
A Novel Location and Neighborhood Adaptive Method for Binary Image

Interpolation

Pullat Joy Prabhakaran, Palanganda Ganapathy Poonacha

International Institute of Information Technology – Bangalore,

Electronic city, Bangalore, India 560100

Email: joy@iiitb.ac.in, poonacha.pg@iiitb.ac.in

Abstract—In this paper, we propose a new zooming technique

for binary images using location and neighborhood adaptive

non-linear interpolation rules. These rules are inspired by the

way an artist would draw an enlarged image. We have shown

that our method overcomes a number of problems associated

with known interpolation techniques, such as blurring and

thickening of edges. Our method uses a set of sixteen rules in

five categories. Each pixel in the interpolated image is

computed by a chosen rule. The choice depends on the location

of the pixel and the content in the neighborhood. The size of

the neighborhood is a variable. Some rules can be influenced

by and influence distant pixels. We present examples showing

the effectiveness of our method. The results are visually

appealing. Lines and dots, with single pixel thickness, retain

their thickness. Inclined lines and solids don’t develop as much

jaggedness as happens with bicubic interpolation. Similarly,

curves are also relatively smoother.

Keywords-Interpolation; binary-image; thinness; corner;

slope.

I. INTRODUCTION

When High Resolution (HR) images are created by
interpolating Low Resolution (LR) images using popular
methods like nearest neighbor, bilinear and bicubic
interpolation, unpleasant artifacts are seen. Two commonly
noticed artifacts are smoothing of edges and pixelation.
These are most likely to arise at object edges, on lines and
curves that are one pixel thick, on inclined and curved solids
or object intersections. Such methods cause more unwanted
artifacts in the case of binary image zooming.

A large number of interpolation methods are available in
the literature [1]–[14]. Some of these, like Nearest Neighbor,
Bilinear and Bicubic [1] methods, use surface fitting
techniques with pre-defined constraints. These methods often
create undesirable artifacts in the output. Many methods
have been proposed to minimize such artifacts. In [2], an
orientation constraint is computed for each pixel to be
generated. The pixel value is computed as a function of this
constraint and the four surrounding neighbors. In an earlier
work [3], we proposed an interpolation method called
Average of Nearest Neighbors (ANN). This was based on
the idea that each pixel in the interpolated image should be
generated by using all the available nearest neighbors in the
original image and none of the other pixels.

In [4], curvature of the low resolution image is evaluated
and this curvature information is interpolated using bilinear
interpolation. The interpolated curvature information is used
as a driving constraint to interpolate the complete image. In
[5], the image is first interpolated using bilinear
interpolation. As a second step, the quality is improved using
a fourth order Partial Differential Equation (PDE) based
method. A directional bicubic scheme is proposed in [6].
Here, the strongest edge in each 7x7 neighborhood is
detected. If the edge strength is greater than a threshold, a
one-dimensional bicubic interpolation is done along the
edge. Our method shares some similarities with [6] because
it also tries to find and preserves local edges.

In [7] and [8], a two-step super resolution process is
studied. In the first step, the low resolution image is
interpolated using Bicubic interpolation. In the second step,
the interpolated image is further processed to improve the
quality at the edges. In [7], the gradient profile of the low
resolution image is used as a driving gradient prior to change
the gradient profile of the interpolated image. This process
makes the edges sharper. In [8], this idea is extended by
splitting the feature space into multiple subspaces and
generating multiple priors.

In some scenarios, a frame from a video sequence needs
to be interpolated. In [9] and [10], techniques to use
information from adjacent frames to improve quality are
discussed. The former uses an adaptive Wiener filter while
the later uses Delaunay triangulation.

A training based approach is discussed in [11]. Unknown
pixels in the interpolated image are generated using the
training data set that best matches. The patch around the
unknown pixel is matched with patches in the training set.
Using the best matched stored patch, the pixel is assigned a
value. A training based method, to expand binary text
images, with an explicit noise model is discussed in [12].

In [13], edges are found as a first step. The edges are
used to compute unknown pixels using cubic spline. In [14],
unknown pixels are assigned the value of the neighbor that is
closest to the value got by bilinear interpolation.

In this paper, we have developed interesting rules, based
on location and nature of content in the neighborhood, for
the interpolation of binary images by a scale factor of 2.
These rules derive inspiration from the way an artist might
zoom an image. We present a method of obtaining
interpolated image pixels using sixteen rules, grouped into
five categories. The rules are of widely varying complexities.

14Copyright (c) IARIA, 2017. ISBN: 978-1-61208-559-3

SIGNAL 2017 : The Second International Conference on Advances in Signal, Image and Video Processing

Figure 1. Comparison of our method with bicubic interpolation.

The choice of the rule to assign value to a particular pixel
depends on its location and the content in the neighborhood.
The size of the neighborhood is dynamic and depends on the
content. Some rules can be influenced by distant pixels in the
input. Similarly, some rules can influence distant pixels in
the output.

If the neighborhood meets certain conditions, our method
tries to detect if an unknown pixel is part of an edge, a line or

a corner. Based on this, it applies appropriate rules. To
maintain smoothness of lines and edges, it both adds and
deletes pixels in the foreground color when compared with
simple pixel replication. The deletion ensures that smoothing
does not cause extra thickening.

Figure 1A shows the image we have used to explain our
method. Figure 1B shows the image, interpolated using
bicubic interpolation. The bicubic interpolation is done using
Matlab. Figure 1C shows the same image, magnified using
our method. As can be seen, the bicubic interpolation
introduces more distortion than our method. The region in
Figure 1C, shown in the red box, will be used to explain our
method.

The rest of this paper is organized as follows. Section 2
describes the interpolation process and five categories of
rules. Sub sections A to E, in Section 2, describe the
categories and associated rules. Experimental results are
given in Section 3. Conclusions and suggestions for further
extensions are given in Section 4.

II. THE INTERPOLATION PROCESS

For each unknown pixel, the method does four things.
Based on the location, it gets the neighbors and decides the
applicable category of rules. The neighbors are from the LR
image. Based on the content, it determines the neighborhood
to be considered. The neighborhood can extend well beyond
immediate neighbors. Based on the neighborhood, the
method chooses the rule to be applied. The rule sets the
unknown pixel and may also assign values to other pixels.

The interpolation process starts with an empty canvas
that is double the height and width of the input image. We
use blue color to represent pixels in the empty canvas. These
will be assigned values by applying appropriate rules. We
refer to these blue pixels as unknown pixels. At the start of
the process, all the pixel values are unknown.

We assume that the row and column numbering start at
the top left corner of the image. The first row and first
column are referred to as row zero and column zero
respectively.

In all the examples, we have used a white foreground and
black background.

In order to handle the boundary pixels in a uniform way,
we assume a two pixel wide background region on all four
boundaries.

In the interpolation process, we say that a pixel in the LR
image is horizontally (vertically) thin if its immediate
horizontal (vertical) neighbors, on the left (above) and right
(below) are of different magnitude from it.

The method categorizes unknown pixels in the HR
canvas based on their locations. This is shown in Figure 2.
The circles in the image represent individual pixels. At the
start of the interpolation process, all these pixels are
unknown. We categorize the pixels as O, H, V and D. Pixels
on the even rows and even columns are of type O. Pixels on
even rows and odd columns are of type H. Pixels on the odd
rows and even columns are of type V. Pixels on odd rows
and odd columns are of type D. Every pixel in the image
falls into one of these categories.

15Copyright (c) IARIA, 2017. ISBN: 978-1-61208-559-3

SIGNAL 2017 : The Second International Conference on Advances in Signal, Image and Video Processing

Figure 2. A representation of the HR image showing the types of pixels

that need to be generated through interpolation.

The pixels of type O, H, V and D are assigned values
using Category 1 to 4 rules respectively. The rules to assign
value to pixels, in each category, are discussed in sub-
sections A to D.

Some rules can override or pre-empt other rules,
depending on the neighborhood conditions.

Different rules use data from neighborhoods of different
sizes. In some cases, the size of the neighborhood is adaptive
and it depends on the content in the neighborhood.

Depending on the neighborhood of the pixel, one of the
rules in the chosen category is invoked. The rules, in each
category, have an order of precedence. If one rule is applied,
the rules with lower precedence are not applied even if their
invocation conditions are met. In the following sub-sections,
the rules are described in the order of their decreasing
precedence.

Category 5 has one rule and it can change values
assigned by other rules.

The method is implemented as a single pass. It starts at
the top left corner and scans through the image, row by row.
For each pixel, it chooses the appropriate rule and applies it.

We describe the method as a set of rules. Corresponding
to each rule or a group of rules, we have a figure showing
impact of the rule or group of rules. For example, Figure 3A
represents the output if only Category 1 rules are applied and
Figure 3B shows the output if both Category 1 and Category
2 rules are applied. The change from Figure 3A to Figure 3B
is the impact of the Category 2 rules.

A. Category 1 rule

This category has one rule and applies to all pixels of the
type O. In Figure 2, these pixels are shown as filled, black
circles. The rule maps all pixels in the LR image to the HR
image.

1) Rule 1: Assign the value of the pixel at location (x, y)

in the original image (LR) to the pixel at location (2x,2y) in

the interpolated (HR) image.

Figure 3. Impact of different rules. The captions show the additional

category of rules or specific rule applied.

For example, pixels at locations (4,4) and (6,4) in the HR
image are assigned values of pixels at locations (2,2) and
(3,2) respectively in the LR image. Figure 3A shows the
enlarged portion of the destination canvas and it depicts how
the empty destination canvas gets partially populated.

B. Category 2 rules

The three rules in this category apply to unknown pixels
of the type H. H pixels have a known horizontal neighbor
each on the left and right. In Figure 2, the neighbors of pixel
H are shown connected to it by black lines. The values of
these neighbors are known because they are the values in the
LR image.

1) Rule 2: If the neighbors on the left and right are equal,

assign the value of the neighbors to the unknown pixel.

2) Rule 3: If the neighbors on the left and right differ

and if only one of them is horizontally thin, assign the value

of the pixel that is not thin to the unknown pixel.

3) Rule 4: If none of the preceding rules assigned a value

to the unknown pixel, set it to the background color.
Figure 3B is generated by applying Rules 1 to 4. The

changes from Figure 3A are caused by the category 2 rules.
We see that the horizontal lines, in both colors, have become
better formed. We also see that unknown pixels on either
side of known pixels, in a vertical line in the foreground
color, have been set to the background color.

C. Category 3 rules

These rules are similar to the category 2 rules but apply
to unknown pixels of the type V. Such pixels have vertical
neighbors with known magnitudes. In Figure 2, the
neighbors of pixel V are shown connected to it by black
lines. Here we will use the concept of vertical thinness that
was defined earlier.

1) Rule 5: If the neighbors above and below are equal,

assign their value to the unknown pixel.

2) Rule 6: If the neighbors above and below differ and if

only one of them is vertically thin, assign the value of the

pixel that is not thin to the unknown pixel.

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-559-3

SIGNAL 2017 : The Second International Conference on Advances in Signal, Image and Video Processing

Figure 4. Impact of Rules 9-12. The captions show the additional rule and

the red call outs show its impact.

3) Rule 7: If none of the preceding rules assigned a value

to the unknown pixel, set it to the background color.
Figure 3C shows the impact of these rules. The changes

from Figure 3B to Figure 3C are caused by the category 3
rules. We see that the vertical lines have become well-
formed and more unknown pixels near horizontal lines have
been assigned values.

D. Category 4 rules

The eight rules in this category apply to the unknown
pixels of the type D. Such pixels have four diagonal
neighbors whose magnitudes are known. In Figure 2, the
four neighbors of pixel D are shown connected to it by red
lines. Unlike the rules in the preceding categories, some of
the rules here impact more than one pixel. However, they do
not change any pixel that was assigned value by Rule 1.

1) Rule 8: If all four diagonal neighbors are equal, assign

the value of the neighbors to the unknown pixel.
Figure 3D is generated by applying Rules 1 to 8. The

change from Figure 3C to Figure 3D is caused by Rule 8. We
see that most of the unknown pixels have been resolved and
solids are well-formed. Most of the unknown pixels that
remain are at the edges.

2) Rule 9: If all four neighbors are not equal and

diagonally opposite neighbors are equal, then attempt to

resolve as follows. If one and only one diagonal pair is both

horizontally and vertically thin, then assign its value to the

unknown pixel. Else, if all neighbors are horizontally and

vertically thin, then assign it the foreground color.
Figure 4A shows the impact of this rule. We see that the

diagonal lines are better formed. Unknown pixels adjacent to
the diagonal line and also at its end remain unresolved.

3) Rule 10: If all four neighbors are not equal but the

diagonally opposite neighbors are equal and the two

diagonally opposite pixels in the foreground color are end

points of two horizontal or two vertical line segments,

assign the foreground color to the unknown pixel. After

doing this, apply Rule 16.

Figure 5. Impact of applying Rules 13-16. The captions show the

additional rule and the red call outs show its impact.

Figure 4B shows the impact of this rule. This rule
connects line segments forming longer lines or curves.

4) Rule 11: If diagonally opposite neighbors are equal

and the preceding rules did not resolve the unknown pixel,

assign it the foreground color.
Figure 4C shows the impact is similar to that of Rule 10.

5) Rule 12: If the unknown pixel has three diagonal

neighbors of the background color, set it to the background

color.
This rule makes corners of solids and dots better formed.

The impact can be seen in Figure 4D.
The next three rules use the following definitions. These

are applicable when only three neighbors are equal to the
foreground color. These pixels form two perpendicular
segments. Each of these has a length two pixels or is part of a
longer segment. The lengths are with reference to the LR
image.

Corner: If both the perpendicular arms have a length of
two or if both of them are parts of longer segments.

Slope: If one perpendicular arm is of length two and the
other is part of a longer segment.

Well-formed slope: If the longer arm of a slope does not
have any adjacent pixel, on the same side as the shorter arm,
having the foreground color.

6) Rule 13: If the unknown pixel has three neighbors that

are a part of a corner, set it to the background color.
Figure 5A shows the impact of this rule. The corners

formed by intersecting segments become better formed.

7) Rule 14: If three neighbors are part of a slope, set the

unknown pixel to the foreground color. If the slope is well-

formed, extend the unknown pixel in the direction of the

longer arm by the length of the longer arm in the original

image. Flag the extension to prevent overwriting.
Figure 5B shows the impact of the rule. Rule 14 differs

from the preceding rules as it can impact pixels far removed
from the unknown pixel. It makes inclines smoother, as seen
on the inclined edge of the solid element in the figure.

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-559-3

SIGNAL 2017 : The Second International Conference on Advances in Signal, Image and Video Processing

Figure 6. Comparison of zooming. The first image is the input; the second

is generated by our method and the third by bicubic interpolation.

This smoothness in the feature is achieved by converting
each step like feature into two steps. This makes transitions
smaller. This rule can impact pixels about half way across in
the image, in either horizontal or vertical directions. The new
step drawn is always on an odd numbered row or column. So
it does not change any pixel that was assigned a value from
the original image by Rule 1.

8) Rule 15: If none of the preceding rules assigned a

value to the unknown pixel, set it to the background color.
Figure 5C shows the impact of this rule. After Rule 15 is

applied, no pixel remains unknown.

E. Category 5 rule

Category 5 has one rule. It is categorized separately
because of its unique behavior. It is invoked whenever Rule
10 is applied. If Rule 10 assigns a value to the unknown
pixel, two of the diagonal neighbors of the pixel are end
points of two horizontal or two vertical segments in the
foreground color.

1) Rule 16: Draw two segments from the unknown pixel,

parallel to the two segments whose endpoints are diagonal

neighbors. The length of the new segments should be half the

lengths of the corresponding segments in the original image.

Set the pixels corresponding to the two original segments

that are now adjacent to the new segments, to the

background color. Flag all the impacted pixels so that they

are not changed later when subsequent pixels are considered.
Figure 5D shows the impact of Rule 16. It is the only rule

that changes pixels that were assigned values by Rule 1. Rule
16 helps better interpolate inclined lines where the
inclination is not 45 degrees. The impact is seen on curves
also because curves are formed using segments and points.

Figure 6 shows another comparison of our method with
bicubic interpolation. The differences are clearly visible and
the output of our method is more pleasing.

III. EXPERIMENTAL RESULTS

In this section, we evaluate our method using geometric
shapes. This allows us to specify the desired result of
interpolation and generate reference images in HR for
comparison.

Figure 7. PSNR comparison of Bicubic interpolation and our method.

TABLE I. COMPARISON OF PSNR AND MPSNR

 Thickness PSNR in dB MPSNR in dB

 LR

HR
 Our

method
Bicubic

Our

method
Bicubic

Rectangle 1 1 match 22.98 Match 27.33

Circle 1 1 21.94 18.93 36 24.33

Line - 45 degree 1 1 46.02 26.54 56.16 31.92

Line - 10 degree 1 1 24.35 23.11 35.43 27.98

Rectangle 3 6 22.37 21.10 27.57 25.13

Circle 3 6 21.46 19.96 29.19 25.27

Line - 45 degree 3 6 25.19 27.40 32.14 34.68

Line - 10 degree 3 6 23.98 23.70 30.09 28.12

Filled Rectangle NA NA match 26.49 Match 30.85

Filled Circle NA NA 25.23 22.03 33 26.76

The reference HR images, for a scale factor of two, are

defined as follows. For a line thickness of one, a line of
length l in LR should produce a line length 2l in HR, a circle
of radius r should produce a circle of radius 2r and a
rectangle of dimension h x w should produce a rectangle of
size 2h x 2w. Each of the interpolated images should retain a
line thickness of one pixel.

If the source image has thickness, then the thickness is
also to be doubled. A line of n pixel thickness and length l,
should produce a line of thickness 2n and length 2l, if n > 1.

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-559-3

SIGNAL 2017 : The Second International Conference on Advances in Signal, Image and Video Processing

Figure 8. Magnified comparison of the outputs of interpolation.

TABLE II. COMPARISON OF OUR METHOD WITH OTHER METHODS.

 Percentage of PSNR improvement over Bicubic

Our Method

CIM

[4]

Gradient

Orientation [13]

NNV

[14] PSNR MPSNR

Lena 2.59 12.90 2.35 0.92

Peppers 2.50 14.12 1.09

1.71

The input images and reference images were drawn using

Visual C++. Lines, rectangles and circles were drawn using
the LineTo, Ellipse and Rectangle functions in the CDC
class. Line thickness was set using the CreatePen function in
the CPen class.

Figure 7 shows the comparison of our method with
Bicubic interpolation. In the figure, the first test case is a
filled circle. The reference image was drawn as a filled circle
of radius 80. The input to Bicubic interpolation and to our
method was a filled circle of radius 40. The same approach
was used to generate reference images for other shapes also.
The Bicubic interpolation was done using Matlab.

Table I shows the comparison for more images using
both PSNR and Modified PSNR (MPSNR). MPSNR is
generated by passing the images being compared through a
low pass filter and then finding the PSNR of the filtered
images. We have used a nine point mean filter. We see good
PSNR improvement by both measures. Table I also shows a
PSNR decrease for a three pixel thick line at 45 degrees. In
Figure 8, this image is analyzed. The figure shows a portion
of the image, marked in red, magnified 8 times. In the
magnified region, a set of colored squares with the same size
as a pixel, have been shown just below the line. Using these
pixels to help count, we see that the reference line is 8 pixels
wide along the x axis, while our method has generated a line
of width 7 pixels. This happens because, in many situations,
our method assigns the background color when other rules
don’t resolve an unknown pixel. This biases images towards
thinness and the bias is of one pixel. This helps the image
look sharp but the difference in thickness is reflected in the
lower PSNR.

A direct comparison of our method with results available
in [1]-[14] is difficult because our method is only formulated
for binary images. To do a comparison, we converted two of
the commonly used images, Lena and Peppers, to binary and

used these as the reference images. We decimated these
images by a factor of 2 and then interpolated them back to
original size. We compared the interpolated images with the
reference. The results are shown in Table II. The results have
to be viewed keeping in mind the fact that the input for our
experiments is binary while the input to the other methods is
a grayscale image.

In [12], a text super-resolution is considered. Here the
input is binary. It uses text images for training. It achieves an
improvement between 0% and 19% in Mean Square Error
(MSE), when compared with pixel replication. The results
are for different text symbols. Our method improved MSE
by 5.7% for Lena and 2.1% for Peppers.

We compared the execution times of our method with
bicubic (on a computer with Intel i5-3210M CPU @
2.50GHz, 4.00 GB RAM and running 64 bit Windows 8) by
running ten iterations. The minimum time taken for bicubic
interpolation of Lena and Peppers was 37.98 and 36.16
milliseconds respectively. The corresponding values for our
method were 28.56 and 27.68 milliseconds.

IV. CONCLUSIONS

We have developed a new method of zooming binary
images using rules inspired to some extent by what an artist
may do. All images shown in this paper are generated by a
computer program that implements the rules discussed. The
results from our method are visually appealing. Lines and
dots, with single pixel thickness, retain their thickness.
Inclined lines and solids don’t develop as much jaggedness
as happens with bicubic interpolation. Similarly, curves are
also relatively smoother. Also, corners retain sharpness.

From the results, we observe that one pixel thin lines
remain thin while thick lines become thicker in our method.
This is a desirable feature and one of the goals of our
method. However, this might not lead to visually appealing
results for fonts. This aspect requires more study.

More work is needed to extend this method to grayscale
and color images. A useful solution could probably be built
by working with ranges of color values and using functions
to specify values for unknown pixels. This can lead to better
image zooming techniques due to its location and content
based adaptive nature.

REFERENCES

[1] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C, 2nd ed. Cambridge
University Press, pp. 125-127, 1992.

[2] H. Jiang and C. Moloney, “A new direction adaptive scheme
for image interpolation,” International Conference on Image
Processing, Vol. 3, pp. 369-372, 2002.

[3] P. J. Prabhakaran and P. G. Poonacha, "A new decimation and
interpolation algorithm and an efficient lossless compression
technique for images," Communications (NCC), 2015 Twenty
First National Conference on, pp. 1-6, 2015.

[4] H. Kim, Y. Cha, and S. Kim, “Curvature Interpolation
Method for Image Zooming,” IEEE Transactions on Image
Processing, Vol. 20, No. 7, pp. 1895-1903, July 2011.

[5] R. Gao, J. P. Song, and X. C. Tai, “Image zooming algorithm
based on partial differential equations technique,”
International Journal of Numerical Analysis and Modelling,
Vol. 6, No. 2, pp. 284-292, 2009.

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-559-3

SIGNAL 2017 : The Second International Conference on Advances in Signal, Image and Video Processing

[6] L. Jing, Z. Gan, and X. Zhu, "Directional Bicubic
Interpolation-A New Method of Image Super-Resolution,"
3rd International Conference on Multimedia Technology
(ICMT-13). Atlantis Press, pp 470-477, November 2013.

[7] J. Sun, Z. Xu, and H. Y. Shum, "Image super-resolution using
gradient profile prior," 2008 IEEE Conference on Computer
Vision and Pattern Recognition, Anchorage, AK, pp. 1-8,
2008.

[8] C. Y. Yang and M. H. Yang, "Fast Direct Super-Resolution
by Simple Functions," 2013 IEEE International Conference
on Computer Vision, Sydney, NSW, pp. 561-568, 2013.

[9] R. Hardie, “A fast image super-resolution algorithm using an
adaptive Wiener filter,” IEEE Transactions on Image
Processing, Vol. 16, No. 12, pp. 2953-2964, 2007.

[10] S. Lerttrattanapanich and N. K. Bost, “High resolution image
formation from low resolution frames using delaunay
triangulation,” IEEE Transaction on Image Processing, Vol.
11, No. 12, pp. 1427-1441, 2002.

[11] W. T. Freeman, T. R. Jones, and E. C. Pasztor, “Example-
Based Super-Resolution,” IEEE Comput. Graph. Appl. 22, 2,
pp. 56-65, 2002.

[12] G. Dalley, B. Freeman, and J. Marks, "Single-frame text
super-resolution: a Bayesian approach," Image Processing,
2004. ICIP '04. 2004 International Conference on, 2004, Vol.
5, pp. 3295-3298, 2004.

[13] S. Ousguine, F. Essannouni, L. Essannouni, and D.
Aboutajdine, "A new image interpolation using gradient-
orientation and cubic spline interpolation," ISSR-Journals,
vol. 5, no. 3, 2014.

[14] O. Rukundo and C. Hanqiang, "Nearest Neighbor Value
Interpolation," in 2014 International Conference on Computer
Vision Theory and Applications (VISAPP), 2012.

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-559-3

SIGNAL 2017 : The Second International Conference on Advances in Signal, Image and Video Processing

