
receivers or activities. In this way, it could be applied to data
coming from different sources, or even when the information
on the recording device or activity type has been stripped from
the data.

The contributions of this work are as follows.
• Collection of an annotated dataset of outdoor activities

for data repair.
• Evaluation of different DL architectures for GNSS data

classification.
• Development and evaluation of a DL model for classify-

ing GNSS receiver errors in activity logs.
• Evaluation and development of algorithms for repairing

activity logs.
The next section will introduce the main concepts and

related works, because of space restrictions we assume that
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the reader is familiar with Deep Learning techniques and
architectures (otherwise the reader is referred to the relevant
bibliographic entries). Section III describes the development
and evaluation of the classifier, while Section IV describes the
repair techniques. A more detailed description of this work is
available in the M.Sc. thesis [4].

II. BACKGROUNDS AND RELATED WORK

Modern tracking devices use combinations of different
GNSS to identify the current location; moreover, some devices
integrate data from other sensors – e.g., barometer, gyroscope,
compass – to compensate for possible reception errors. In this
paper, we focus on the Global Positioning System (GPS), but
similar considerations apply also to the other systems [5].

GPS uses 24 satellites on different orbits to enable the
reception of at least four of them, regardless of the location
of the receiver. In addition, there are control stations that
precisely monitor the position of each satellite and share
this information using a common registry. To calculate its
position, the receiver listens to the electromagnetic waves of
four different satellites. It then monitors the time taken by the
signal to reach the device starting from the satellites and, since
it knows the exact position of each satellite, is able to calculate
its position with respect to them. Four different satellites are
required to measure the three different coordinates (latitude,
longitude, and altitude), while the fourth signal is used to
synchronise the internal clock of the device [6].

According to a study conducted in 2015 [7], the positioning
error of a smartphone using GPS is within 5m when there
are no obstacles. However, the GPS signal can be influenced
by the surrounding environment. In particular, the signal can
be reflected by some surfaces resulting in what is known as
multipath reception [1], depicted in Figure 2.

Fig. 2. Multipath effect. Reproduced from [1]

The reflected signal takes longer than the correct direct
path, introducing a delay that could result in a potential error
in the calculation of the position. Moreover, given that the
satellites are constantly moving, the effect of multipath at a
certain location changes over time, depending on the position
of the satellites. Experiments have shown that the multipath
effect can introduce an additional average of 8m error in the
derived position [1]. This effect may occur in nature due to,
for example, mountains, resulting in what is widely known as
canyon effect. This effect is also occurring in urban contexts,
where tall buildings substitute rock walls (urban canyons) [8].

Figure 3 shows the effects of the rocky environment on a
recorded activity.

Fig. 3. Canyon effect on an activity log recorded during a via ferrata

In this paper, we use the term tracklog to denote a sequential
record of geographic coordinates with associated timestamps
(the location points or simply points) collected by a GNSS
receiver. Timestamps are essential for most activity analysis
tasks, and tracklogs are also referred as GNSS traces or
trajectories in the literature. A tracklog repair is an editing
of the sequence by removing or changing the geographic
coordinates of some points. We assume the correctness of the
timestamps; in particular, the relevant detail is the time interval
between timestamps.

The task of cleaning GPS data, and as a more general
case time series, has been widely studied in the literature. We
identified six groups of related works based on the techniques
they employ.

Smoothing-based techniques Moving average approaches
or autoregressive algorithms are often used to smooth time
series [9]. Kalman filters [9], which combine the observation
and a prediction, based on the relation of the various com-
ponents with external factors, were also applied, updating the
external influence [10] or weighting the observations using
the variance [11]. Smoothing techniques generally modify the
entire time series, which may also lead to adjusting the correct
points.

Data-driven techniques In [12], past observations are used
to extract the main routes and areas in a region to correct the
points falling into them. Predetermined trajectories, known a
priori, were used to correct GPS readings [13]. Furthermore,
in [14] the authors employed the detection of outlying sub-
trajectories, considering the distance of their characteristics.
Data driven techniques heavily rely on the regional availability
of data, generally lacking generalisation.

Constraint-based techniques Ordered, or sequential, re-
lations are also often employed; such as speed constraints
to identify outliers [9]. However, their definition can be
problematic for dynamic activities.

Statistics-based techniques Markov Models have been
used to predict and then compare observations as a cleaning
strategy [9]. Dynamic probabilistic models, such as STPM,
were used to calculate the conditional probabilities of at-
tributes, applying a threshold based cleaning [9]. Moreover,
in [15], using available data, the corrected sequence is cal-
culated as close as possible to the original using the largest
likelihood in terms of speed change between consecutive
points.
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Anomaly detection techniques In [16], the authors parti-
tioned the original trajectories using significant direction or
speed changes, and then they apply a consistency model to
the partitions in order to identify anomalies. Thresholds have
also been employed, for example in [17], to the reachability
speed between points to remove outliers, then applying the
underlying geographic information to adjust their positions,
or in [8] using the altitude and distance between consecutive
points. Smoothing techniques, e.g., a Gaussian kernel, are
applied to the points. However, identifying the right thresholds
can be challenging for dynamic activities.

Machine learning techniques Clustering algorithms were
used to merge directly reachable clusters of points [9], using
DL models adopted to perform anomaly detection [9]. In [18],
decision trees and the SVM were combined to classify the GPS
points into different categories. In [19], a neural network is
used to predict the destination of taxi trips among selected
destinations, which are discovered applying a mean shift
algorithm on the training trajectories. Furthermore, in [20] a
regression model, trained on points collected by smartphones,
is employed to identify a radius used to restrict candidates for
the correct position within a circle centred on the point to be
corrected.

III. BUILDING AND TRAINING THE CLASSIF IER

The first problem we faced is the lack of (annotated)
datasets to develop and train a classification model. Therefore,
we built a publicly accessible web application that allows
anonymous upload and annotation of logs. The description
of the application is outside the scope of this paper, but its
source is available on [21].

The annotation app enables graphical annotation by se-
lecting (ranges of) points and assigning one of the available
classes: pause, outlier, correct. We decided to include the
correct class in order to mitigate the fact that the majority
of points are not annotated, so the dataset would be heavily
unbalanced if we were considering all the not annotated points
as correct. The correct class enables the annotator to specify
points that they consider to be placed correctly. The annotator
has the possibility of including additional metadata, such as
the type of activity and the recording device, but this is not
required.

Over 5 months, we collected 61 logs distributed among 7
types of activities, and most of them were hiking, walking,
and ski mountaineering (they correspond to 80% of the logs).
The number of distinct logs is important to ensure diversity,
but the dataset should be understood in terms of location
points and annotations. The total number of points is 232, 238
with 13, 514 (0.06%) annotations; of those, the majority –
more than 77% – are marked as correct, followed by pauses
(15%) and outliers (8%). The majority of the collected logs
are located in the Trentino - South Tyrol Italian region, while
more in general we could observe how all of them were in the
northern Italy.

The fact that a point is identified as not correct does not
depend on its location and timestamp, but on the variation w.r.t.

preceding and following points. In fact, several techniques
in the literature just rely on identifying wrong points on the
basis of their variation w.r.t. neighbours (see, e.g., [16], [17]).
Because of this, we normalise the dataset, transforming each
point into a tuple representing the variation of location and
time from the previous point (the deltas). Each delta represents
the variation of the coordinates on the three spatial axes and
the time elapsed between each pair of consecutive points
(Figure 4).

t0

t1 t2

t3

t1-t0
t2-t1 t3-t2

Fig. 4. Location points to deltas.

To simplify the computations of deltas, we convert the
original location points encoded in longitude, latitude, and
altitude into the Earth-Centred Earth-Fixed Coordinate System
(ECEF) [22]. The latter being a Cartesian system, the deltas are
just the difference between values of the corresponding axes,
and their values do not depend on the actual geodetic position.
Moreover, given the initial location and timestamp, the original
sequence of geodetic coordinates can be reconstructed without
data loss. In the rest of the paper, we will use the term points
to refer to the deltas rather than the geographical coordinates.

Before committing to a specific deep learning architecture,
we performed a set of preliminary experiments in order to
identify the one that would be best suited to identify properties
of GNSS logs. Our hypothesis was that Recurrent Neural
Networks are well suited for this task, being widely adopted
for sequence labelling, in particular focusing on Long Short
Term Memory (LSTM) networks [23]. However, we decided
to compare it with two other different architectures used to
classify and repair GNSS data: Multi-Layer Perceptron [24],
and Convolutional [25]. Since we were still collecting our data,
we decided to evaluate these architectures on a simple activity
recognition task (that is, identifying the type of sport activity
from the recorded task) using 150 publicly available tracklogs
of walking, hiking, and running (downloaded from Wikiloc and
Garmin Connect sites with the consent of users). Our prelimi-
nary experiments confirmed that LSTM networks provided the
best performance among the selected architectures.

In [26] different variations of the LSTM architecture have
been evaluated and shown that “forget gate and the output
activation function to be its most critical components”, re-
inforcing our choice of adopting recurrent neural networks
based on this cell type, considering also how some possible
variations, tested in [26], did not show particular advantages
in terms of accuracy. To select the right network topology and
hyper-parameters we compared a common vanilla LSTM as
baseline, with a three-layers LSTM architecture used in [27] to
evaluate driving style, and our proposed architecture coupling
three LSTM layers with dropout layers (see Figure 5). In our
proposed architecture, the first (bidirectional) LSTM layers
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outline the nonlinear temporal relations between the data;
while the remaining layers gradually reduce the number of
nodes before the target output to avoid overfitting.

(a) vanilla

Activation function

R = ReLU
S = Softmax
T = Hyperbolic tangent

(b) driving style

(c) our

Fig. 5. The evaluated LSTM architectures

For all selected LSTM architectures, the input layer is a
sequence of contiguous points (4-tuples) of a given fixed
size (the window), while the output layer is composed of
a sequence (the same size as the input) with an array of
units, each corresponding to one of the classification classes,
activated using softmax. Each array of units provide the
classification of the corresponding input point.

To classify the points of a tracklog, we employ a sliding
window approach where sequences are created by moving a
fixed size window over the original tracklog, by a given sliding
step (Fig. 6).

VeqXence 1

VeqXence 2
VeqXence 3

Fig. 6. Sliding window approach to segmenting (size 4, step 2)

When the classifier is used on a given tracklog, each point is
classified multiple times (depending on the size of the window
and sliding step), for selecting the class we decided to use a
majority selection. This is used in the evaluation for training
the network and in its deployment for cleaning new logs.

To select the best parameters we focused on the window size
(3, 5, 10, 15), step size (1, 2, 3, 5), and number of training
epochs (10, 20, 30, 40, 50). We performed a grid search
on those combinations using a standard K-fold technique (3
folds). For the grid search, we used a subset of the final dataset
(66% of the tracklogs), and the dataset was composed of all
the sequences generated by the sliding-window approach over
the (padded) annotated points. We ensured that training and
testing folds did not share common points due to intersecting
windows. Table I shows the best three combination across
the different architectures. The driving architecture does not
appear in the table because the best accuracy obtained among
the different combinations of parameters was 0.83.

We performed a final evaluation of the selected architecture
and parameters using the same k-fold procedure. The results

TABLE I
TOP THREE COMBINATIONS

Epochs Window Step Accuracy LSTM Architecture
30 15 2 0.864243 our
40 15 2 0.860122 vanilla
10 15 2 0.859688 vanilla

are summarised using the confusion matrices of the folds in
Figure 7. Finally, we trained the network on the entire dataset,
generating the model to be deployed to classify the points in
tracklogs.

Fig. 7. Confusion matrices for model evaluation

Our goal is to be able to deploy the data repair on low-
powered devices, so it is paramount to maximise the efficiency
and minimise the resource consumption of the classifier. The
standard TensorFlow library and models are not suitable for
edge computing; however, TensorFlow Lite [28] is tailored for
deployment on mobile, embedded, and IoT devices. Standard
TensorFlow models cannot be used with the “lite” version
of the library and need to be converted. Since the original
model is not very large, we decided to convert it without
any further optimisation; therefore, the properties of the “lite”
model are the same as the original. This has been confirmed
by comparing the results of the original and “lite” models over
the entire training data set.

The code used for our experiments is available in [29].

IV. REPAIRING TRACKLOGS

The process we envisage for cleaning the activity logs
is composed by two stages: in the first, location points are
classified using the trained model; after, one of the various
techniques presented in the literature can be applied to the
points identified as non-correct.

As introduced in Section III the classification of points
in a tracklog is performed by first converting them into a
sequence deltas and then classifying them by majority vote
using a sliding window to obtain multiple classifications for
each point.

After the classification process, the correction focuses on
the points assigned to either pause or outlier classes. The first
kind of points are easy to deal with, since they represent a
situation in which the device should have been stationary, so
they should be all referring to the same position. Therefore, a
sequence of “pause” points can be removed or replaced with
a single point by averaging their data. In fact, there might
be actual small movements, but they are irrelevant, or even
misleading, for activity analysis purposes.

To correct “outliers” we considered different techniques
applied in the relevant literature. Most techniques that do
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not exploit crowd-sourced data are based on the idea of
“smoothing” segments in which points diverge w.r.t. a set of
predefined parameters. The smoothing can be performed using
linear or splines [30] interpolation. Kalman filters [31] have
also been used to improve the quality of GNSS data [9]. This
family of transformations join together the observed value and
the predicted one to obtain the final observation.

We compared linear and spline interpolation (Figure 8) with
Kalman filters (Fig 9) and we observed that the latter provided
the best results. Note that the quality of the result is based on
the visual inspection of the corrected tracklog; we reckon that
more objective measures should be investigated, but to the
best of our knowledge, there is no consensus in the research
community on how to evaluate the quality of a tracklog.

(a) linear (b) spline

Fig. 8. Example of interpolation (in red the changes)

There are different ways to apply the filter; we excluded
the common approach of applying it to all data points because
our classifier enables us to focus on only the points that are
considered “outliers”. We apply filtering only to the segments
that include “outliers”. We also noticed that the application
of the filter along the direction of the timestamps introduces
an unnatural joining of the corrected segment with the rest of
the tracklog due to an “inertial” effect of the filter (it tends to
maintain the current direction of the movement). To mitigate
this effect, we applied the filter in both forward and backward
directions, averaging their changes to the points (Figure 9).

(a) unidirectional (b) bidirectional

Fig. 9. Example of Kalman filter (in red the changes)

The code we used for our repair experiments is available
in [32].

V. CONCLUSIONS

In this paper, we described a Deep Learning approach
to identify parts of the recorded activity logs that could be
affected by GNSS receiver errors. We identified two types
of error, namely those deriving from the so-called “canyon
effect” (outliers) and those deriving from a stationary receiver
(pauses). Moreover, we show how different techniques can be
applied to modify the identified errors, and suggest the ones
that provide good quality results. Note that the modularity of

our approach enables the use of different techniques and/or
preferences (e.g., pause segments might be left as they are).

Our empirical evaluation shows that an LSTM architecture
is well suited to identify points affected by receiver errors, and
the classifier can also be used on low-powered (edge) devices.
Our work is also showing that the identification of errors can
also be performed without a prior knowledge about the type
of device and activity. The training process does not require a
large amount of computational resources, so individual users
could adapt the model to their kind of specific activities or
devices.

Moreover, we developed a web application to enable the
collection and annotation of tracklogs, and used it to create a
dataset for our experiments. Clearly, the quality of the dataset
is paramount to ensure the accuracy of the predictions. In the
future we plan to extend the dataset, in particular w.r.t. the
geographical area.

Another problem we identified is the evaluation of the qual-
ity of tracklog repairs. In this work, we adopted a subjective
approach based on the appearance of the resulting tracklog, but
we think that identifying a proper quality measure is an open
and relevant problem which does not seem to be addressed in
any of the works we reviewed. An approach could be to collect
a “golden standard” dataset in a controlled environment; but
it is difficult to cover the variety of outdoor activities and the
environments in which they occur.
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[19] A. De Brébisson, E. Simon, A. Auvolat, P. Vincent, and Y. Bengio,
“Artificial neural networks applied to taxi destination prediction,” in
Proceedings of the 2015th International Conference on ECML PKDD
Discovery Challenge - Volume 1526, ser. ECMLPKDDDC’15. Aachen,
DEU: CEUR-WS.org, Sep. 2015, pp. 40–51.

[20] P. Zhao, A. Zhang, C. Zhang, J. Li, Q. Zhao, and W. Rao, “ATR:
Automatic Trajectory Repairing With Movement Tendencies,” IEEE
Access, vol. 8, pp. 4122–4132, 2020, conference Name: IEEE Access.

[21] D. Sbetti and S. Tessaris, “Track annotation app,” Feb. 2022. [Online].
Available: https://doi.org/10.5281/zenodo.5977242

[22] I. Skog and P. Handel, “In-car positioning and navigation technologies
- a survey,” IEEE Transactions on Intelligent Transportation Systems,
vol. 10, no. 1, pp. 4–21, 2009.

[23] A. Graves, Supervised sequence labelling with recurrent neural net-
works, ser. Studies in computational intelligence. Berlin New York:
Springer, 2012, no. v. 385.

[24] S. R. Bashir and V. Misic, “Detecting Fake Points of Interest from
Location Data,” in 2021 IEEE International Conference on Big Data
(Big Data). IEEE, Dec 2021, pp. 5347–5356.
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