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Abstract—In this paper, we propose a new zooming technique 

for binary images using location and neighborhood adaptive 

non-linear interpolation rules. These rules are inspired by the 

way an artist would draw an enlarged image. We have shown 

that our method overcomes a number of problems associated 

with known interpolation techniques, such as blurring and 

thickening of edges. Our method uses a set of sixteen rules in 

five categories. Each pixel in the interpolated image is 

computed by a chosen rule. The choice depends on the location 

of the pixel and the content in the neighborhood. The size of 

the neighborhood is a variable. Some rules can be influenced 

by and influence distant pixels. We present examples showing 

the effectiveness of our method. The results are visually 

appealing.  Lines and dots, with single pixel thickness, retain 

their thickness. Inclined lines and solids don’t develop as much 

jaggedness as happens with bicubic interpolation. Similarly, 

curves are also relatively smoother. 

Keywords-Interpolation; binary-image; thinness; corner; 

slope. 

I. INTRODUCTION 

When High Resolution (HR) images are created by 
interpolating Low Resolution (LR) images using popular 
methods like nearest neighbor, bilinear and bicubic 
interpolation, unpleasant artifacts are seen. Two commonly 
noticed artifacts are smoothing of edges and pixelation. 
These are most likely to arise at object edges, on lines and 
curves that are one pixel thick, on inclined and curved solids 
or object intersections. Such methods cause more unwanted 
artifacts in the case of binary image zooming. 

A large number of interpolation methods are available in 
the literature [1]–[14]. Some of these, like Nearest Neighbor, 
Bilinear and Bicubic [1] methods, use surface fitting 
techniques with pre-defined constraints. These methods often 
create undesirable artifacts in the output. Many methods 
have been proposed to minimize such artifacts. In [2], an 
orientation constraint is computed for each pixel to be 
generated. The pixel value is computed as a function of this 
constraint and the four surrounding neighbors. In an earlier 
work [3], we proposed an interpolation method called 
Average of Nearest Neighbors (ANN). This was based on 
the idea that each pixel in the interpolated image should be 
generated by using all the available nearest neighbors in the 
original image and none of the other pixels. 

In [4], curvature of the low resolution image is evaluated 
and this curvature information is interpolated using bilinear 
interpolation. The interpolated curvature information is used 
as a driving constraint to interpolate the complete image. In 
[5], the image is first interpolated using bilinear 
interpolation. As a second step, the quality is improved using 
a fourth order Partial Differential Equation (PDE) based 
method. A directional bicubic scheme is proposed in [6]. 
Here, the strongest edge in each 7x7 neighborhood is 
detected. If the edge strength is greater than a threshold, a 
one-dimensional bicubic interpolation is done along the 
edge. Our method shares some similarities with [6] because 
it also tries to find and preserves local edges. 

In [7] and [8], a two-step super resolution process is 
studied. In the first step, the low resolution image is 
interpolated using Bicubic interpolation. In the second step, 
the interpolated image is further processed to improve the 
quality at the edges. In [7], the gradient profile of the low 
resolution image is used as a driving gradient prior to change 
the gradient profile of the interpolated image. This process 
makes the edges sharper. In [8], this idea is extended by 
splitting the feature space into multiple subspaces and 
generating multiple priors. 

In some scenarios, a frame from a video sequence needs 
to be interpolated. In [9] and [10], techniques to use 
information from adjacent frames to improve quality are 
discussed. The former uses an adaptive Wiener filter while 
the later uses Delaunay triangulation. 

A training based approach is discussed in [11]. Unknown 
pixels in the interpolated image are generated using the 
training data set that best matches. The patch around the 
unknown pixel is matched with patches in the training set. 
Using the best matched stored patch, the pixel is assigned a 
value. A training based method, to expand binary text 
images, with an explicit noise model is discussed in [12]. 

In [13], edges are found as a first step. The edges are 
used to compute unknown pixels using cubic spline. In [14], 
unknown pixels are assigned the value of the neighbor that is 
closest to the value got by bilinear interpolation.  

In this paper, we have developed interesting rules, based 
on location and nature of content in the neighborhood, for 
the interpolation of binary images by a scale factor of 2. 
These rules derive inspiration from the way an artist might 
zoom an image. We present a method of obtaining 
interpolated image pixels using sixteen rules, grouped into 
five categories. The rules are of widely varying complexities. 
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Figure 1.  Comparison of our method with bicubic interpolation.  

The choice of the rule to assign value to a particular pixel 
depends on its location and the content in the neighborhood. 
The size of the neighborhood is dynamic and depends on the 
content. Some rules can be influenced by distant pixels in the 
input. Similarly, some rules can influence distant pixels in 
the output. 

If the neighborhood meets certain conditions, our method 
tries to detect if an unknown pixel is part of an edge, a line or 

a corner. Based on this, it applies appropriate rules. To 
maintain smoothness of lines and edges, it both adds and 
deletes pixels in the foreground color when compared with 
simple pixel replication. The deletion ensures that smoothing 
does not cause extra thickening. 

Figure 1A shows the image we have used to explain our 
method. Figure 1B shows the image, interpolated using 
bicubic interpolation. The bicubic interpolation is done using 
Matlab. Figure 1C shows the same image, magnified using 
our method. As can be seen, the bicubic interpolation 
introduces more distortion than our method. The region in 
Figure 1C, shown in the red box, will be used to explain our 
method. 

The rest of this paper is organized as follows. Section 2 
describes the interpolation process and five categories of 
rules. Sub sections A to E, in Section 2, describe the 
categories and associated rules. Experimental results are 
given in Section 3.  Conclusions and suggestions for further 
extensions are given in Section 4.  

II. THE INTERPOLATION PROCESS 

For each unknown pixel, the method does four things. 
Based on the location, it gets the neighbors and decides the 
applicable category of rules. The neighbors are from the LR 
image. Based on the content, it determines the neighborhood 
to be considered. The neighborhood can extend well beyond 
immediate neighbors. Based on the neighborhood, the 
method chooses the rule to be applied. The rule sets the 
unknown pixel and may also assign values to other pixels. 

The interpolation process starts with an empty canvas 
that is double the height and width of the input image. We 
use blue color to represent pixels in the empty canvas. These 
will be assigned values by applying appropriate rules.  We 
refer to these blue pixels as unknown pixels. At the start of 
the process, all the pixel values are unknown.  

We assume that the row and column numbering start at 
the top left corner of the image. The first row and first 
column are referred to as row zero and column zero 
respectively.  

In all the examples, we have used a white foreground and 
black background.  

In order to handle the boundary pixels in a uniform way, 
we assume a two pixel wide background region on all four 
boundaries.  

In the interpolation process, we say that a pixel in the LR 
image is horizontally (vertically) thin if its immediate 
horizontal (vertical) neighbors, on the left (above) and right 
(below) are of different magnitude from it. 

The method categorizes unknown pixels in the HR 
canvas based on their locations. This is shown in Figure 2. 
The circles in the image represent individual pixels. At the 
start of the interpolation process, all these pixels are 
unknown. We categorize the pixels as O, H, V and D.  Pixels 
on the even rows and even columns are of type O. Pixels on 
even rows and odd columns are of type H. Pixels on the odd 
rows and even columns are of type V. Pixels on odd rows 
and odd columns are of type D. Every pixel in the image 
falls into one of these categories. 
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Figure 2.  A representation of the HR image showing the types of pixels 

that need to be generated through interpolation. 

The pixels of type O, H, V and D are assigned values 
using Category 1 to 4 rules respectively. The rules to assign 
value to pixels, in each category, are discussed in sub-
sections A to D. 

Some rules can override or pre-empt other rules, 
depending on the neighborhood conditions. 

Different rules use data from neighborhoods of different 
sizes. In some cases, the size of the neighborhood is adaptive 
and it depends on the content in the neighborhood. 

Depending on the neighborhood of the pixel, one of the 
rules in the chosen category is invoked. The rules, in each 
category, have an order of precedence. If one rule is applied, 
the rules with lower precedence are not applied even if their 
invocation conditions are met. In the following sub-sections, 
the rules are described in the order of their decreasing 
precedence. 

Category 5 has one rule and it can change values 
assigned by other rules. 

The method is implemented as a single pass. It starts at 
the top left corner and scans through the image, row by row. 
For each pixel, it chooses the appropriate rule and applies it. 

We describe the method as a set of rules. Corresponding 
to each rule or a group of rules, we have a figure showing 
impact of the rule or group of rules. For example, Figure 3A 
represents the output if only Category 1 rules are applied and 
Figure 3B shows the output if both Category 1 and Category 
2 rules are applied. The change from Figure 3A to Figure 3B 
is the impact of the Category 2 rules. 

A. Category 1 rule 

This category has one rule and applies to all pixels of the 
type O. In Figure 2, these pixels are shown as filled, black 
circles. The rule maps all pixels in the LR image to the HR 
image. 

1) Rule 1: Assign the value of the pixel at location (x, y) 

in the original image (LR) to the pixel at location (2x,2y) in 

the interpolated (HR) image. 
 

 
Figure 3.  Impact of different rules. The captions show the additional 

category of rules or specific rule applied. 

For example, pixels at locations (4,4) and (6,4) in the HR 
image are assigned values of pixels at locations (2,2) and 
(3,2) respectively in the LR image. Figure 3A shows the 
enlarged portion of the destination canvas and it depicts how 
the empty destination canvas gets partially populated.  

B. Category 2 rules 

The three rules in this category apply to unknown pixels 
of the type H. H pixels have a known horizontal neighbor 
each on the left and right. In Figure 2, the neighbors of pixel 
H are shown connected to it by black lines. The values of 
these neighbors are known because they are the values in the 
LR image. 

1) Rule 2: If the neighbors on the left and right are equal, 

assign the value of the neighbors to the unknown pixel. 

2) Rule 3:  If the neighbors on the left and right differ 

and if only one of them is horizontally thin, assign the value 

of the pixel that is not thin to the unknown pixel. 

3) Rule 4: If none of the preceding rules assigned a value 

to the unknown pixel, set it to the background color.  
Figure 3B is generated by applying Rules 1 to 4. The 

changes from Figure 3A are caused by the category 2 rules. 
We see that the horizontal lines, in both colors, have become 
better formed. We also see that unknown pixels on either 
side of known pixels, in a vertical line in the foreground 
color, have been set to the background color. 

C. Category 3 rules 

These rules are similar to the category 2 rules but apply 
to unknown pixels of the type V. Such pixels have vertical 
neighbors with known magnitudes. In Figure 2, the 
neighbors of pixel V are shown connected to it by black 
lines. Here we will use the concept of vertical thinness that 
was defined earlier. 

1) Rule 5: If the neighbors above and below are equal, 

assign their value to the unknown pixel. 

2) Rule 6:  If the neighbors above and below differ and if 

only one of them is vertically thin, assign the value of the 

pixel that is not thin to the unknown pixel. 
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Figure 4.  Impact  of Rules 9-12. The captions show the additional rule and 

the red call outs show its impact.  

3) Rule 7: If none of the preceding rules assigned a value 

to the unknown pixel, set it to the background color. 
Figure 3C shows the impact of these rules. The changes 

from Figure 3B to Figure 3C are caused by the category 3 
rules. We see that the vertical lines have become well-
formed and more unknown pixels near horizontal lines have 
been assigned values. 

D. Category 4 rules 

The eight rules in this category apply to the unknown 
pixels of the type D. Such pixels have four diagonal 
neighbors whose magnitudes are known. In Figure 2, the 
four neighbors of pixel D are shown connected to it by red 
lines. Unlike the rules in the preceding categories, some of 
the rules here impact more than one pixel. However, they do 
not change any pixel that was assigned value by Rule 1. 

1) Rule 8: If all four diagonal neighbors are equal, assign 

the value of the neighbors to the unknown pixel. 
Figure 3D is generated by applying Rules 1 to 8. The 

change from Figure 3C to Figure 3D is caused by Rule 8. We 
see that most of the unknown pixels have been resolved and 
solids are well-formed. Most of the unknown pixels that 
remain are at the edges. 

2) Rule 9: If all four neighbors are not equal and 

diagonally opposite neighbors are equal, then attempt to 

resolve as follows. If one and only one diagonal pair is both 

horizontally and vertically thin, then assign its value to the 

unknown pixel. Else, if all neighbors are horizontally and 

vertically thin, then assign it the foreground color. 
Figure 4A shows the impact of this rule. We see that the 

diagonal lines are better formed. Unknown pixels adjacent to 
the diagonal line and also at its end remain unresolved. 

3) Rule 10: If all four neighbors are not equal but the 

diagonally opposite neighbors are equal and the two 

diagonally opposite pixels in the foreground color are end 

points of two horizontal or two vertical line segments,   

assign the foreground color to the unknown pixel. After 

doing this, apply Rule 16. 

 
Figure 5.  Impact  of applying Rules 13-16. The captions show the 

additional rule and the red call outs show its impact. 

Figure 4B shows the impact of this rule. This rule 
connects line segments forming longer lines or curves. 

4) Rule 11: If diagonally opposite neighbors are equal 

and the preceding rules did not resolve the unknown pixel, 

assign it the foreground color. 
Figure 4C shows the impact is similar to that of Rule 10. 

5) Rule 12: If the unknown pixel has three diagonal 

neighbors of the background color, set it to the background 

color. 
This rule makes corners of solids and dots better formed. 

The impact can be seen in Figure 4D. 
The next three rules use the following definitions. These 

are applicable when only three neighbors are equal to the 
foreground color. These pixels form two perpendicular 
segments. Each of these has a length two pixels or is part of a 
longer segment. The lengths are with reference to the LR 
image.   

Corner: If both the perpendicular arms have a length of 
two or if both of them are parts of longer segments. 

Slope: If one perpendicular arm is of length two and the 
other is part of a longer segment. 

Well-formed slope: If the longer arm of a slope does not 
have any adjacent pixel, on the same side as the shorter arm, 
having the foreground color. 

6) Rule 13: If the unknown pixel has three neighbors that 

are a part of a corner, set it to the background color. 
Figure 5A shows the impact of this rule. The corners 

formed by intersecting segments become better formed. 

7) Rule 14: If three neighbors are part of a slope, set the 

unknown pixel to the foreground color. If the slope is well-

formed, extend the unknown pixel in the direction of the 

longer arm by the length of the longer arm in the original 

image. Flag the extension to prevent overwriting. 
Figure 5B shows the impact of the rule. Rule 14 differs 

from the preceding rules as it can impact pixels far removed 
from the unknown pixel. It makes inclines smoother, as seen 
on the inclined edge of the solid element in the figure. 
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Figure 6.  Comparison of zooming. The first image is the input; the second 

is generated by our method and the third by bicubic interpolation. 

This smoothness in the feature is achieved by converting 
each step like feature into two steps. This makes transitions 
smaller. This rule can impact pixels about half way across in 
the image, in either horizontal or vertical directions. The new 
step drawn is always on an odd numbered row or column. So 
it does not change any pixel that was assigned a value from 
the original image by Rule 1. 

8) Rule 15: If none of the preceding rules assigned a 

value to the unknown pixel, set it to the background color. 
Figure 5C shows the impact of this rule. After Rule 15 is 

applied, no pixel remains unknown. 

E.  Category 5 rule 

Category 5 has one rule. It is categorized separately 
because of its unique behavior. It is invoked whenever Rule 
10 is applied. If Rule 10 assigns a value to the unknown 
pixel, two of the diagonal neighbors of the pixel are end 
points of two horizontal or two vertical segments in the 
foreground color. 

1) Rule 16: Draw two segments from the unknown pixel, 

parallel to the two segments whose endpoints are diagonal 

neighbors. The length of the new segments should be half the 

lengths of the corresponding segments in the original image. 

Set the pixels corresponding to the two original segments 

that are now adjacent to the new segments, to the 

background color. Flag all the impacted pixels so that they 

are not changed later when subsequent pixels are considered.  
Figure 5D shows the impact of Rule 16. It is the only rule 

that changes pixels that were assigned values by Rule 1. Rule 
16 helps better interpolate inclined lines where the 
inclination is not 45 degrees. The impact is seen on curves 
also because curves are formed using segments and points. 

Figure 6 shows another comparison of our method with 
bicubic interpolation. The differences are clearly visible and 
the output of our method is more pleasing. 

III. EXPERIMENTAL RESULTS 

In this section, we evaluate our method using geometric 
shapes. This allows us to specify the desired result of 
interpolation and generate reference images in HR for 
comparison. 

 
Figure 7.  PSNR comparison of Bicubic interpolation and our method.  

TABLE I.  COMPARISON OF PSNR AND MPSNR 

  Thickness PSNR in dB MPSNR in dB 

  LR
 

HR
 Our 

method 
Bicubic 

Our 

method 
Bicubic 

Rectangle 1 1 match 22.98 Match 27.33 

Circle 1 1 21.94 18.93 36 24.33 

Line - 45 degree 1 1 46.02 26.54 56.16 31.92 

Line - 10 degree 1 1 24.35 23.11 35.43 27.98 

Rectangle 3 6 22.37 21.10 27.57 25.13 

Circle 3 6 21.46 19.96 29.19 25.27 

Line - 45 degree 3 6 25.19 27.40 32.14 34.68 

Line - 10 degree 3 6 23.98 23.70 30.09 28.12 

Filled Rectangle  NA NA match 26.49 Match 30.85 

Filled Circle  NA NA 25.23 22.03 33 26.76 

 
The reference HR images, for a scale factor of two, are 

defined as follows. For a line thickness of one, a line of 
length l in LR should produce a line length 2l in HR, a circle 
of radius r should produce a circle of radius 2r and a 
rectangle of dimension h x w should produce a rectangle of 
size 2h x 2w. Each of the interpolated images should retain a 
line thickness of one pixel. 

If the source image has thickness, then the thickness is 
also to be doubled. A line of n pixel thickness and length l, 
should produce a line of thickness 2n and length 2l, if n > 1. 
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Figure 8.  Magnified comparison of the outputs of interpolation.  

TABLE II.  COMPARISON OF OUR METHOD WITH OTHER METHODS. 

 Percentage of PSNR improvement over Bicubic 

 
Our Method

 

CIM 

[4] 

Gradient 

Orientation [13] 

NNV 

[14]  PSNR MPSNR 

Lena 2.59 12.90 2.35 0.92  

Peppers 2.50 14.12 1.09 
 

1.71 

 
The input images and reference images were drawn using 

Visual C++. Lines, rectangles and circles were drawn using 
the LineTo, Ellipse and Rectangle functions in the CDC 
class. Line thickness was set using the CreatePen function in 
the CPen class. 

Figure 7 shows the comparison of our method with 
Bicubic interpolation. In the figure, the first test case is a 
filled circle. The reference image was drawn as a filled circle 
of radius 80. The input to Bicubic interpolation and to our 
method was a filled circle of radius 40. The same approach 
was used to generate reference images for other shapes also. 
The Bicubic interpolation was done using Matlab. 

Table I shows the comparison for more images using 
both PSNR and Modified PSNR (MPSNR). MPSNR is 
generated by passing the images being compared through a 
low pass filter and then finding the PSNR of the filtered 
images. We have used a nine point mean filter. We see good 
PSNR improvement by both measures. Table I also shows a 
PSNR decrease for a three pixel thick line at 45 degrees. In 
Figure 8, this image is analyzed. The figure shows a portion 
of the image, marked in red, magnified 8 times. In the 
magnified region, a set of colored squares with the same size 
as a pixel, have been shown just below the line. Using these 
pixels to help count, we see that the reference line is 8 pixels 
wide along the x axis, while our method has generated a line 
of width 7 pixels. This happens because, in many situations, 
our method assigns the background color when other rules 
don’t resolve an unknown pixel. This biases images towards 
thinness and the bias is of one pixel. This helps the image 
look sharp but the difference in thickness is reflected in the 
lower PSNR. 

A direct comparison of our method with results available 
in [1]-[14] is difficult because our method is only formulated 
for binary images. To do a comparison, we converted two of 
the commonly used images, Lena and Peppers, to binary and 

used these as the reference images. We decimated these 
images by a factor of 2 and then interpolated them back to 
original size. We compared the interpolated images with the 
reference. The results are shown in Table II. The results have 
to be viewed keeping in mind the fact that the input for our 
experiments is binary while the input to the other methods is 
a grayscale image. 

In [12], a text super-resolution is considered. Here the 
input is binary. It uses text images for training. It achieves an 
improvement between 0% and 19% in Mean Square Error 
(MSE), when compared with pixel replication. The results 
are for different text symbols. Our method improved MSE 
by 5.7% for Lena and 2.1% for Peppers. 

We compared the execution times of our method with 
bicubic (on a computer with Intel i5-3210M CPU @ 
2.50GHz, 4.00 GB RAM and running 64 bit Windows 8) by 
running ten iterations. The minimum time taken for bicubic 
interpolation of Lena and Peppers was 37.98 and 36.16 
milliseconds respectively. The corresponding values for our 
method were 28.56 and 27.68 milliseconds.  

IV. CONCLUSIONS 

We have developed a new method of zooming binary 
images using rules inspired to some extent by what an artist 
may do. All images shown in this paper are generated by a 
computer program that implements the rules discussed. The 
results from our method are visually appealing. Lines and 
dots, with single pixel thickness, retain their thickness. 
Inclined lines and solids don’t develop as much jaggedness 
as happens with bicubic interpolation. Similarly, curves are 
also relatively smoother. Also, corners retain sharpness. 

From the results, we observe that one pixel thin lines 
remain thin while thick lines become thicker in our method. 
This is a desirable feature and one of the goals of our 
method. However, this might not lead to visually appealing 
results for fonts. This aspect requires more study. 

More work is needed to extend this method to grayscale 
and color images. A useful solution could probably be built 
by working with ranges of color values and using functions 
to specify values for unknown pixels. This can lead to better 
image zooming techniques due to its location and content 
based adaptive nature. 
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