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Abstract—The global stability of continuous-time fractional 

orders nonlinear feedback systems with positive linear parts is 

investigated. New sufficient conditions for the global stability 

of these class of positive nonlinear systems are established. The 

effectiveness of these new stability conditions is demonstrated 

on a simple example. 
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I.  INTRODUCTION 

In positive systems inputs, state variables and outputs 
take only nonnegative values for any nonnegative inputs and 
nonnegative initial conditions [1][4][9]. Examples of positive 
systems are industrial processes involving chemical reactors, 
heat exchangers and distillation columns, storage systems, 
compartmental systems, water and atmospheric pollution 
models, and so on. A variety of models having positive 
behavior can be found in engineering, management science, 
economics, social sciences, biology and medicine. An 
overview of state of the art in positive systems theory is 
given in the monographs [1][4][9][13][18]. 

Mathematical fundamentals of the fractional calculus are 
given in the monographs [13][18][23][24]. Positive 
fractional linear systems have been investigated in 
[3][5][7][10]-[14][17][21][24][25][26]. Positive linear 
systems with different fractional orders have been addressed 
in [10][11][28]. Descriptor positive systems have been 
analyzed in [2][28]. Linear positive electrical circuits with 
state feedback have been addressed in [2][18]. The 
superstabilization of positive linear electrical circuits by state 
feedback has been analyzed in [16] and the stability of 
nonlinear systems in [17][18]. The global stability of 
nonlinear systems with negative feedback and not necessary 
asymptotically stable positive linear parts has been 
investigated in [6][8]. The global stability of nonlinear 
standard and fractional positive feedback systems has been 
considered in [15]. 

In this paper, the global stability of nonlinear fractional 
orders feedback systems with positive linear parts will be 
addressed. 

The paper is organized as follows. In Section 2, the basic 
definitions and theorems concerning the positive different 
fractional orders linear systems are recalled. New sufficient 
conditions for the global stability feedback nonlinear systems 

with positive linear parts are established in Section 3. 
Concluding remarks are given in Section 4. 

The following notation will be used: ℜ  - the set of real 

numbers, mn×ℜ  - the set of mn×  real matrices, mn×
+ℜ  - the 

set of mn×  real matrices with nonnegative entries and 
1×

++ ℜ=ℜ nn , nM  - the set of nn×  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI - the 

nn ×  identity matrix. 

II. PRELIMINARIES 

Consider the fractional continuous-time linear system 
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where ntx ℜ∈)( , mtu ℜ∈)( , pty ℜ∈)(  are the state, input 

and output vectors, nn
A

×ℜ∈ , mn
B

×ℜ∈ , np
C

×ℜ∈ . In this 

paper, the following Caputo definition of the fractional 

derivative of α  order will be used [13][18][23][24] 
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the Euler gamma function.  

Definition 1. [13][18] The fractional system (1) is called 

(internally) positive if ntx +ℜ∈)(  and pty +ℜ∈)( , 0≥t  for 

any initial conditions n
x +ℜ∈)0(  and all inputs m

tu +ℜ∈)( , 

0≥t . 

Theorem 1. [13] [18] The fractional system (1) is positive if 

and only if 

nMA∈ , mn
B

×
+ℜ∈ , np

C
×
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Definition 2. The fractional positive linear system (1) is 

called asymptotically stable (and the matrix A Hurwitz) if 

0)(lim =
∞→

tx
t

 for all n
x +ℜ∈)0( .                 (4) 

The positive fractional system (1) is asymptotically stable if 

and only if the real parts of all eigenvalues ks  of the matrix 

A are negative, i.e. 0Re <ks  for nk ,...,1=
 
[13] [18]. 

Theorem 2. The positive fractional system (7) is 

asymptotically stable if and only if one of the following 

equivalent conditions is satisfied: 

1) All coefficients of the characteristic polynomial 

01
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1 ...]det[ asasasAsI
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are positive, i.e. 0>ia  for 1,...,1,0 −= ni . 

2) There exists strictly positive vector ][ 1 nλλλ L= , 

0>kλ , nk ,...,1=  such that 

0<λA  or 0<A
Tλ .                         (6) 

The transfer matrix of the system (1) is given by 

BAsICsT n
1][)( −−= αα .                       (7) 

Now, consider the fractional linear system with two 
different fractional order 
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where 1,0 << βα , 1)(1
n

tx ℜ∈  and 2)(2
n

tx ℜ∈  are the 

state vectors, ji nn

ijA
×

ℜ∈ , 
mn

i
iB
×ℜ∈ , inp

iC
×ℜ∈ ; i, j = 

1,2; 
m

tu ℜ∈)(  is the input vector and 
p

ty ℜ∈)(  is the 

output vector. Initial conditions for (8) have the form 
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Remark 1. The state equation (8) of fractional continuous-

time linear systems with two different fractional orders has a 

similar structure as the 2D Roeesser type models. 

Definition 3. The fractional system (8) is called positive if 

1)(1
n

tx +ℜ∈  and 2)(2
n

tx +ℜ∈ , 0≥t  for any initial conditions 

1
10

n
x +ℜ∈ , 2

20
n

x +ℜ∈  and all input vectors mu +ℜ∈ , 0≥t . 

Theorem 3. The fractional system (8) for 

10;10 <<<< βα  is positive if and only if  
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Theorem 4. The positive fractional system (8) is 

asymptotically stable if and only if one of the following 

equivalent conditions is satisfied: 

1) All coefficients of the characteristic polynomial 
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are positive, i.e. 0>ia  for 1,...,1,0 −= ni . 

2) There exists strictly positive vector ][ 1 nλλλ L= , 

0>kλ , nk ,...,1=  such that 

0<λA  or 0<A
Tλ .                         (12) 

Theorem 5. The solution of the equation (8a) for 

10;10 <<<< βα  with initial conditions (9) has the form 
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The proof is given in [11]. 

Note that, if βα = , then from (13) we have 
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The transfer matrix of the system (8) is given by 
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III. FRACTIONAL DIFFERENT ORDERS NONLINEAR 

FEEDBACK SYSTEMS WITH POSITIVE LINEAR PARTS  

Consider the nonlinear feedback system shown in Figure 
1, which consists of the positive linear part, the nonlinear 

element with characteristic )(efu =  and the positive scalar 

feedback. The positive linear part is described by the 
equations 
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where 1,0 << βα , 1)(11
n

txx ℜ∈=  and 2)(22
n

txx +ℜ∈=  

are the state vectors, ℜ∈= )(tuu  is the input vector, 

ℜ∈= )(tyy  is the input vector, matrices  CBA ,,  for p 

= m = 1 are defined by (10).

 

 

 

 

Figure 1.  The nonlinear feedback system. 

 

 

Figure 2.  Characteristic of the nonlinear element. 

The characteristic of the nonlinear element is shown in 

Figure 2 and it satisfies the condition 

 ∞<<<< kkeef 0,)(0 .                      (18) 

It is assumed that the positive linear part is asymptotically 

stable (the matrix nMA ∈  is Hurwitz). 

Definition 4. The nonlinear positive system is called 

globally stable if it is asymptotically stable for all 

nonnegative initial conditions .
20

10 n
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
 

The following theorem gives sufficient conditions for the 

global stability of the positive nonlinear system. 

Theorem 6. The nonlinear system consisting of the positive 

linear part, the nonlinear element satisfying the condition 

(18) and the positive scalar feedback h is globally stable if 

the matrix 

 nMCBkhA ∈+                            (19) 

is asymptotically stable (Hurwitz matrix).  

Matrices  CBA ,,  are given by (10). 

Proof. The proof will be accomplished by the use of the 

Lyapunov method [19][20]. As the Lyapunov function 
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where λ  are strictly positive vectors with all positive 

components.  

Using (20) and (17), we obtain 
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since .)( xCkhkeefu =≤=  

From (21), it follows that 0
)()( 21 <+

β

β

α
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dt

xVd

dt

xVd
 if the 

matrix (19) is Hurwitz and the nonlinear system is globally 

stable. □ 

Example 1. Consider the nonlinear system with the positive 

linear part with the matrices 
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the nonlinear element satisfying the condition (18) and the 

positive feedback with gain h. Find k satisfying (19) for 

which the nonlinear system is globally stable for 5.0=h . 

Using (14) and (17) for 5.0=h , we obtain 

.
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The characteristic polynomial of the matrix (23) has the 

form 

)28.1464.104()99.1139.146(

)31.305.70()3.014()ˆdet(
234

4

ksk

sksksAsI

−+−+

−+−+=−
   (24) 

and its coefficients are positive, which implies that the 

nonlinear system with (22) is globally stable for 33.7<k .  

Remark 1. The determinant of the matrix (23) has the form 

kA 28.1464.104)ˆdet( −=                      (25) 

and it is equal to zero

 

for 33.7=k . 

IV. CONCLUSIONS 

The global stability of continuous-time different fractional 

orders nonlinear feedback systems with positive linear parts 

and positive scalar feedback has been investigated. New 

sufficient conditions for the global stability of this class of 

positive nonlinear systems have been established (Theorem 

6). The effectiveness of these new stability conditions has 

been demonstrated on simple a example of positive 

nonlinear different orders system. The considerations can be 

extended to discrete-time standard fractional different orders 

nonlinear systems with positive linear parts and scalar 

feedback. An open problem is an extension of the 

considerations to nonlinear different orders fractional 

systems with interval matrices of their positive linear parts. 
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